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Abstract—The fuzzy fractal characteristics of return signals from
aircraft targets in conventional radars offer a description of dynamic
features which induce the echo structure of targets, therefore they can
provide a new way for aircraft target classification and recognition
with low-resolution surveillance radars. On basis of introducing fuzzy
fractal theory, the paper analyzes the fuzzy fractal characteristics of
return signals from aircraft targets in a VHF-band surveillance radar
by means of the fuzzy fractal analysis, and puts forward a fuzzy-
fractal-feature-based classification method for aircraft targets with a
low-resolution radar from the viewpoint of pattern recognition. The
analysis shows that the fuzzy fractal characteristic parameters such as
the local fuzzy fractal dimension (LFFD) and local degree of fractality
(LGF) can be used as effective features for aircraft target classification
and recognition. The results of classification experiments validate the
proposed method.

1. INTRODUCTION

Most of active surveillance radars adopt the conventional low-
resolution radar system, and their main functions are detecting and
tracking targets. If the radars can provide target attribute information
such as class and model, it certainly will have important practical
significance. However, due to restrictions brought by the low-
resolution radar system, for example, the physical characteristics of
targets cannot be excited completely by a transmission signal with

Received 16 December 2012, Accepted 4 February 2013, Scheduled 6 February 2013
* Corresponding author: Qiusheng Li (bjliqiusheng@163.com).



66 Li and Xie

low-bandwidth and single-polarization, or the excited characteristic
information may be limited by the low-performance radar system,
target classification and recognition with low-resolution radars has not
been solved effectively for a long time [1, 2].

So far, the features extracted in methods with respect to target
classification and recognition with low-resolution radars can be divided
into three kinds basically: the first kind of features is extracted based
on the fluctuation characteristics of return signals from targets, such
as the target radar cross-section (RCS), echo amplitude undulation,
echo phase undulation, echo vision effect or its 2-D gray-level map [3–
6]; the second kind of features is extracted based on the target motion
characteristics, for example, the motion parameters such as the flight
height, velocity, acceleration, and time-spectrum (the dynamic trends
that target space position as well as its motion state varies with the
time is referred to as time-spectrum) [7, 8]; the third kind of features
is extracted based on the rotational modulation spectra (also called
jet engine modulation (JEM) features), which are generated by target
rotating parts, such as the rotor, empennage, propeller and turbine
fan [9–15]. JEM features lie on the leaf number and rotary speed
of the rotating parts of a target, and are independent with the target
attitude if no LOS-sheltering, i.e., the rotating parts can be seen by the
radar. Currently, the related research work is mostly concentrated on
the extraction of JEM features, and proposed methods mainly contain
the complex cepstrum method, self-correlation method, autoregressive
(AR) model power spectrum method, singular value decomposition
(SVD) eigenvalue decomposition method, etc., however most of these
methods have high computational complexity, and often demand a
higher pulse repetition frequency (PRF) as well as a longer observation
time, therefore it is difficult to put them to use [16].

In fact, as a kind of complex targets, the dimension of an aircraft
is generally far bigger than the wavelength of a conventional radar,
therefore its echo scattering is in the optical area, i.e., the general
scattering echo is the linear superposition of the scattering echo from
each independent and equivalent scattering center. The research shows
that the echo fluctuation reflects the complicated nonlinear modulation
effect induced by the nonrigid vibration and attitude change of the
target as well as the rotation of the target rotating parts, and contains
some target information such as the fine geometry structure and
material composition [17, 18]. Different types of aircraft targets often
have different structure and rotating parts and different nonrigid
vibration and JEM modulation characteristics. If these nonlinear
modulation features which reflect the physical characteristics of an
aircraft target can be extracted, then one may apply them to aircraft
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target classification and recognition directly [19–21]. Therefore, the
paper plans to adopt the nonlinear research method — fuzzy fractal
theory to analyze the characteristics of conventional radar return
signals from aircraft targets, and on this basis puts forward a fuzzy-
fractal-feature-based classification method so as to identify different
types of aircraft targets in condition of no compensation for airframe
echo components.

2. FUZZY FRACTAL THEORY

Since Mandelbrot introduced the concept of fractal geometry in the
seventh decade of the 20th century, fractal theory has been widely
applied to many realms such as natural science, social science and
engineering. However, there is not a proper fractal object in the nature,
and the calculation of fractal dimensions depends on the observed scale-
free interval. Actually, to what degree a discrete time series has fractal
characteristics or self-similarity is a fuzzy attribute. Therefore, on basis
of combining fuzzy theory and fractal theory, Kamijo and Yamanouchi
proposed fuzzy fractal theory [22], and introduced the local fuzzy
fractal dimension (LFFD) and local degree of fractality (LGF) to
describe the fuzzy fractal structure hidden in a dynamic system in
the form of self-similarity. This theory deems that characteristics in
all kinds of time series can be treated as “fuzzy fractal phenomena”
from the viewpoint of fuzzy system; therefore, one can process them
by means of the fuzzy fractal analysis without exception. Below, the
text will introduce LFFD and LGF which are the two main concepts
in fuzzy fractal theory.

2.1. LFFD

Assume that there is a discrete time series Y = {yi, i = 1, 2, . . ., N}
and M is the length of a processing unit, then the k-th processing unit
yk can be expressed as

yk = {yk, yk+1, . . . , yk+M−1} (1)

with k = 1, 2, . . ., N − M + 1. If defining the accumulated change
Nk (r, M) of yk as

Nk (r,M) =
1
r

M−r−1∑

i=0

|yk+r+i − yk+i|, (2)

where r denotes the sampling interval (i.e., scale), then one can get

Nk (r,M) ∝ r−Dk , (3)
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where Dk is known as the LFFD of yk, which can be obtained from
the slope of the lnNk(r,M)− ln r curve through a regression analysis.

Obviously, LFFD describes the extent to which the time series
pattern is complex in a processing unit on the long time series, and it is
an extension of the fractal dimension. It is believed that the dimension
is a function of the observation scale, so LFFD can be applied to non-
proper fractal objects. In addition, LFFD has a series of favorable
properties: The value of LFFD is invariable if adding a constant value
or multiplying a factor to each value in the discrete time series; If the
length of a processing unit M is sufficiently large so that the processing
unit retains the same properties in the long time series, then LFFD is
almost a constant without depending on M .

2.2. LGF

[23] has proposed the Six-Point Evaluation Method to calculate the
LFFD of a processing unit, and further introduced the concept of
LGF to indicate how well the regression line fits. LGF is composed
of the degree-of-freedom-adjusted contribution ratio, and it is defined
according to the variance analysis results for the regression procedure
shown by Table 1. In Table 1, if noting z = lnNk(r, M) and x = lnr,
then one can get

SR =
n∑

i=1

(ẑi − z̄)2 (4)

and

Se =
n∑

i=1

(zi − z̄)2, (5)

where, z̄ =
n∑

i=1
zi, ẑi is the Y -coordinate corresponding to the X-

coordinate xi in the regression line ẑ = âx + b̂, and zi denotes the
actual measure corresponding to ẑi.

Table 1. Variance analysis for single-factor test.

Source of

variance

Sum of

squares

Degree of

freedom
Mean square

Observed

F value

Regression SR 1 VR = SR/1

Error Se n− 2 Ve = Se/(n− 2) F = VR/Ve

Total ST = SR + Se n− 1 VT = ST /(n− 1)

*Note: For Six-Point Evaluation Method, n equals to 6.
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If denoting the LGF of the k-th processing unit as µk, then

µk = 1− Ve

VT
, (6)

can be obtained, where Ve and VT denote the error variance and total
variance respectively. Evidently, 0 ≤ µk ≤ 1. Moreover, the more µk

is close to 1, the better the lnNk(r, M)− ln r regression line fits, i.e.,
the more distinct the fractal characteristics of the processing unit are;
contrarily, the more µk is close to 0, the worse the lnNk(r, M) − ln r
regression line fits, i.e., the more indistinct the fractal characteristics
of the processing unit are. Therefore, LGF has the characteristic of
“grade” in fuzzy theory, and it describes to what extent a processing
unit has the property of self-similarity.

From (6), one can get further

µk =
VT − Ve

VT
=

ST − (n− 1)Ve

ST
=

ST − Se − Ve

ST
=

SR − Ve

ST
. (7)

In other words, LGF can also be defined as the ratio of the difference
between the sum of the regression squares SR and the error variance
Ve, i.e., SR − Ve, and the total sum of squares ST . As a result, the
definition given by (6) can avoid the over-evaluation of the regression-
based contribution ratio to a certain extent.

Altogether, both LFFD and LGF are obtained by processing the
short time series in a processing unit. For a long time series, one can
analyze its fuzzy fractal characteristics through sliding the processing
unit successively.

3. FUZZY FRACTAL ANALYSIS FOR RETURN
SIGNALS FROM AIRCRAFTS

Below, real recorded echo data from a large civil aircraft and a feeder
liner on a VHF-band surveillance radar will be taken to perform the
analysis. To raise the dependability of target classification, firstly one
should do some preprocessing on the raw echo data, such as attitude
partitioning (flying towards the radar station, flying in side direction,
and flying off the radar station), energy normalizing, so as to diminish
the influence of factors such as flying attitude and distance.

In surveillance radars, a single irradiation time towards a target is
very short (often 20 to 30ms), so the target echo series is a sub-series
of the long echo series obtained in the beam-park mode. If using the
Six-Point Evaluation Method to perform the regression analysis with a
pulse repetition interval (PRI) as the length of a processing unit, and
assuming that there is no overlap between two adjacent processing
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Figure 1. Fuzzy fractal analysis for aircraft returns in a VHF-band
radar. (a) LFFD. (b) LGF.

units, then the LFFD and LGF of the k-th processing unit can be
expressed as

Dk = f (r,Nk (r,M)) (8)

and
µk = g (r,Nk (r,M)) (9)

respectively, where r = 1, 2, . . . , 6. From the viewpoint of limit,
each value of r corresponds to an infinitesimal scale interval and a
LFFD can be got without exception, thus Dk is the average of the
six LFFDs, and reflects the manner of change in the processing unit
from the whole. In addition, from the analysis in the above section
one can know, 0 ≤ µk ≤ 1, therefore g(r,Nk(r,M)) is a complex
and special “membership function” from the concept of fuzzy fractal,
which describes the extent to which the sub-series in the processing
unit satisfies self-similarity.

Figures 1(a) and (b) present the calculation results of the LFFD
and LGF of a group of echo data from the two types of aircraft targets
respectively; thereinto, both the aircrafts fly towards the radar station,
and the length of a processing unit M = 1024. It can be seen from
the figures, in condition of VHF-band and single-pulse, the LGFs of
return signals from both types of aircrafts are less than 0.5 without
exception, and their LFFDs are also very small; therefore their fractal
characteristics are all not distinct. However, the LFFDs can classify
the two types of aircraft targets preferably, and the LGFs still have
some classification abilities though there are some overlaps between
the LGFs of the two types of targets. Moreover, from the figures one
can still see that the LFFDs and LGFs of the large civil aircraft are
greater than those of the feeder liner as a whole, because the large civil
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Figure 2. Distributing circumstances of 2-D features composed of
LFFDs and LGFs of echo data from two types of aircraft targets.

aircraft often has intenser nonrigid vibration and attitude change than
the feeder liner, and its JEM effect is also more distinct than that of
the feeder liner.

Figure 2 shows the distributing circumstances of the 2-D features
composed of the LFFDs and LGFs of echo data from the two types
of targets, with “×” and “o” denoting the feeder liner and the large
civil aircraft respectively. Thereinto, the echo data from both the large
civil aircraft and the feeder liner contain two kinds of attitudes (flying
towards or off the radar station), with the echo group numbers of flying
towards the radar station eight and seven, respectively, and those of
flying off the radar station ten and five, respectively. Each group of
echo data includes 256 PRIs. As can be seen from Figure 2, although
there are some overlaps between the 2-D features of the two types of
aircraft targets, as a whole, the features belonging to different types
of aircrafts still separate from each other distinctly. Consequently, if
the two characteristic parameters are combined together to identify
different types of aircraft targets, it is hopeful to obtain a better
performance.

4. FUZZY-FRACTAL-FEATURE-BASED
CLASSIFICATION EXPERIMENTS

Here the aforementioned echo data from two types of aircraft targets
in a VHF-band radar will be adopted in the experiments. On
basis of analyzing the performance of methods using some typical
low-resolution radar target classification features [15, 24–34], [16]
indicates that the classification method based on dispersion situations
of eigenvalue spectra (CMDSES) outgoes other methods remarkably.
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[19] uses fractional Brown motion to model echo amplitude fluctuation,
on this basis, puts forward a classification method based on fractional
Brown fractal dimension of echo in time and frequency domain
(CMFBFD) for low-resolution radars, and gains a better classification
effect for helicopters and civil aircrafts using the proposed method.
Therefore, here CMDSES and CMFBFD will be taken as the contrast
to analyze the performance of the classification method based on fuzzy
fractal features (CMFFF) in the following text.

In the experiments, the group numbers of echo data from the
feeder liner are twelve (with the group numbers of flying towards the
radar station seven and those of flying off the radar station five), and
those of echo data from the large civil aircraft are eighteen (with the
group numbers of flying towards the radar station eight and those of
flying off the radar station ten). Each group of echo data contains
256 PRIs. A PRI is taken as the length of a processing unit, and for
each processing unit, the eigenvalue spectrum and fractional Brown
fractal dimension features as well as the LFFD and LGF features are
extracted. Withal, compared with other classifiers, support vector
machine (SVM) has stronger generalization abilities [35], so here
SVM using the Gaussian kernel K(xi, xj) = exp(−‖xi − xj‖2/σ2)
as the kernel function will be taken as the uniform classifier in the
experiments. By reason that there is no prior knowledge about the
parameter σ2, in the following experiments, different parameter values
will be tried several times without going beyond the calculation burden
and the parameters which can well classify different types of targets
will be taken as the kernel function parameters. All the correct
classification rates (CCRs, here CCR is defined as the ratio of the
number of samples which are classified correctly and the corresponding
total number of samples) given in the following are the classification
results using the better kernel function parameters. For each type of
aircraft targets, feature data extracted from two groups of echo data
(thereinto, one group is recorded when the target flies towards the
radar station, and the other is recorded when the target flies off the
radar station.) will be selected as training samples, and the rest feature
data will be taken as testing samples. Table 2 shows the classification
results using CMDSES, CMFBFD, and CMFFF.

It can be seen from Table 2 that the CCRs of CMFFF (with
each CCR more than 90%) are far higher than those of CMDSES
and CMFBFD whether for the CCR of each type of aircraft targets
or the average CCR, while the CCRs of CMFBFD excel those of
CMDSES markedly. The reasons are as follows: Firstly, the feature
data used in the experiments are extracted from a single PRI, and JEM
features within a PRI are subject to clutters and noises. Secondly, a
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Table 2. CCRs of CMDSES, CMFBFD, and CMFFF.

CMDSES CMFBFD CMFFF
Feeder liner 57.07% 76.68% 98.22%

Large civil aircraft 78.22% 81.81% 94.39%
Average CCR 66.38% 80.03% 95.75%
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Figure 3. Variational curve of average CCR of CMFFF with SNR.

pure radar clutter (a return signal without target) may agree with a
fractal model commendably, but the existence of a target will change
its fractal characteristics remarkably even if being in a environment
with strong clutters. Thirdly, generally speaking, a man-made target
can be depicted by some regular geometric cells, and its surface and
spatial structure have intrinsic discrepancies with the laws expressed
by fractal model, so fractal model is not suitable to describe a man-
made target; however, fuzzy fractal model may describe the target
preferably. Therefore, CMFFF outstrips CMDSES and CMFBFD in
the total performance.

Below Gaussian noises with different intensities will be added to
the real recorded echo data to investigate the performance of CMFFF
in condition of different signal-to-noise ratios (SNRs). Figure 3 shows
the variational curve of the average CCR of CMFFF with SNR ranging
from 0 to 85 dB. As can be seen from Figure 3: when SNR is less than
10 dB, CMFFF still has some classification abilities, but the average
CCR of CMFFF (around 50%) is lower, and after this, CCR rises
quickly along with the increase of SNR; when SNR rises to 30 dB, CCR
leaves behind 80% and continues to rise relaxedly with the increase of
SNR; when SNR reaches 65 dB, CCR exceeds 95% and tends towards
invariableness hereafter. It is obvious that CMFFF is hopeful to
achieve a satisfactory classification effect only when SNR is greater
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than 30 dB. Investigating the reasons, one may find that LFFDs of
noises are often larger and their fractal characteristics are more distinct
than those of target echoes, so along with the decrease of SNR, the
extracted fuzzy fractal features mainly embody the characteristics of
noises, as a result, the classification performance will decrease.

What should be pointed out is that the used data are return signals
from aircraft targets within a single PRI. If one combines pulse echo
data recorded in multiple PRIs, the average CCR of CMFFF could
still have a larger increase. In addition, it can be seen from the above
simulation process, CMFFF has a series of merits such as lower feature
dimension, lesser algorithmic load, and it is suitable for engineering
application.

5. CONCLUSIONS

The paper introduces fuzzy fractal theory into the characteristic
analysis of return signals from aircraft targets as well as the
classification and recognition of targets in surveillance radars. Firstly,
it introduces fuzzy fractal theory. Secondly, on basis of the foregoing
introduction, it analyzes the fuzzy fractal characteristics of return
signals from aircraft targets, and puts forward a fuzzy-fractal-
feature-based classification method for aircrafts. Finally, it does
classification experiments with the real recorded echo data, and takes
the classification methods proposed in [16, 19] as the contrast to
analyze the classification performance of the proposed method. The
experimental results show that in the conventional low-resolution radar
system, the fuzzy-fractal-feature-based SVM classifier can classify
different types of aircraft targets effectively and has an excellent
classification performance in condition of no compensation for airframe
echo components. Moreover, the proposed method is simple and
effective and can be applied to engineering preferably.

REFERENCES

1. Shirman, Y. D., Computer Simulation of Aerial Target Radar
Scattering, Recognition, Detection, and Tracking, 111–124, Artech
House, Boston, 2002.

2. Ding, J. J., Target Recognition Techniques of Surveillance Radar,
40–41, National Defense Industry Press, Beijing, 2008.

3. Ghadaki, H. and R. Dizaji, “Target track classification for airport
surveillance radar (ASR),” Proceedings of IEEE Conference on
Radar, 24–27, 2006.



Progress In Electromagnetics Research M, Vol. 29, 2013 75

4. Chan, S. C. and K. C. Lee, “Radar target identification
by kernel principal component analysis on RCS,” Journal of
Electromagnetic Waves and Applications, Vol. 26, No. 1, 64–74,
2012.

5. Lin, Q. S., W. D. Hu, H. Yu, et al., “A study of target classification
method based on low-resolution radar return sequences image
profile,” Modern Radar, Vol. 27, No. 3, 24–28, 2005.

6. Chen, W. T., C. R. Xu, and Z. P. Chen, “Low-resolution radar
target recognition based on gray-level map features,” Modern
Radar, Vol. 28, No. 9, 48–50, 2006.

7. Leung, H. and J. F. Wu, “Bayesian and Dempster-Shafer target
identification for radar surveillance,” IEEE Transactions on
Aerospace and Electronic Systems, Vol. 36, No. 2, 432–447, 2000.

8. Zhang, H. H., W. Wang, and W. D. Jiang, “Aircraft target
classification based on registration information for low-resolution
radar,” Systems Engineering and Electronics, Vol. 26, No. 4, 488–
490, 2004.

9. Pouliguen, P., L. Lucas, F. Muller, et al., “Calculation and
analysis of electromagnetic scattering by helicopter rotating
blades,” IEEE Transactions on Antennas and Propagation,
Vol. 50, 1193–1408, 2002.

10. Bell, M. R. and R. A. Grubbs, “JEM modeling and measurement
for radar target identification,” IEEE Transactions on Aerospace
and Electronic Systems, Vol. 29, 73–87, 1993.

11. Piazza, E., “Radar signals analysis and modellization presence of
JEM application in the civilian ATC radars,” IEEE Aerospace and
Electronic Systems Magazine, Vol. 14, 35–40, 1999.

12. Martin, J. and B. Mulgrew, “Analysis of the theoretical radar
return signal from aircraft propeller blades,” Proceedings of IEEE
International Conference on Radar, 569–572, 1990.

13. Yang, S. and S. Yeh, “Electromagnetic backscattering from
aircraft propeller blades,” IEEE Transactions on Magnetics,
Vol. 33, 1432–1435, 1997.

14. Martin, J. and B. Mulgrew, “Analysis of the effects of blade
pitch on the radar return signal from rotating aircraft blades,”
Proceedings of IET International Radar Conference, 446–449,
1992.

15. Yoon, S., B. Kim, and Y. Kim, “Helicopter classification using
time-frequency analysis,” Electronics Letters, Vol. 36, 1871–1872,
2000.

16. Chen, F., H. W. Liu, L. Du, et al., “Target classification with



76 Li and Xie

low-resolution radar based on dispersion situations of eigenvalue
spectra,” Science China: Information Sciences, Vol. 53, 1446–
1460, 2010.

17. Chen, V. C., F. Y. Li, S. S. Ho, et al., “Micro-Doppler effect
in radar: Phenomenon, model, and simulation study,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 42, No. 1,
2–21, 2006.

18. Zhuang, Z. W., Y. X. Liu, and X. Li, “The achievements of
target characteristic with micro-motion,” Acta Electronica Sinica,
Vol. 35, No. 3, 520–525, 2007.

19. Ni, J., S. Y. Zhang, H. F. Miao, et al., “Target classification of
low-resolution radar based on fractional Brown feature,” Modern
Radar, Vol. 33, No. 6, 46–48, 2011.

20. Li, Q. S., W. X. Xie, and C. Luo, “Identification of aircraft targets
based on multifractal spectrum features,” Proceedings of IEEE
International Conference on Signal Processing, 1821–1824, 2012.

21. Li, Q. S. and W. X. Xie, “Target classification with low-resolution
surveillance radars based on multifractal features,” Progress In
Electromagnetics Research B, Vol. 45, 291–308, 2012.

22. Kamijo, K. and A. Yamanouchi, “Signal processing using
fuzzy fractal dimension and grade of fractality-Application to
fluctuations in seawater temperature,” Proceedings of IEEE
Symposium on Computational Intelligence in Image and Signal
Processing, 133–138, 2007.

23. Kamijo, K., A. Yamanouchi, and C. Kai, “Time series analysis
for altitude structure using local fractal dimension — An example
of seawater temperature fluctuation around Izu Peninsula,”
Technical Report of IEICE, NLP2004-3, 2004.

24. Ding, J. J. and X. D. Zhang, “Studies of analysis of JEM
signatures and classification of targets in the conventional radar,”
Journal of Electronics and Information Technology, Vol. 25, 956–
962, 2003.

25. Elshafei, M., S. Akhtar, and M. S. Ahmed, “Parametric models
for helicopter identification using ANN,” IEEE Transactions on
Aerospace and Electronic Systems, Vol. 36, 1242–1252, 2000.

26. Melendez, G. J. and S. B. Kesler, “Spectrum estimation by
neural networks and their use for target classification by radar,”
Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing, 3615–3618, 1995.

27. Moses, R. L. and J. W. Carl, “Autoregressive modeling of radar
data with application to target identification,” Proceedings of the



Progress In Electromagnetics Research M, Vol. 29, 2013 77

1988 IEEE National Radar Conference, 220–224, 1988.
28. Pellegrini, S. P. F. and C. S. Pardini, “Radar signals analysis

oriented to target characterization applied to civilian ATC radar,”
Proceedings of IET International Conference Radar, 438–445,
1992.

29. Stove, A., “A Doppler-based target classifier using linear
discriminants and principal components,” Proceedings of IET
Seminar on High Resolution Imaging and Target Classification,
171–176, 2006.

30. Jahangir, M., K. M. Pointing, and J. W. O’Loghlen, “A robust
Doppler classification technique based on hidden Markov models,”
Proceedings of IEEE International Conference on Radar, 162–166,
2002.

31. Jahangir, M., K. M. Pointing, and J. W. O’Loghlen, “Correction
to robust Doppler classification technique based on hidden Markov
models,” Proceedings of IEE International Conference on Radar,
Sonar and Navigation, Vol. 150, No. 5, 2003.

32. Ji, H. B., J. Li, and W. X. Xie, “Bispectrum based radar target
classification,” Proceedings of IEEE International Conference on
Signal Processing, 419–422, 1998.

33. Andric, M., Z. Durovic, and B. Zrnic, “Ground surveillance radar
target classification based on fuzzy logic approach,” Proceedings
of IEEE International Conference on Computer as a Tool, 1390–
1392, 2005.

34. Dullard, B. D. and P. C. Dowdy, “Pulse Doppler signature of
a rotary wing aircraft,” IEEE Aerospace and Electronic Systems
Magazine, Vol. 36, 28–30, 1991.

35. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification,
2nd Edition, 259–264, John Wiley and Sons, New York, 2001.


