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Abstract—Ramp response technique in low frequency can be used
for generating 3-dimensional images of radar targets (even stealthy
or buried targets) so as to identify them. This technique uses
the target profile function, which is defined as its transverse cross-
sectional area versus distance along the observing direction. For
mutually orthogonal observing views, reconstructed 3D images are
quite accurate. However, in practice, due to the bias introduced
from the response in shadow region and from limited non-orthogonal
observing directions, reconstructions become distorted. To evaluate
the quality of the reconstruction and to further identify objects from
their reconstruction, we need to calculate profile functions of 3D
reconstructed objects in arbitrary directions. Therefore, in this paper,
we propose an algorithm meeting this needs.

1. INTRODUCTION

Recently, radar in low frequencies has attracted much attention,
because it helps countering the problem that stealthy targets, with
adapted shapes or absorbing materials, return a very weak radar
signal in usual radar frequency bands [1]. Low frequency radars using
UHF (Ultra High Frequency, 300 MHz–3 GHz) and VHF (Very High
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Frequency, 30 MHz–300 MHz) as well as HF (High Frequency, 1MHz–
30MHz) correspond to the Rayleigh region and the resonance region for
object dimensions respectively small and of the same order, compared
to electromagnetic wavelengths [2–4]. Although low frequency bands
cannot provide high resolution, they can give useful information about
the target’s size and volume which contributes greatly to obtain
target’s global shape. The use of transient back-scattered response
resulting from a wave in the form of ramp function was first applied
to radar targets identification by Kennaugh and Moffatt in 1965 [5].
Such a ramp response was found to be approximately proportional
to the profile function of the radar target, which is defined as its
transverse cross-sectional area versus distance along the line-of-sight
parallel to the incident wave direction. This property was applied to
reconstruct radar targets’ shape by Young [6, 7]. His method, well
known as the ramp response technique, uses the profile functions
from only 3 mutually orthogonal viewing angles and encloses the
unknown target with approximate limiting surfaces to generate likely
contours, then iteratively fits some geometrical parameters to obtain
optimal images. After that, considerable efforts have been made for
ramp response technique using Young’s algorithm, with application
to electromagnetic scattering [8–14] as well as acoustic imaging of
underwater objects [15, 16]. However, Young’s algorithm is limited
to single convex objects while a more recent algorithm [17] overcomes
this limitation. Another class of methods consists to apply algorithms
of reconstruction from projections, but they require a considerable
number of viewing angles and plane-symmetrical objects [18–20].

To evaluate the quality of the reconstruction and to further
automatically identify objects from their reconstruction, we need to
compare initial profile functions to profile functions of reconstructed
objects. Consequently, in this paper, we present an algorithm for
calculating profile functions from 3D objects in arbitrary directions.
Then, we apply this algorithm to quantitatively evaluate the quality of
image reconstructions, using errors between observed profile functions
of initial objects and calculated profile functions of reconstructed
objects. Moreover, we apply this algorithm to further identify
radar targets from their reconstructed images, with calculated profile
functions in arbitrary directions and a database of possible models for
targets.

This paper is organized as follows: Firstly, in Section 2, the
ramp response, the profile function and the algorithm of 3D image
reconstruction from profile functions are presented. Then, in Section 3,
the algorithm for calculating geometrical profile functions from a 3D
object is introduced and algorithm verification is described. Finally,
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in Section 4, two applications of this algorithm, namely the quality
evaluation of image reconstructions and the further identification from
their reconstructed images, are presented.

2. 3D IMAGE RECONSTRUCTION FROM RAMP
RESPONSE

In this section, we briefly recall the ramp response, the profile function
and the 3D image reconstruction [5, 6, 17].

2.1. Ramp Response

The ramp response of a radar target, hr(t), is defined as the far
field back-scattered wave resulting from illumination by a plane
electromagnetic wave with a temporal ramp waveform. In time
domain, it is the second integral of its impulse response, hi(t), and
it can also be expressed as the Inverse Fourier Transform (IFT) of
the weighted transfer function, Hr(jω), with ω = 2πf the angular
frequency and H(jω) the transfer function.

hr(t) =
∫ t

−∞

∫ t′

−∞
hi(t′′)dt′′dt′ = IFT [Hr(jω)] = IFT

[
H(jω)
(jω)2

]
(1)

2.2. Profile Function

Herein, an incident direction to the target is given by an unit vector
determined by its inclination angle θ and azimuthal angle φ in a
spherical coordinate system (Figure 1). Therefore, we note an incident
direction as u(θ, φ). For example, the direction vector of axis x is
represented by x(90◦, 0◦).

First, we define the “geometrical” profile function of an object,
in direction u, as its transverse cross sectional area, Ag(u), along u.
Figure 2 presents an example of geometrical profile function, Ag(x),
which is the area of transverse slices of the target at successive positions
along the direction x.

The geometrical profile function is found to be approximately
proportional to the transient ramp response of the target, hr(t) [5].

hr(t) ≈ − 1
πc2

Ag(u) with u =
ct

2
(2)

where c is the speed of light in freespace, t the time variable, and u
the space variable.

With this property, for applications and experiments of ramp
response imaging, the profile function of an arbitrary object, here
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Figure 2. Illustration of the
geometrical profile function of an
object along x direction, Ag(x).
D is the characteristic dimension
of the object in x direction.

defined as “physical” profile function Ap(u), is obtained from its
transient ramp response

hr(t) = − 1
πc2

Ap(u) (3)

To make sure the physical profile function, Ap, is a valid estimate
of the geometrical profile function, Ag, the frequency band determined
by [5–7] should be matched to the upper Rayleigh and Resonance
regions corresponding to the target’s characteristic dimension.

f = [fmin; fmax] =
[

c

200D
;
2c

D

]
(4)

The low frequency limit can be increased by extrapolation meth-
ods [21].

2.3. Image Reconstruction

Taking advantage of the ramp response technique, there are
two reconstructions algorithms permitting to obtain approximate
contours with no more than 3 observing directions. The initial
reconstruction algorithm from profile functions proposed by Young,
named “approximate limiting surface”, uses a set of hyperbolic
surfaces limiting the contour of the object for each of 3 observing
directions [6, 7] and it is limited to single convex objects. On the
contrary, the reconstruction algorithm presented in [17], highly reduces
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Figure 3. Configuration of study for a PEC sphere: (a) object shape
(D = 10 cm), (b) comparison between physical and geometrical profile
functions. Reconstructed images from (c) geometrical and (d) physical
profile functions, with scan direction x.
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the bias of Young’s algorithm, and therefore improves the accuracy of
reconstructed objects. At each point, the product of profile functions
from 3 observing directions, which is a weight function accounting for
the probability that the point belongs to the object, is calculated. For
each cut-plane along a given direction, those points with the highest
values of the product are chosen such that the area of this slice is equal
to its profile function.

To present the performance of image reconstruction from
profile functions, we show two examples of PEC (Perfectly Electric
Conducting) objects in freespace, taken from [17]: a sphere of
diameter D = 10 cm (Figure 3) and an asymmetric object of length
D = 30 cm (Figure 4). Both objects are illuminated by waves
from 3 mutually orthogonal directions of observation (x, y, z), namely
x(90◦, 0◦), y(90◦, 90◦) and z(0◦, 0◦), respectively. Far-field transfer
functions at chosen directions are obtained using an electromagnetic
simulation software, FEKO [22], with the frequency band given by (4)
equal to [15 MHz; 6 GHz] for the sphere of diameter D = 10 cm,
and [5MHz; 2 GHz] for the asymmetric object of length D = 30 cm,
respectively. Then ramp responses and physical profile functions are
calculated by (1) and (3). Note that we choose to center the target and
its resulting profile functions at the origin of the Cartesian coordinate
system (x, y, z).

Firstly, because of the symmetry properties of the sphere, we
only present, in Figure 3(b), the comparison between the physical
profile function, Ap(x), and the geometrical one, Ag(x), along x
direction. Difference between them are mainly due to the shadow
region effect [17]. We apply the algorithm in Section 2.3 to reconstruct
3D images from the two sets of profile functions with the same scan
direction x. From the outcome, Figure 3(c) is visually in agreement
with the initial sphere. While, due to the bias introduced by the
shadow region effect, Figure 3(d) is slightly distorted.

Secondly, for the asymmetric object, geometrical and physical
profile functions in directions (x, y, z) are compared in Figure 4(b).
Once again, with orthogonal geometrical profile functions, a well-
reconstructed 3D image (Figure 4(c)) is obtained by this reconstruction
algorithm. On the contrary, due to the shadow region effect, physical
profile functions result in a strongly distorted image, (Figure 4(d)).

This reconstruction algorithm manages to effectively exploit
information to reconstruct non-convex object and multiple separated
objects from only 3 profile functions and directly gives satisfactory
estimates with orthogonal directions [17, 23, 24]. Its limitations
mainly lie in two aspects: (a) Due to the shadow effect in physical
profile functions, the distortion of reconstructed objects is significant,
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especially for asymmetric or complicated objects. Therefore quality
evaluation of reconstructed objects and further identification are
required. (b) Poor performance for non-orthogonal directions [25].
This limitation can be overtaken by a further iterative fitting process
with a priori information on the target and the addition of other view
angles.

Therefore, to overcome the above limitations and to further
identify objects from their reconstruction, we propose to calculate
profile functions of 3D reconstructed objects in arbitrary directions.
Indeed, the algorithm for reconstructing a 3D object from its profile
functions is an “inverse problem”, while calculating the profile
functions of a 3D object is a “direct problem”.

3. ALGORITHM FOR CALCULATING PROFILE
FUNCTIONS FROM A 3D OBJECT

3.1. Algorithm Description

Given a binary 3D object O(x, y, z) enclosed in a computational
domain CD, it is difficult, and often almost impossible, to obtain
analytically its geometrical profile function when it has an irregular
shape. Therefore, we need to calculate it numerically.

The algorithm is described with the following steps:
- Firstly, as shown in Figure 5(a), we cut the computational

domain in successive slices perpendicular to the observing direction
u(θ, φ) with a thickness δu, where δu is the discrete step in the
direction u(θ, φ). Hence, the slice Si at position u = ui (middle plane
of Si) is the region enclosed by the plane at uil = ui − δu/2, the plane
at uih = ui+δu/2 and the edges of the computational domain CD. The
numerical profile function Ac(ui) at position u = ui can be calculated
by:

Ac(ui) = VSi/δu (5)

where VSi is the volume of the slice Si.
- Secondly, the computational domain CD is distributed into N3

elementary cubic pixels P (x, y, z), each with a volume δu3, where N is
the number of discrete samples in each direction. The computational
domain is represented by 2 different kinds of pixels: pixels inside the
object (solid points) and pixels outside the object (hollow points). For
simplification, we present it in Figures 5(b)–(c) in a two-dimensional
view.

O(x, y, z) =

{
1 if P (x, y, z) inside object

0 if P (x, y, z) outside object
(6)
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Figure 5. (a) Slices Si in a three-dimensional view. (b) Slices Si in a
two-dimensional view. (c) Contribution of different types of pixels to
the slice Si.

- Thirdly, we set a weight function W to calculate the proportion
that each pixel gives to slice Si. Taking into account that points closer
to ui give higher contribution, we choose W as:

W =

{
1− |d/δu|; d ∈ [−δu, δu]

0; otherwise
(7)

d = uP − ui being the signed distance from the center of pixel P ,
with coordinate uP along the direction vector u, to the plane at ui.

According to the distance d, there are 5 different types of pixels
P1, P2, P3, P4 and P5, shown in Figure 5(c).

P1: −δu ≤ d < 0 ; it gives W to Si and 1−W to Si−1.
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P2: d = 0,W = 1; it entirely belongs to Si.

P3: 0 < d ≤ δu; it gives W to Si and 1−W to Si+1.

P4: d ≥ δu; its contribution for Si is null.

P5: d ≤ −δu; its contribution for Si is null.

- Fourthly, the volume of the slice Si is obtained by summing up
individual contributions from each pixel.

VSi =
∑

x

∑
y

∑
z

W × δu3 ×O(x, y, z) (8)

- Finally, combining (5) and (8), the numerical profile function
Ac(ui) at position ui is calculated by:

Ac(ui) =
∑

x

∑
y

∑
z

W × δu2 ×O(x, y, z) (9)

3.2. Algorithm Verification

In order to quantitatively measure the difference between a reference
profile function Ar and a profile function Ac computed by our
algorithm, we define:

- the absolute error for slice Si at position ui along a given direction
u as:

E(ui) = |Ar(ui)−Ac(ui)| (10)

- the relative global error for the given direction u as:

Er(u) =
∫

E(ui)dui∫
Ar(ui)dui

(11)

To validate this algorithm, we consider two spheres (same
configuration as Figure 3(a) in Section 2) with diameter D = 10 cm and
D = 30 cm, respectively. To completely enclose the studied objects, we
choose a cubic computational domain of dimension dc = 45 cm, which
is divided into N3 = 1283 pixels, with δu = dc/N = 0.35 cm. Note
that, we use the same computational domain for all following tests in
this paper.

For each sphere, we compare two types of profile functions:

- AO
g , the known analytical geometrical profile function of the

object, taken as the reference profile function for verification;
- AO

c , the geometrical profile function computed by our algorithm
from the object.
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Because of the symmetry of the sphere, we only need to choose
one direction u(0◦, 0◦) to study the performance of this algorithm.
Comparison between AO

g (u) and AO
c (u) for the two different spheres

are shown in Figures 6(a) and (b) respectively, as well as their
corresponding absolute errors for each slice. The relative global errors
defined in (11) are 3% and 1% for the two spheres respectively.
Figure 6(c) shows the effect of the discretization, with relative global
errors Er(u) decreasing when the number of samples N increases. The
larger sphere (D = 30 cm) gives a lower relative global error since it is
related to the object’s dimension.
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4. APPLICATIONS OF THE ALGORITHM OF PROFILE
FUNCTION CALCULATION

In this section, we apply the algorithm of geometrical profile function
calculation firstly to evaluate the quality of 3D image reconstruction
from profile functions, and secondly to identify radar targets with a
database of possible targets.

4.1. Quality Evaluation of 3D Image Reconstruction

Now, we apply our algorithm to evaluate the quality of 3D image
reconstruction from profile functions, presented in Section 2. For
simplification, we note:

- Rg, the 3D object reconstructed from analytical geometrical
profile functions AO

g , for example, the reconstructed sphere of
Figure 3(c) or the reconstructed asymmetric object of Figure 4(c);

- Rp, the 3D object reconstructed from physical profile functions
AO

p , for example, the reconstructed sphere of Figure 3(d) or the
reconstructed asymmetric object of Figure 4(d).

Correspondingly, we compute by our algorithm, presented in
Section 3, the profile functions:
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- ARg
c from the 3D reconstructed object Rg;

- ARp
c from the 3D reconstructed object Rp.

The reconstruction algorithm uses profile functions at directions
x(90◦, 0◦), y(90◦, 90◦) and z(0◦, 0◦), we therefore consider the same
directions.

Firstly, for the reconstructed sphere Rg, the analytical geometrical
profile function AO

g from the initial sphere is taken as the reference
profile function. Comparison between AO

g and ARg
c is shown in

Figure 7(a). It shows quite small differences with relative errors 4%,
5%, 5% in directions x, y, z respectively, which confirms a very good
agreement of the 3D reconstructed image with the initial sphere.

Secondly, for the distorted reconstructed sphere Rp, the physical
profile function AO

p from the initial sphere is taken as the reference
profile function. Comparison between AO

p and ARp
c is shown in

Figure 7(b). The difference is more significant with relative errors
equal to 1%, 21%, 21% in directions x, y, z respectively. The errors
are higher for y and z, while it remains limited in x direction, because
it is the scan direction of the reconstruction (Section 2).

Similarly, for the reconstructed asymmetric objects, comparison
between initial profile functions (AO

g or AO
p ) and the corresponding

computed ones from the reconstruction (ARg
c or ARp

c ) are presented in
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Figures 8(a) and (b) respectively. Once again, the relative errors for
the accurate reconstructed object Rg are smaller (3%, 6%, 6%) than
the errors (2%, 21%, 37%) of the distorted reconstructed object Rp in
directions x, y, z, respectively.

In conclusion, both examples demonstrate that the use of such
computed profile functions is an efficient tool to quantitatively assess
the quality the 3D image reconstruction from ramp responses and
profile functions.

4.2. Identification of Radar Targets Using Profile Functions

To automatically identify a radar target, a common way consists in
directly comparing its image to models in a database, for example
the contour of the radar image and that of the models [20]. Here,
we propose to use an alternative feature for the identification, the
profile function along chosen directions, which can be calculated by
the algorithm presented in Section 3. Before the identification process
itself, we create a database containing K models of 3D objects.The
method is given by following steps:

- Firstly, using the object’s physical profile functions AO
p in

3 directions, we obtain a 3D reconstructed object Rp by the image
reconstruction algorithm presented in Section 2.

- Then, we choose L arbitrary directions. We note each direction
u(l) as u in the following for simplification. By our algorithm for
calculating profile functions presented in Section 3, we obtain the
profile functions ARp

c (u) computed from the reconstructed object
Rp and the profile functions AM

c (u) computed from each model
M.

- Next, for each direction u, using (10), we measure the absolute
error E(ui), in each slice Si at position ui, between ARp

c (u) and
AM

c (u):
E(ui) =

∣∣ARp
c (ui)−AM

c (ui)
∣∣ (12)

From this error, E(ui), a function, Sim(ui), is defined to represent
the similarity of slice Si between the reconstructed object and each
model:

Sim(ui) =





1 E(ui) ≤ Emin
Emax−E(ui)
Emax−Emin

Emin < E(ui) < Emax

0 E(ui) ≥ Emax

(13)

where Emin and Emax are the minimum tolerance and maximum
tolerance of error respectively.
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For each slice, if the error E(ui) is adequately small, less than
the minimum tolerance of error, we can consider that the slice at this
position is totally matched. On the contrary, if this error is greater
than the maximum tolerance of error, we consider it as unmatched.

Furthermore, we calculate the global similarity Simg(u) of all slices
along u as the similarity for this direction:

Simg(u) =
∑N

i=1 Sim(ui)
N

(14)

where N is the number of slices along the direction u.
Finally, in this manner, the similarities of the L chosen directions

give an overview similarity between the object and each model. Models
with higher similarities are selected as the most possible shapes for the
studied object.

Taking as studied object the Model 1 shown in Figure 9(a), we
present the principle and performance of our method. For the database
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Figure 9. Configuration of 6 models: (a) Model 1, (b) Model 2,
(c) Model 3, (d) Model 4, (e) Model 5, (f) Model 6.
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of models, we only consider models which have same level of volume
and similar shape as the studied object, because models of much larger
or smaller dimension are not comparable. Hence, we consider K = 6
models shown in Figure 9: 4 step-cylinders, Model 1, 2, 3, 4, each with
3 sub-cylinders (circle, square or triangle cylinder), a cone (Model 5)
and a circle cylinder (Model 6). For Models 1, 2, 3, 4, each slice in the
same position along axis z has equal area, for example, at position zi

along axis z, the slice (a circle) of Model 1 and the slice (a square) of
Model 3 have the same area. Each corresponding sub-cylinder of the
4 step-cylinders has equal height. Model 5 (the cone) and Model 6 (the
circle cylinder) have the same diameter of the base and same height as
the studied object, namely the Model 1. Detailed dimensions (in cm)
of these models are presented in Table 1.

Table 1. Dimensions of the 6 models (in cm).

Model Sub-cylinder Diameter or side Height

Step-cylinder

Cylinder1 5 10
Cylinder2 10 10
Cylinder3 15 10

Cone 15 30
circlecylinder 15 30

We use the same cubic computational domain of dimension 45 cm
with N3 = 1283 pixels defined in Section 3. With the frequency
band [5MHz; 8 GHz], its ramp responses from 3 mutually orthogonal
directions, x(90◦, 0◦), y(90◦, 90◦) and z(0◦, 0◦), are obtained by
FEKO [22]. The 3 physical profile functions AO

p in the corresponding
directions, calculated by (3), are shown in Figure 10(a). With the
reconstruction algorithm in Section 2, we obtain a 3D reconstructed
object shown in Figure 10(b). Applying our algorithm presented
in Section 3, we can calculate the profile functions both for the
reconstructed object and for each model, namely ARp

c and AM
c in

arbitrary directions. For each model, we calculate the similarity of
each slice and the global similarity for each direction by (13) and (14),
respectively. The choice of the minimum and maximum tolerances of
error is somewhat arbitrary: it is related to the expected accuracy.
With SCD

the area of each slice of the computational domain, E/SCD

is the ratio between the number of false pixels and the total number of
pixels in each slice. Here, we choose Emin/SCD

= 0.2 and Emax/SCD
=

6.
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Figure 10. (a) Physical profile functions of the studied ‘circle step-
cylinder’ in 3 mutually orthogonal directions x(90◦, 0◦), y(90◦, 90◦)
and z(0◦, 0◦). (b) Reconstructed image of the ‘circle step-cylinder’
obtained from the 3 physical profile functions, with scan direction z.

To show the performance of our method, we compare global
similarities for the 6 models in some chosen directions. Firstly, we
consider directions in xoz and yoz plane, namely directions with fixed
azimuthal angle φ = 0◦ or 90◦ and inclination angle θ varying in
[0◦, 180◦] with a step δθ = 15◦. The global similarities between the
object and the 6 models for the case φ = 0◦ and the case φ = 90◦ are
presented in Figures 11(a) and (b) respectively. For each direction, the
global similarities of Models 1, 2, 3 are very close, with slight differences
among them. For φ = 0◦, Model 4, namely the triangle step-cylinder,
has same level of global similarities as Model 1, 2, 3, while for φ = 90◦,
it has much lower similarities so that we can separate it from the 3
other step-cylinders. Comparing to the 3 step-cylinders, Model 5 and 6
has lower similarities for most of the chosen directions. Secondly, we
consider directions with fixed inclination angle, θ = 45◦ or 90◦, and
azimuthal angle φ varying in [0◦, 180◦] with a step δφ = 15◦. In the
case of θ = 45◦, shown in Figure 11(c), we can classify the similarities
of the 6 models into 3 levels: Models 1, 2, 3 have the highest similarities
for all chosen directions; Model 4 has lower levels; Models 5 and 6 have
the lowest levels for most of the directions. While in the case of θ = 90◦
shown in Figure 11(d), the difference between models is not significant,
especially in the directions φ = [0◦, 90◦], but still, Models 1, 2, 3 have
the highest similarities for most of the chosen directions.

To select the optimal model, we now calculate the mean of the
global similarities Simg for the full range of possible directions, namely
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Figure 11. Global similarities Simg(u) between the object and each
model for chosen directions: (a) φ = 0◦, θ = [0◦, 180◦], (b) φ = 90◦,
θ = [0◦, 180◦], (c) θ = 45◦, φ = [0◦, 180◦], (d) θ = 90◦, φ = [0◦, 180◦].

directions u(θ, φ) with θ and φ both varying in [0◦, 180◦] with a step
δθ = δφ = 15◦. Table 2 gives the mean of the global similarities Simg

for the whole set of directions for each model. From the outcome, the
3 ‘step-cylinders’ (Models 1, 2, 3) have the highest mean similarity
(around 86%) and cannot be distinguished. In fact, contrary to high
frequency radar imaging, low frequency methods cannot give high
resolution, i.e., details on the target, but they provide information only
on the approximate shape of the target. Therefore, in our method, we
have to consider that models 1, 2 and 3 are the same and we select
them as the optimal models of the studied object.
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Table 2. Mean of global similarities.

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Simg 86% 86% 87% 82% 72% 66%

5. CONCLUSION AND PERSPECTIVES

In this paper, we have developed an algorithm for calculating profile
functions from a 3D object. Firstly, it can be applied to quantitatively
evaluate the quality of reconstructions by calculating errors between
profile functions from the initial object and profile functions from its
reconstructed image. Secondly, with a database containing possible
models, it also can be applied to identify a radar target using its
reconstructed object obtained from physical profile functions in only
3 directions. Our method permits to compare the reconstructed object
and models in a full range of directions so as to avoid that different
shapes might have same profile functions in some directions. Taking
into account the poor condition of limited resolution encountered in
low frequency radar imaging, we successfully find the best possible
models for the studied object.

Existing reconstruction algorithms give distorted results for non-
orthogonal directions, while in practice, radar equipments have a
limited viewing angle for remote sensing or large targets. Therefore,
an optimization process is required. Errors between profile functions
of the initial object and profile functions of its reconstructed image
are acknowledged as quantitative indicators for iterative fittings. Our
future work aims to use the algorithm for calculating profile functions
in arbitrary directions so as to get satisfactory reconstructions in the
non-orthogonal case.
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