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Abstract—Absolute adaptive current statistical (AACS) model and
modified strong tracking unscented filter (MSTUF) are proposed for
maneuvering target tracking (MTT) under nonlinear measurement
in this paper. The key point of the AACS model is to associate
the instantaneous acceleration variance with some elements of state
covariance matrix by constructing acceleration increment models of
the acceleration limit and acceleration mean in the CS model, while
the maneuvering frequency can adjust itself according to the change
of the measurement residual. MSTUF is proposed for high maneuver
tracking under nonlinear measurement by incorporating the modified
strong tracking filter (STF) into the unscented filter (UF). Since the
state covariance, process noise covariance and maneuvering frequency
can adjust themselves jointly according to the residual, the proposed
algorithm, called the AACS-MSTUF, has a good performance on
both maneuver and non-maneuver. Simulation results indicate that
the overall performance of the proposed algorithm is better than the
interacting multiple-model unscented filter (IMM-UF), UF and original
strong tracking unscented filter (STUF) based on the CS model (CS-
STUF) when considering tracking accuracy, stability, convergence and
computational complexity.

1. INTRODUCTION

Maneuvering target tracking (MTT) has been an important and
challenging problem for many years in the field of signal processing [1].
The main problem of MTT is how to deal with the unknown
fast change in the maneuvering acceleration. Many techniques and
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methods [2–5] have been suggested to solve the problem during last
years. Acceleration modeling techniques [6], input estimation (IE)
techniques [7] and multiple-model (MM) methods [8, 9] are three main
approaches.

Singer suggested a zero-mean and time-correlated acceleration
model, which has been one of the foundations in the problem of state
estimation for maneuvering targets. Zhou and Kumar suggested a
mean-adaptive acceleration model, called the current statistical (CS)
model [10], which is recognized as an effective model for tracking
maneuvering targets. However, the performance of these models often
depends on the prior parameters of maneuvering targets, such as the
maneuvering frequency and acceleration limits, etc.. The tracking
performance will be seriously affected by the inappropriate value of
the prior parameters [11]. IE techniques, which are not reliable on
the prior information about maneuvering acceleration, consider the
maneuvering acceleration as an unknown input and estimate it with
least square method, but they need additional effort for the detection
of acceleration. Khaloozadeh and Karsaz suggested the modified input
estimation (MIE) [12], which considers the unknown acceleration as a
new augmented component of the target state and estimate it with
Kalman filter. New filters were incorporated into the MIE to improve
its performance on high maneuver in [13–15]. However, different
tracking algorithms based on MIE are actually different filters based
on constant-acceleration (CA) model without acceleration noise. It’s
impossible to attain better tracking performance on high maneuver
than tracking algorithms based on the CA model. Interacting multiple-
model (IMM) algorithm is considered as a good compromise between
the tracking performance and the computational complexity [16], but
the tracking accuracy still depends on the match degree of pre-
designed models with the actual situation of a maneuvering target [17].
In addition, IMM algorithm usually suffers from the competitions
among different models and large computational load imposed by using
multiple sub-filters [18].

To solve the problems mentioned above, this paper converts the
CS model into an absolute adaptive CS (AACS) model by constructing
the acceleration increment models of the acceleration limits and
acceleration mean, while the adaptation method of maneuvering
frequency is introduced. Considering the nonlinear relation between
radar measurements and target states, modified strong tracking
unscented filter (MSTUF) is put forward to improve the state
estimation performance of UF on MTT.

The main contribution of this paper is to propose the AACS
model and MSTUF algorithm. In the AACS model, the process
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noise of the CS model is associated with the state covariance and the
maneuvering frequency of the CS model can adjust itself adaptively by
comparing the measurement residual with the measurement prediction
error. In the MSTUF algorithm, the state covariance consists with
the residuals in different measurement channels better. Finally, the
model parameter, process noise and state covariance can match the
measurement residual rapidly, which leads to the superiority of the
proposed algorithm.

The paper is organized as follows: in Section 2, the CS model is
reviewed; in Section 3, the AACS model and MSTUF algorithm are
presented in detail; in Section 4, the proposed algorithm, CS-UF, CS-
STUF and IMM-UF are compared; in Section 5, conclusion remarks
are made.

2. THE REVIEW OF CS MODEL

The state equation of the CS model and the measurement equation in
two-dimensional cases are described as follows, respectively:

Xk+1 = FXk + Uāk + Wk (1)

Zk+1 =




√
x2

k+1 + y2
k+1

arctan
(

yk+1

xk+1

)

 + Vk+1 (2)

where Xk = [xk, ẋk, ẍk, yk, ẏk, ÿk]T is target state vector, āk =
[āx

k, āy
k]

T the acceleration mean vector at time kT (k is the time
index and T the sample interval), āk the expectation of ak; the
variables (xk, yk), (ẋk, ẏk) and (ẍk, ÿk) represent the target position,
velocity, acceleration in the x and y coordinate, respectively; F =
blkdiag(Fx,Fy) is the state transition matrix, U = blkdiag(Ux,Uy)
the acceleration mean input matrix, blkdiag(·) the construction of
a block diagonal matrix from input arguments, Wk the process
noise with covariance matrix Qk, Zk+1 = [rk+1, θk+1]T the radar
measurement vector comprised of range r and angle θ, and Vk+1

the Gaussian measurement noise with covariance matrix R. The
expression for Fx, Fy, Ux, Uy and Qk are
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Qk = 2ασ2
kqcs, where α is the maneuvering frequency. qcs can be

referred to [10], and instantaneous acceleration variance σ2
k can be

expressed as

σ2
k =

{
4−π

π (amax − āk+1)
2 āk ≥ 0

4−π
π (a−max + āk+1)

2 āk < 0
(3)

where a−max is the preset negative acceleration limit, not necessarily
equal to positive acceleration limit amax. A key underlying assumption
of the CS model is that āk+1 , E[ak+1|Zk] ≈ ˆ̈xk, which is stated
explicitly in [6]. As can be seen from Equation (3), when tracking
the non-maneuvering or low maneuvering targets, too large process
noise will degrade the tracking accuracy; when the actual maneuvering
acceleration exceeds the preset acceleration limits, the tracking
performance will deteriorate seriously [19]. In addition, the preset
maneuvering frequency cannot adjust to the change of maneuvering
types.

3. THE PROPOSED AACS-MSTUF ALGORITHM

3.1. The Proposed AACS Model

In order to eliminate the shortcomings of the CS model, the AACS
model is proposed to make a better match between the process noise
and the actual maneuver by constructing the acceleration increment
models of the acceleration limits and acceleration mean in the CS
model.

Taking the acceleration in the x coordinate as an instance,
according to the Taylor series expansion of the target acceleration a(t):

a(t) = a(t0) +
1
1!

a(1)(t0)(t− t0)

+
1
2!

a(2)(t0)(t− t0)2 + . . . +
1
n!

a(n)(t0)(t− t0)n (4)

and its discrete-time equivalent expression (let t0 = kT , t = (k +1)T ),

ak+1 = ak + Ta
(1)
k +

T 2

2!
a

(2)
k +

T 3

3!
a

(3)
k + . . . +

Tn

n!
a

(n)
k (5)

where a
(n)
k is nth-order derivative of a(t) at kT time instant, and it

can be concluded that the possible acceleration limits can be predicted
from the acceleration and its higher-order derivative at the previous
time instant. Thus, based on Equation (5), the prediction model of
the acceleration limits can be expressed as

a±max = ẍk + ∆ẍk (6)
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where ∆ẍk = Ta
(1)
k + T 2

2! a
(2)
k + . . . + T n

n! a
(n)
k is defined as acceleration-

increment in this paper. The assumption āk+1 , E[ak+1|Zk] ≈ ˆ̈xk in
the CS model can be replaced by a more accurate version based on
Equation (5):

āk+1
∆= E[ak+1|Zk] = ˆ̈xk + ∆ˆ̈xk (7)

Equation (3) can be also modified as

σ2
k =

4− π

π

(˜̈xk + ∆˜̈xk

)2
(8)

where ˜̈xk and ∆˜̈xk are the estimation errors of acceleration and
acceleration increment. Because a

(1)
k , a

(2)
k , . . ., a

(n)
k cannot be estimated

directly due to the state dimension limitation in the CS model, ∆˜̈xk is
approximated with the state estimation errors which can be obtained
from the filter output based on some assumptions in this paper.
Ignoring the higher-order derivative than a

(1)
k , ∆˜̈xk = T ã

(1)
k can be

derived. Assuming a(1)(t0) can be approximated as the function of x,
where x = [ẋ(t0), ẍ(t0)]T :

a(1)(t0) ≈ f(x) =
2

(t− t0)2
[ẋ(t0)− ẍ(t0)(t− t0)] (9)

According to the idea of the optimal stochastic linearization [20], when
the variable x of the function f(x) is random, it’s better to express f(x)
as a function that is close to f(x) in some probabilistic sense. Since
ẋ(t0) and ẍ(t0) are model states which are random variables, a(1)(t0)
and its estimation error ã(1)(t0) should be expressed as

a(1)(t0) ≈ â(1)(t0) + B(x− x̂) and ã(1)(t0) ≈ Bx̃ (10)

where â(1)(t0) = f(x̂) is the estimate of a(1)(t0), B = E[(a(1)(t0) −
â(1)(t0))x̃T ]E[x̃x̃T ]−1 represents the statistical correlation between
a(1)(t0) and x. According to Equation (9), the estimation error of
a(1)(t0) can be approximated by the estimation error of x:

a(1)(t0)− â(1)(t0) ≈ 2
(t− t0)2

[˜̇x(t0)− ˜̈x(t0)(t− t0)]

=
2

(t− t0)2
[1− (t− t0)] x̃ (11)

Let t = (k + 1)T , t0 = kT , ã(1)(t0) can be expressed as

ã
(1)
k ≈ Bx̃k (12)



188 Zhou, Liu, and Liu

where x̃k = [˜̇xk, ˜̈xk]T , B = [2/T 2 − 2/T ]E[x̃kx̃T
k ]E[x̃kx̃T

k ]−1 =
[2/T 2 − 2/T ]. Equation (8) can be approximated as

σ2
k =

4− π

π

(
˜̈xk + ã

(1)
k T

)2

≈ 4−π

π

(
E[˜̈xk

˜̈xT
k ]+BE[x̃kx̃T

k ]BT T 2+BE[x̃k
˜̈xT

k ]T+E[˜̈xkx̃T
k ]BTT

)
(13)

where E[˜̈xk
˜̈xT

k ] = Pk(ẍ, ẍ), E[x̃kx̃T
k ] = [Pk(ẋ, ẋ), Pk(ẋ, ẍ);Pk(ẍ, ẋ),

Pk(ẍ, ẍ)], E[x̃k
˜̈xT

k ]=[Pk(ẋ, ẍ),Pk(ẍ, ẍ)]T , E[˜̈xkx̃T
k ]=[Pk(ẍ, ẋ),Pk(ẍ, ẍ)],

Pk(ẋ, ẋ), Pk(ẋ, ẍ), Pk(ẍ, ẋ) and Pk(ẍ, ẍ) are the corresponding ele-
ments of the state covariance matrix.

As can be seen from Equation (13), the instantaneous acceleration
variance is associated absolutely with the elements of state covariance
matrix based on some assumptions and approximations in the AACS
model. If the filter can evaluate state estimation errors reasonably, the
process noise will adjust itself adaptively to the maneuver.

3.2. The Proposed MSTUF Algorithm

Although the unscented filter (UF) has been broadly used to solve
the problem of nonlinear state estimation, its performance may
be seriously shrunk if the target maneuvers because the prediction
covariance and the gains of the UF cannot match the variation
of the residuals. A strong tracking filter (STF) was proposed
by Zhou [21], which makes the output residuals approximate to
Gaussian white noise by selecting appropriate time varying gains
online. Compared with some conventional filters, this filter has a
stronger robustness for mismatching model parameters, a stronger
capability for estimating target states with sudden changes and a
moderate computational complexity, etc. Strong Tracking Unscented
Filter (STUF) is introduced by incorporating the STF into the UF
in literature [22]. However, the residual variance sum, which is used
to compute fading factors in the STF and STUF, has not explicit
physical meanings under the radar measurement comprised of ranges
and angles. Furthermore, the absolute value of the angle residual is
generally far less than that of the range residual, which leads to the
insensitivity of fading factors to the change of angle residual, indicating
the high maneuver.

In order to solve the problem, a new computational method of the
fading factors is introduced and the STUF using new fading factors
is called MSTUF. The main idea of the new method is to select the
larger ratio as the suboptimal fading factor after obtaining the ratios of
the residual variance to the error variance of measurement prediction
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in the range channel and angle channel when excluding the influence
of the measurement noise variance. In the following paragraphs, the
MSTUF algorithm is described in detail:

Step1: State prediction and sampling:

X̂k+1|k = FX̂k, Pk+1|k = µk+1(FPkFT + Qk) (14)

where µk+1 is the single suboptimal fading factor, used to force
the prediction covariance based on the model to accord with the
residual, and X̂k+1|k and Pk+1|k are state prediction and corresponding
covariance, respectively. The sigma points and corresponding weights
can be obtained:




x0
k+1|k = X̂k+1|k

xi
k+1|k = X̂k+1|k +

(√
(n + κ)Pk+1|k

)
i

i = 1, . . . , n

xi+n
k+1|k = X̂k+1|k −

(√
(n + κ)Pk+1|k

)
i

i = 1, . . . , n




W 0
(m) = κ/(n + κ)

W 0
(c) = κ/(n + κ) + 1− λ2 + β

W i
(m) = W i

(c) = 1/ [2(n + κ)] i = 1, . . . , 2n

(15)

where n is the state dimension; (·)i represents the ith row or column;
W i

(m) and W i
(c) are the weights for sample mean and sample covariance;

λ and β are the design parameters that can appropriately control the
higher order errors; κ = λ2(n+υ)−n, υ is the parameter that ensures
the semi-positive definiteness of (n+κ)Pk+1|k. Guidelines for the choice
of λ, β and κ can be found in literature [23].

Step2: Measurement prediction:

zi
k+1|k = h(xi

k+1|k), Ẑk+1|k =
2n∑

i=0

W i
(m)z

i
k+1|k,

Pzz = µk+1

2n∑

i=0

W i
(c)(z

i
k+1|k − Ẑk+1|k)(·)T + Rk+1

(16)

Step3: State and state covariance updating

X̂k+1 =X̂k+1|k + Kk+1(Zk+1 − Ẑk+1|k),

Pk+1 =Pk+1|k −Kk+1PzzKT
k+1

Kk+1 =PxzP−1
zz Pxz =

2n∑

i=0

W i
(c)(x

i
k+1|k−X̂k+1|k)(zi

k+1|k−Ẑk+1|k)T

(17)

where Kk+1 is the filter gain.
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The proposed computational method of µk+1 is

µk+1 =
{

ck+1 ck+1 > 1
1 ck+1 ≤ 1 (18)

where

ck+1 = max
{

[diag(Nk+1)]j
[diag(Mk+1)]j

}∣∣∣∣
j=1,2,...,m

, Nk+1 = Sk+1 − γRk+1

Mk+1 =
2n∑

i=0

W i
(c)(ẑ

i
k+1 − Ẑk+1|k)(·)T Sk+1 =

{
v1vT

1 k=0
ρSk+vk+1v

T
k+1

ρ+1 k≥1
,

diag(·) represents the vector comprised of diagonal elements of the
matrix, [·]j the jth element of the vector, m the measurement
dimension, Sk+1 the residual second-order moment, vk+1 the
measurement residual vector, 0 < ρ ≤ 1 a forgetting factor, and
γ ≥ 1 a softening factor which can make the value of state estimation
more smooth. Since the new fading factor reflects the higher maneuver
between range channel and angle channel, the MSTUF algorithm will
be more reliable when coping with the high maneuver under nonlinear
radar measurement.

3.3. The Adaptation Method of Maneuvering Frequency

According to the idea used in the computational method of new fading
factor, the high maneuver detection function is established as

Dk = max
{

[diag(vkvT
k )]i

[diag(Pzz )]i

}∣∣∣∣
i=1,2,...,m

(19)

The adaptation method of the maneuvering frequency is

α =
{

α0Dk Dk ≥ M
α0 Dk < M

(20)

where α0 is the initial maneuvering frequency, M is the high maneuver
detection threshold, generally taking 3 [22].

4. SIMULATION RESULTS

To validate the proposed model and tracking algorithm, the IMM-
UF (CV-CA-CA) algorithm [17], UF algorithm and STUF algorithm
based on the CS model (CS-UF and CS-STUF) are compared with
the proposed algorithm in terms of real time tracking accuracy and
computational complexity. In the simulation, the sampling interval
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T = 1 s and sampling 300 and 180 times in the Scenario 1 and
Scenario 2, respectively. The measurement accuracy of range and
angle are 50 m and 0.1◦, respectively. The parameters used in
CS-UF, CS-STUF and IMM-UF are given as follows: maneuvering
frequency and acceleration limits in the CS model are α = 0.06 and
a±max = ±90m/s2, respectively; transition probabilities in IMM-UF
are πii = 0.9, πij = 0.05, i, j = 1, 2, 3, i 6= j. The root mean
squared error (RMSE) of the target position at time k and the mean
position estimation error (Error) at all sampling times are defined as
in Equations (21) and (22), respectively:

RMSE(k) =

{
1
M

M∑

i=1

∥∥xi(k)− x̂i(k)
∥∥2

2

}1/2

(21)

Error =
1
N

N∑

k=1

RMSE(k) (22)

where M = 100 is the number of times of Monte Carlo simulation,
N the total number of samples, and xi(k) and x̂i(k) are the actual
and estimated target positions at time k. The RMSE and Error of the
velocity and acceleration are defined in the same way.

The radar position is (0 km, 0 km). In the Scenario 1 and
Scenario 2, the target moves from position (50 km, −5 km) with initial
velocity (280 m/s, 12m/s) and position (10 km, 8 km) with initial
velocity (426 m/s, 0 m/s). Figure 1 and Figure 3 give the target
trajectories in the Scenario 1 and Scenario 2, respectively. The actual
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accelerations that show the maneuvers of the target in the Scenario 1
and Scenario 2 are described in Figure 2 and Figure 4, respectively.

4.1. Target Tracking Performance Comparison in Scenario 1

Figure 5, Figure 6 and Figure 7 show RMSE of estimated position,
velocity and acceleration corresponding to the four algorithms in the
Scenario 1.

During non-maneuvering (1∼80 s, 181∼230 s and 261∼300 s), the
stable tracking accuracy of IMM-UF is a little bit higher than other
algorithms. This is because that CV model in IMM-UF can match
the non-maneuver better than other algorithms. The stable tracking
accuracy of the proposed algorithm is a little bit lower than other
algorithms because the process noise is more sensitive to the change of
state estimation errors.
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Figure 7. RMSE on acceleration.

Table 1. Tracking performance comparison.

Position

Error/m

Velocity

Error/(m/s)

Acceleration

Error/(m/s2)

Consumption

Time/s

Proposed

algorithm
20.1109 37.2975 22.6252 0.1149

CS-UF 60.0575 64.3813 26.7989 0.0972

CS-STUF 37.7247 53.3776 26.6610 0.1014

IMM-UF 30.5977 42.9384 21.5659 0.2279

Whenever the maneuver starts (81st second and 231st second) or
stops (180thsecond and 260th second), it’s obvious that the proposed
algorithm has the lowest error peak and the fastest convergence. The
main reason is that the state covariance and process noise variance can
adjust themselves jointly according to the measurement residual. But
in the IMM-UF, the switching from non-maneuver model to maneuver
model is always behind the maneuver, which results in the highest
error peak. CS-STUF does not have better performance on CA turn
maneuver than CS-UF due to the fading factor’s insensitivity to the
change of angle residual.

During the continuous anomalous high maneuver, the tracking
accuracy of proposed algorithm is the highest and most stable. During
the stable CA turn motion, the proposed algorithm has the similar
tracking accuracy as CS-UF and CS-STUF while IMM-UF has the
lowest tracking accuracy due to the model competition.

Table 1 lists the consumption time and mean estimation errors
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Figure 10. RMSE on acceleration.

(Errors) on position, velocity and acceleration during the observation
time for the proposed algorithm, CS-UF, CS-STUF and IMM-UF.
When comparing with CS-UF and CS-STUF, the proposed algorithm
does much better in tracking stability and accuracy while it doesn’t
need the prior information on target maneuvering acceleration. When
comparing with IMM-UF, the proposed algorithm not only tracks the
maneuvering target more stable and more accurate on position and
velocity but also reduces about 50% computation time.

4.2. Target Tracking Performance Comparison in Scenario 2

Figure 8, Figure 9 and Figure 10 show RMSE of estimated position,
velocity and acceleration corresponding to the four algorithms in the
Scenario 2. Table 2 lists the consumption time and the Errors on
position, velocity and acceleration.
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Table 2. Tracking performance comparison.

Position

Error/m

Velocity

Error/(m/s)

Acceleration

Error/(m/s2)

Consumption

Time/s

Proposed

algorithm
12.7621 20.9085 11.3392 0.0682

CS-UF 23.9062 27.6869 13.5137 0.0578

CS-STUF 16.4795 26.0776 16.2634 0.0602

IMM-UF 28.1577 29.4595 13.5471 0.1343

In this scenario, it’s clear that the proposed algorithm still has
the best overall performance while IMM-UF has the worst tracking
performance, which is mainly due to the model competition during
95 s∼145 s. Of course, the better performance of CS-UF and CS-STUF
than that of IMM-UF is based on the reasonable prior acceleration
limits. The stable tracking accuracy of the proposed algorithm is a
little lower than other algorithms during non-maneuvering, which is
the same as Scenario 1.

5. CONCLUSION

An AACS-MSTUF algorithm comprised of AACS model and MSTUF
algorithm have been proposed for high maneuvering target tracking
in this paper. The AACS model associates the process noise with
the state covariance and makes the maneuvering frequency adaptive.
The MSTUF algorithm uses a new computational method of fading
factor to provide better state estimation when the target maneuvers.
Simulation results show the superiority of the proposed algorithm,
which can be attributed to the joint adjustment of the state covariance,
process noise covariance and maneuvering frequency to the change of
residuals in range and angle channels. The idea that associate the
process noise with the state covariance can be also used in other
nonlinear dynamic models to make the process noise adaptive, such
as reentry target models. The further research will focus on it.
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