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Abstract—Electrical equipments usually radiate unintended emission
which carries characteristic information when running, such as emana-
tion from computers monitors, keyboards and other components, this
emanation can be possibly used to reconstruct the source information.
Most of the experiments related to this area are carried out inside a
semi-anechoic chamber, and measurement out of it may not be consid-
ered to be optimal, because the data captured are usually not sufficient.
Yet in this study, we take LCD monitors as typical examples and find
that characteristics significantly differ between products, parameters
such as the magnitude and spectrum were measured under normal en-
vironment. We take the PCB traces as antennas and acquire the raw
signal directly near the antenna and extract the parameters to use as
input to support vector machine (SVM) which was trained to iden-
tify the emanating source (LCD monitors). In this study, the method
was tested using the emission captured from one Samsung (SyncMas-
ter E1920) and two LG (L1753s) monitors, and a laptop (ACER As-
pire 5542). The SVM was able to classify the source of signals with
98.9510% accuracy while using emission that captured from the run-
ning monitors.

1. INTRODUCTION

Emanation from electrical equipments can be used for electromagnetic
eavesdropping. Taking computer monitor as example, in 1985 the
first eavesdropping of the cathode-ray tube (CRT) monitors was
demonstrated by van Eck. Experiments found that in proper
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environment, the text and image on the display can be reconstructed.
Modern monitors such as LCD, LED screens, which seem to have less
electromagnetic emanation than CRT, are still able to be eavesdropped
nearby, especially nowadays the transmission speed of modern digital
products has risen to Gbit/s, which in a way make the eavesdropping
much easier and the eavesdropping equipment hard to discover [1, 2].

For different monitor products as well as the monitors of the same
product, due to their different components structure and driving circuit
frequency, the reconstruction methods are different. In the latter case,
the difference turns out to be much more subtle, and we assume that
method used to reconstruct is the same. Literatures show that when
the monitor parameters are known by detail the reconstruction of the
display becomes available [3–5]. Yet little research mentions how to
respond when the detail of the target is not confirmed. Therefore, in
this study we need to acquire the emanation, with which we can not
only distinguish monitors of different products, but also share the same
characteristic with different monitors of the same products. In order to
successfully extract these characteristics, we need to properly collect
the feature of each monitor from the spectrum, and use algorithms to
detect, identify, and locate the monitors automatically.

Figure 1 shows the emanation spectra of two different products
of monitors (Samsung SyncMaster, ACER) compared with the
ambient noise measured in the Electromagnetic Compatibility (EMC)
Laboratory at Beijing University of Posts and Telecommunications
(BUPT). This emanation was measured using near-field probes
connected to a spectrum analyze, in which resolution bandwidth is

Figure 1. Emanations spectra of two different monitors.
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set to 1 kHz. The figure shows that the characteristics of different
monitors vary significantly from one to another, and the differences
can be used to train the learning machine to automatically identify
the monitors based on the characteristic of the emanation.

To identify the emission source, pattern identification technique
can be widely implemented in this area. Some typical nonlinear
algorithms, such as artificial neural networks (ANNs), support vector
machine (SVM), have been commonly used in target recognition. Both
of these learning machines are powerful, efficient, and robust in solving
these problems. They are able to be trained from learning set and to
generalize the target characterize accurately [6–13].

On the other hand, there is a difference between these two
techniques, which leaves an option to the researchers when deciding
which algorithm to apply, e.g., the ANN algorithm is based on
empirical risk minimization (ERM) principle, while the SVM use the
structural risk minimization (SRM). Which means, ANN is highly
depended on the training data set, in this way it lead to two problems,
a) the quality of the training data set directly affects the accuracy
of the machine. To acquire high quality training set, abundant data
set is needed; therefore the learning time and complexity of the
calculation are inevitably increased; b) the accuracy of the machine
also depends on the experience and priori assumption of the learning
machine designer. In this way, the results of the machine are different
from person to person. However, SVM, which is strictly based on
the statistic and mathematic theory, does not require the designers’
experience and priori assumption. Moreover, SVM is based on small
sample statistical learning theory, thus compared with ANN, it is more
efficient in classifying the target correctly when the training data set is
limited. In addition, due to this computational advantage, it has better
performance in calculation speed and flexibility. While dealing with
the non-linear case, SVM offers a more accurate solution to the target
identification problems, in which linear algorithm can not [14, 15].

2. METHOD

2.1. Radiation Model

According to electromagnetic theory, the electromagnetic wave, which
is caused by moving charges or changing current, will emit and
spread to the space. Whereas in the digital equipments, the signals
consist largely of periodic trapezoidal waveform and impulse signal,
of which the change of rising edge and falling edge can be taken into
consideration in antenna models. For the length of the conductor L,
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if it is far less than the length of the microwave in the vacuum, it can
be taken as a standing wave dipole model.

In the experimental environment, the difference of the monitors’
radiation is mainly caused by its own circuit structure, driving clock,
and the graphic cards. In 2003, Kuhn conducted an experiment with
different graphics adapters and measured the spectrum of it showed as
Fig. 2 [16].

(b)

(a)

Figure 2. (a) Voltage curve of a single full-intensity pixel for two
graphic cards and a laptop. (b) Frequency spectrum measured for a
random-bit test image with a spectrum analyzer.



Progress In Electromagnetics Research M, Vol. 30, 2013 215

(b)(a)

Figure 3. (a) Geometry of a linear antenna in near zone.
(b) Geometry of a linear antenna in the far zone.

From the figures we can see that compared with different graphic
adapters, the power is mainly at the frequency of 600 MHz or even
lower than this frequency, and the length of the microwave in free
space λ is 0.5 m or longer than this, which means that the length of
the conductors in the monitor circuits is suitable for the standing wave
dipole model. Thus in this model, the current density on the conductor
can be considered as constant at the same moment:

J(z, t) =





constant − L
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2
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(1)

The radiation of electric equipments includes static electric field,
electric and magnetic fields. In the near zone, the dominant fields are
the static electric field and magnetic field, while in the far zone is the
electric field. The far zone is defined as a zone of which the distance
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2π , is defined as near zone. In the near zone and far zone, the
electric and magnetic fields are shown as Fig. 3 [17]. And the electric
and magnetic fields are equal to:
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At the distance where r → ∞, the electric and magnetic field of
the standing wave dipole mode are represented as equations below:
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As mentioned above, the waveform of signal in digital products
are mainly trapezoidal waveforms, of which the difference is shown
as Fig. 4. According to the standing wave dipole mode equations
presented above, while in the near zone, the radiated trapezoidal
signals with different ∆Ti, which is caused by the different durations
of the rising edge and falling edge, share the same ∆T0. However, in
the far zone, they are different both in magnitude and time span, and
this character can be used to distinguish the different signals.

In order to capture the signals efficiently, we also need to figure out
how the coupling models work, which includes the coupling between
the microwave in the free space and the receiver antenna, the coupling
between the microwave and the transmission lines, and the coupling
among the cables.
(i) Inductive coupling

When the transmitting signals are in one of the parallel lines, due
to the coupling between this pair of lines, in the line of another,
the signal induced from the source line will cause information
leakage problems. The relation of voltages in these two lines can
be probably described as:

Vi =
jωMl

2
Vs (8)
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Figure 4. Trapezoidal waveform signal in digital products.

where Vi is the inductive voltage from the source voltage Vs, M the
coefficient of mutual induction, l the length of the coupling lines,
and ω the frequency of the transmission signal. Vi is proportional
to M , l and ω. In most cases, since the signal frequency is
confirmed by default, M and l are the only optional factors to deal
with, e.g., increasing the distance between two lines can efficiently
restrain the coupling.

(ii) Conductive coupling
At high frequency, the main coupling of the parallel lines becomes
the conductive coupling. In high speed circuit, if the traces on the
PCB layout are not properly designed, the signals on it will be
coupled to the other traces. Therefore, the shielding of the high-
frequency traces is necessary. While in the conductive coupling,
the relation of voltages between the circuits is approximately
described as:

Vc = jωCRlVs (9)

where Vc is the conductive voltage and Rl the load resistance. The
coupled conductance C equals to:

C =
πε0

cosh−1( d
D )

The distance between two traces and the diameter are respectively
represented by d and D.

(iii) Coupling due to the shared impedance
While two equipments share the common return, e.g., grounding,
disturbance or coupling will occur. The most common situation is
grounding coupling and the power coupling. Information leakage
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through these shared routes can also be captured and cause
security problems. The relation of the voltages in this model is
approximately described as:

Vr = ξVs (10)

and ξ equals to:

ξ =
Rr

rr + Zr + Rr

Rs

rs + Zs + Rs

where Rr, Rs are the load resistances of the coupled received
circuit and source circuits respectively. Also, rr, rs are the internal
resistance, and Zr, Zs the output impedance.

2.2. Measurement and Identification Process

As mentioned above, from Fig. 2, we can see that the main power of
radiation is concentrated at the bandwidth of 0 ∼ 600MHz. To receive
signals at different frequencies, different types of antennas are chosen.
For example, when the narrow-band signal interested is well estimated,
we can use simple dipole antenna to receive it if its bandwidth is not
more than the 1

10 of the center frequency of the antenna. In addition,
Yagi antennas also have excellent performance in receiving the narrow-
band signal, especially at VHF and UHF when the frequency center of
the eavesdropping target is precisely known.

While referring to broad-band antenna, from low frequency
to ultra-high frequency, there are common antennas used for
compromising emanation eavesdropping, e.g., active monopole antenna
works in the bandwidth at 100 Hz ∼ 30MHz; bi-conical antenna at
30MHz ∼ 300MHz; log-periodic antenna at 200MHz ∼ 1000MHz,
and discone antenna at 200MHz ∼ 1300MHz.

In this research, the clocks on the monitors work at the frequency
varied from low frequency to about 500 MHz, which means the length
of microwave radiated λ ≥ 0.6m, thus we take the traces on the PCB
layout of the display as wire antennas. The model we use has been
discussed in Section 2.2.1. We focus on the VHF and use near field
probe to receive the signal directly near the antenna, and the distance
between them is about 5 cm ∼ 10 cm.

We choose a clean bandwidth at 30 MHz with about −100 dBm
average of the measurement ambient noise. On this bandwidth there
is only a stable unknown signal with a resonant frequency of 44 kHz;
therefore, it meets the needs of acquiring the characteristic signal
of the target. The resolution of each monitor has been taken into
consideration, and we use the same configuration to find the distinction
of different monitors. Fig. 1 shows the spectrum at 30 MHz with
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400 kHz bandwidth and 1 kHz resolution bandwidth. We also capture a
spectrum with 80 kHz bandwidth at the same frequency. Accordingly,
the resolution bandwidth is set to 200 Hz, and all 336 measurements
are recorded. Spectrum of a Samsung monitor and a laptop is shown
in Fig. 5.

The process of the identification using SVM is shown as Fig. 6.
There are several types of basic kernel function in SVM, and we choose
RBF kernel for two reasons. First of all, the RBF nonlinearly maps
sample into a higher dimensional space, thus it is capable of handling

(a)

(b)

Figure 5. (a) Spectrum of a Samsung monitor with the ambient
noise. (b) Spectrum of a laptop. Both of the curves are the average
trace while capturing using the spectrum analyzer.
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Figure 6. The process of identification using the SVM approach.

the cases of which the relation between cases labels is nonlinear.
Furthermore, the RBF kernel function has fewer numerical difficulties,
which makes it suitable for this case.

3. IDENTIFICATION RESULTS AND DISCUSSION

According to the measurements, for those monitors of different
products, the spectrums differ significantly from one to another. Fig. 7
shows the difference of each monitor emanations in magnitude.

Figure 7. Boxplot of emanation of different monitors captured at
30MHz with 80 kHz bandwidth.
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In Fig. 5, we can see that the curves on the spectrum of different
monitors are different from each other in shape. Besides, if these two
spectrums are divided equally into frequency bands, the maximum
and minimum magnitudes over these bands are all different by about
−5 ∼ −10 dBm respectively. Additionally, the average magnitude of
each frequency band can also be used as the training characteristics too.
Fig. 7 shows the difference of using boxplot. For monitors with different
products, e.g., Samsung, Acer (laptop) and LG, we can distinguish
them from the range and distribution of their values; monitors with
the same products, shown as LG 1 and LG 2, are similar to each other
both in magnitude and distribution.

3.1. Monitors of Different Products

To train the SVM machine to identify the source emanation, we choose
the spectrum of different emissions with the same center frequency,
bandwidth, resolution bandwidth and sample rate. Also we extract
401 examples in each spectrum to confirm that each training sample
has the same scale. On the first step, we choose monitors of three
different types of products which are Samsung, Acer, LG (mentioned
as LG 1) to be the identification target, and we also use a different
LG monitor of the same product (mentioned as LG 2) to perform the
unknown and irrelevant type of signals. Secondly, when the monitors
run stably, we have sampled 50 groups of random emanation from
three monitors (Samsung, Acer, LG 1) and 10 groups of LG 2 to train
the SVM machine. Thirdly, we use both the groups of totally different
data, e.g., the capture of the average trace using the spectrum analyzer,
and some random groups of trained data to be the identification target
of the machine. The training results are shown in Table 1.

Table 1. Accuracy (correct numbers: whole samples) to identify the
monitors of the different products.

Samsung Acer LG 1 Others Hit rate
37 : 37 7 : 7 20 : 20 0 : 1 98.4615% (64 : 65)
25 : 25 24 : 24 49 : 49 3 : 4 99.0196% (101 : 102)
42 : 42 13 : 13 3 : 3 7 : 8 98.4849% (65 : 66)
21 : 21 18 : 18 11 : 11 3 : 3 100% (53 : 53)

In Table 1 the numbers of the sample used for detection are
generated by random functions. While training the SVM machine,
we use kernel RBF, and to increase the accuracy, we choose γ with
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0.0078125 and the penalty parameter C with 2 after cross validation,
and get an average accuracy of 98.9510% after 286 machine validation.

There are 3 times of fail validation, and to be specific, as we
mentioned above. The unknown and irrelevant signals use the sample
data of LG 2. All of these fail validations are misjudged LG 2 as
LG 1, which means that the emanation from the monitors differs
from product to product while sharing the same features of the same
product.

3.2. Monitors of the Same Products

On the other hand, when training the machine, to decrease the fail
validation rate we consider including the monitors sample of the same
product, and similarly we use random function to generate the numbers
of groups used for training. The results are shown as Table 2.

Table 2. Accuracy (training numbers: validating samples) to identify
the monitors of the same products.

C, γ Samsung Acer LG 1 LG 2 Hit rate
8, 0.0078125 31 : 19 36 : 14 13 : 37 2 : 8 96.1538% (75 : 78)

128, 0.0001221 13 : 37 27 : 23 36 : 14 5 : 5 100% (79 : 79)
2, 0.0078125 25 : 25 41 : 9 33 : 17 7 : 3 100% (54 : 54)
2, 0.0078125 18 : 32 18 : 32 43 : 7 6 : 4 100% (75 : 75)

Table 2 shows the results using random quantities groups to train
and validate the samples and get an average accuracy of 98.9511%. As
expected, the fail validation also comes from the group of LG 2 which
is misjudged as LG 1. Compared with 1, the hit rate is increased.

4. CONCLUSION

A study to analyze the emanation model monitors and the method to
detect and identify the display electromagnetic emissions are presented.
All the emanation samples are captured from the normal office
environment, and SVM is used for the characteristic identification.
Parameters such as the magnitude, average and the deviation are
extracted and used to support the SVM machine. In all the
training data and validating samples, the ambient noise is considered.
According to the experiments results, it is found that emanations from
monitors of different products differ significantly while those from
monitors of the same product share similar characteristics. These
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characteristics can be distinguished by SVM machine with an accuracy
of 98.9510%.
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