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Abstract—To save the computation time and improve the accuracy
of reconstruction results by support vector machine (SVM), a
multi-output least square SVM (LS-SVM) algorithm is proposed to
reconstruct the position of a 2-D perfect electric conductor (PEC)
cylinder below a rough surface. Firstly, the scattered electromagnetic
field at a number of observation positions is calculated by the method
of moment to generate the training and testing data. Then the multi-
output LS-SVM is trained to reconstruct the coordinate of the object
center. Numerical results show that this approach is accurate and
efficient even with some additive Gaussian noise.

1. INTRODUCTION

More and more attention has been drawn to the reconstruction of the
target below the surface, since it has a wide potential use in military
and civilian applications, such as remote sensing, ground penetrating
radar, non-destructive evaluation. Generally speaking, either the land
surface or sea surface can be categorized into two types: One is planer
surface [1, 2], and the other is rough surface [3–5]. Compared with the
former one, the rough surface is more common in real applications. But
the reconstruction of the target below the rough surface has not been
as extensively researched as the reconstruction of the target below the
planer surface.

Usually, the reconstruction of target below rough surfaces can be
cast into an inverse electromagnetic scattering problem and solved by
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different methods. In [5], the reconstruction is posed as a nonlinear
least-squares optimization problem, which is solved by Levenberg-
Marquardt iterative algorithm. Paper [6] also views the reconstruction
as a optimization problem, but it is solved by a modified particle swarm
optimization algorithm. In [7], a two-step procedure for characterizing
obstacles under a rough surface is proposed. In [8], a Green function
for the rough surface is proposed, and the Tikhonov regularization
method is used for the imaging of dielectric target buried below rough
surface. However, when real-time or quasi real time performance is
required, these approaches may become impracticable because of high
computation cost.

In fact, there are circumstances when only an estimate of
some object properties (e.g., scatters presence or absence) with
amount of a-priori information about the problem is required.
In such circumstances, artificial neural network (ANN) views the
reconstruction as a regression problem and solves it using learning
by examples approach. Once trained properly, they can reconstruct
the unknowns within a second. In [1], multi-layered perceptron ANN
(MLPANN) is used in the detection of dielectric cylinders buried in a
lossy half space. However, inherent drawbacks, such as being trapped
into local minimal and over fitting, have limited its further application.
Support vector machine (SVM) [9], another learning by example
method, can avoid these shortcomings of ANN by solving a constrained
quadratic optimization problem during the training process and thus
achieve more precise reconstruction results [10–14].

Unlike ANNS’ multi-input and multi-output mapping ability, in
most of the reconstruction occasions, SVM is used as multi-input and
single-output mode [10–14], i.e., one SVM corresponds to only one
parameter. When there are more parameters to be reconstructed, more
irrelevant models need to be established and trained. But this is time-
consuming. Moreover, the interactions among different outputs may
be neglected, which means that the reconstruction results may not be
very accurate. To overcome these drawbacks, in [15] multi-output LS-
SVM is proposed to deal with the dielectric cylinder reconstruction in
free space. In this paper, it is used to the detection of 2-D perfect
dielectric conductor (PEC) target below rough surface.

The remainder of this paper is organized as follows. In Section 2,
forward scattering problem of a PEC target below rough surface is
described, and in Section 3, inverse scattering problem is formulated by
the regression method. The multi-output LS-SVM is briefly introduced
in Section 4. In Section 5, the reconstruction results are shown and
discussed. Section 6 gives conclusions of this paper.
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Figure 1. Geometric configuration of the 2-D scattering problem.

2. FORWARD PROBLEM

The geometric configuration of the 2-D scattering problem is shown in
Fig. 1. A two-dimensional infinite long circular PEC target with its
axis paralleling to the y-axis is buried at the height of h below the rough
interface between the air and the lossy earth ground. The upper half
space is the free space with the dielectric permittivity ε0, permeability
µ0 and conductivity σ0. The lower half space is the lossy earth ground
with the dielectric permittivity ε1 permeability µ1 and conductivity σ1.
The receivers are equally distributed on the measurement line above
the rough surface at H. A TM polarized tapered wave Ψinc(r) from
the transmitter illuminates the ground with an incident angle θi. The
receivers receive the scattered field at θs. Suppose that Ψ0 and Ψ1 are
the wave function in the air and ground, respectively. They follow the
following integral equations:
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where Sr represents the rough surface and So the surface of the target.
G0,1(r, r′) = (j/4)H(1)

0 (k0,1 |r− r′|) are the Green functions in the air
and earth, respectively. H

(1)
0 (·) is zeroth-order Hankel function of

the first kind. r and r′ represent the field point and source point,
respectively.

The boundary condition is as:

Ψ0 (r) |r∈Sr = Ψ1 (r) |r∈Sr (2a)
∂Ψ0 (r)

∂n
|r∈Sr =

1
ρ

∂Ψ1 (r)
∂n

|r∈Sr ρ = ε1/ε0 (2b)

After the rough surface Sr being discretized along the x-axis and
the target So being discretized on the surface, the MoM with point-
matching is used. The boundary conditions are used and the matrix
obtained from (1a)–(1c) as follows:

[
A B 0
C −ρD E
F −ρG H

][
V1

V2

V3

]
=

[ Ψinc

0
0

]
(3)

where V1 (x) = Ψ0 (r) |r∈Sr , V2 (x) = ∂Ψ0 (r′)/∂n′|r∈Sr , V3 (x) =
Ψ1 (r) |r∈S0 . The details of A, B, C, D, E, F , G, H are given in
[3]. Since the scattering field in the space above the surface is radiated
from the “equivalent current on the rough surface”, after solving (3),
the scattering near field is calculated by substituting the known V1 (x)
and V2 (x) into the first part of the right hand side of Equation 1(a),
that is:

Ψs (r)=
∫

Sr

[
V1 (x)

∂g0(r, r′)
∂n′

− g0(r, r′)V2 (x)
]

ds′ r′∈Sr (4)

Here, r represents the receivers’ position.
There are hundreds of samplings both in the training data set

and the testing data set, and for each sampling, Equations (3) and (4)
must be calculated and solved. So it is time-consuming to generate
the training and testing data sets. To save calculation time, a new fast
backward and forward (FBM) method called cross coupling iterative
approach (CCIA) proposed in [4] is used.

3. INVERSE PROBLEM FORMULATION

From Section 2, it can be seen that the measured scattered electric
field Esca at the observing points are closely related to the position of
the PEC cylinder below the rough surface. That is

Esca = φ (u) (5)
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where u is the position of the scatter (xp and h), and φ represents the
relationship between u and Esca.

The aim of the reconstruction is to find the unknown position
of the PEC cylinder from Esca. Mathematically, this reduces to
determination of the following relation [17]:

u = φ−1 (Esca) (6)

This problem can be reformulated as a regression problem, where the
unknown function φ−1 must be approximated from the knowledge of a
number of known I/O pairs of vectors

{
(Esca)i , (u)i

}
i = 1, 2, . . . , N .

Once φ−1 is known, the unknown parameters of the scatter can be
worked out immediately when the scatter field is measured. As a
powerful tool for function regression problems, multi-output LS-SVM
is used for the approximation of φ−1 in this paper.

4. MULTI-OUTPUT LS-SVM

Reference [15] gives the details of multi-output LS-SVM, and they are
introduced briefly here.

Given a set of training data points {xi,yi} i = 1, . . . , N , where
xi ∈ Rm is the input data, yi ∈ Rl the output, and N the size of
training data set. Then the multi-output LS-SVM is turned to solving
the following linear equation [15]:

[
0 1T

1 Ω + γ−1I

] [
b
α

]
=

[
0T

Y

]
(7)

Y = [y1, y2, . . . , yl] =



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. . .
...
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
 (8a)

α = [α1, α2, . . . , αl] =




α11 · · · α1l
...

. . .
...

αN1 · · · αNl


 (8b)

Here γ is a constant value which balance the generalization capability
and the accuracy of multi-output LS-SVM; 1 = [1, 1, . . . , 1]T is an
N -dimensional column vector, and I is a N × N identity matrix;
Ωij = k (xi,xj); k (xi,xj) is the kernel function. Usually, radial basis

function (RBF) k(x,y) = exp(−‖x−y‖2
2σ2 ) is used as the kernel function,

where σ2 is the kernel parameter. Both σ2 and γ need to be determined



122 Cai, Tong, and Ji

during the training process. After trained properly, when a new input
x is given, the corresponding output by multi-output LS-SVM is as:

ŷj (x) =
N∑

i=1

αijk (x,xi) + bj (j = 1, 2, . . . l) (9)

5. NUMERICAL RESULTS

To validate the multi-output LS-SVM in the buried target reconstruc-
tion, several numerical simulations are shown in this section.

The tapered wave, with frequency of 1.2 GHz and tapering
parameter g = L/4 (L = 25.6λ is the length of the rough surface),
normally incidents into the soil at the center of the surface. The rough
surface uses Gaussian spectrum with a correlation length l = λ and
root mean square height h̄ = 0.1λ. The relative permittivity of the
earth is εr = 4.0 + j0.01. Since the ground is not varying, here the
rough surface does not change once it is generated. The receivers are
at xi = −5λ + 0.25λ ∗ i i = 0, 1, . . . , 40 on the measurement line at
H= λ above the surface. The radius of the target is R = λ, and the
position of the target (xp, h), which is also the center of the target, is
to be reconstructed.

The data for both the training and testing sets are obtained from
solving the direct scattering problem. The training set is made up by
441 examples. In particular, 21 different values of xp (xp = −λ+0.1λ∗
i, i = 0, 1, . . . , 20), 21 values of h (h = −1.5λ−0.1λ∗i, i = 0, 1, . . . , 20)
have been used. To assess the multi-output LS-SVM, the training
set, made up by 121 examples, including 11 different values of xp
(xp = −0.95λ + 0.20λ ∗ i, i = 0, 1, . . . , 10) and 11 different values
of h (h = −1.55λ− 0.20λ ∗ i, i = 0, 1, . . . , 10)), is used.

In all the simulations, while the input data for regression are the
amplitude of scattered electric field measured at the observation points,
the output data are xp and h. The hyper parameters (σ2 and γ) of
multi-output LS-SVM are worked out by a very effective procedure
called sequential minimal optimization (SMO) [16] during the training
process. Usually, the training process is time-consuming. However,
the offline training can be done. After properly trained, xp and h can
be reconstructed by regression within few seconds.

The relative error is used to quantify the accuracy of the
reconstruction:

relErr (p) =
|ptrue − precons|

|ptrue| × 100% (10)

where p is the considered unknown variable. Subscript true indicates
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real value of the variable, and subscript recons indicates the value
reconstructed by the reconstruction method

5.1. Comparison Multi-output LS-SVM with Single-output
LSSVM

This subsection deals with the comparison multi-output LS-SVM with
single-output LS-SVM. For the multi-output LS-SVM, only one modal
is needed, and both xp and h can be reconstructed simultaneously.
But for the single-output LS-SVM, two different LS-SVM modals are
needed for xp and h, respectively. The simulation results are shown in
Table 1 and Figs. 2 and 3.

Table 1 summarizes the performances of the multi-output LS-SVM

Table 1. Relative errors for the reconstruction of circular PEC
cylinder by multi-output LS-SVM and single-output LS-SVM.

Para-

meter

Training

(Max)

Training

(Mean)

Testing

(Max)

Testing

(Mean)

multi-output

LS-SVM

xp (%) 1.62 0.30 7.75 1.05

h (%) 3.62 0.85 7.2 3.53

single-output

LSSVM

xp (%) 3.07 0.59 8.23 1.63

h (%) 4.12 1.38 7.32 3.72
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Figure 2. Position reconstruction of circular PEC cylinder by multi-
output LS-SVM. (a) xp, (b) h.
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Figure 3. Position reconstruction of circular PEC cylinder by single-
output LS-SVM. (a) xp, (b) h.

and single-output LS-SVM. From Table 1, it can be seen that the
agreement between reconstructed values and actual ones is good, for
the maximum relative errors are all below 9 percent, and the average
relative errors are all less than 4% for both the testing and training data
sets. Besides, the reconstruction of h is not so actually reconstructed
compared with xp. Moreover, for both xp and h, multi-output LS-
SVM can achieve better reconstruction than single-output LS-SVM.
The reconstruction of both xp and h is illustrated in Fig. 2 and Fig. 3.
The information shown by them is the same as that shown in Table 1.
It can be concluded that the multi-output LS-SVM is much better than
LS-SVM for buried PEC target position reconstruction.

5.2. Comparison Multi-output LS-SVM with Multi-output
ANN

With the same training and testing data sets, another similar multi-
output method, MLPANN, is also illustrated to compare with multi-
output LS-SVM. The structure of the three layered MLPANN is 41-
2020-2 (four-layer MLPANN: 41 neurons in input layer, 20 neurons
in the first hidden layer, 20 neurons in the second hidden layer, and
2 neuron in output layer), and the most widely used Levenberg-
Marquardt training algorithm is adopted to train MLPANN. 150
training steps are set. The reconstruction result is shown in Table 2
and Fig. 4.
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Table 2. Relative errors for the reconstruction of circular PEC
cylinder by multi-output LS-SVM and MLPANN.

Para-

meter

Training

(Max)

Training

(Mean)

Testing

(Max)

Testing

(Mean)

multi-output

LS-SVM

xp (%) 1.62 0.30 7.75 1.05

h (%) 3.62 0.85 7.02 3.53

multi-output

MLPANN

xp (%) 6.98 1.75 9.15 3.62

h (%) 5.21 0.82 15.06 9.87
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Figure 4. Position reconstruction of circular PEC cylinder by
MLPNN. (a) xp, (b) h.

Table 2 summarizes the performances of the multi-output LS-SVM
and MLPANN. From Table 2 for both xp and h, the reconstruction
relative errors by MLPANN are much larger than that by multi-output
LS-SVM, which are obvious in Fig. 4, especially when it is compared
with Fig. 2. It can be concluded that the multi-output LS-SVM is much
better than MLPANN for buried PEC target position reconstruction.

5.3. Robustness to Noisy Data

Generally, the data is contaminated by the noise. To make the
measured data more realistic, Gaussian white noises with zero mean
value and a standard deviation σnoise are added to the calculated
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scattered data, and σnoise is given by Equation (11) [17] as follow:

SNR = 10log10

V∑
v=1

M(V )∑
m(v)=1

∣∣Ev
scatt(xm(v), ym(v))

∣∣2

2MV σ2
noise

(11)

For each illumination v = 1, . . . , V , the scatter field Ev
scatt(xm(v), ym(v))

is measured at a predefined location (xm(v), ym(v)). In this simulation
V = 1, M(v) = 41, and noise with SNR = 30 dB, 25 dB, 20 dB is
considered.

Table 3. Relative error analysis for position reconstruction of circular
PEC cylinder by multi-output LS-SVM with different noise.

Noise

level

Para-

meter

Training

(Max)

Training

(Mean)

Testing

(Max)

Testing

(Mean)

30 dB
xp (%) 1.92 0.53 7.95 1.65

h (%) 5.36 1.25 9.17 4.38

25 dB
xp (%) 2.73 0.94 8.75 2.17

h (%) 5.92 1.83 9.82 4.66

20 dB
xp (%) 3.68 1.31 9.54 2.89

h (%) 6.77 2.34 10.25 5.53

Table 3 summarizes the performances of the multi-output LS-
SVM with different noise levels. From Table 3, it can be seen that
with growing noise, for both xp and h, although the relative errors
are growing, the reconstructions are still satisfying. The average
relative errors are all less than 7% for the both the testing and training
data sets. Therefore, to some extent, the reconstructed values agree
with the corresponding actual ones. It can be concluded that the
multi-output LS-SVM is noise tolerant for buried PEC target position
reconstruction.

6. CONCLUSION

In this paper, the position reconstruction of the buried PEC target
below rough surface is treated as a regression problem. Multi-output
LS-SVM is presented as the efficient regression tool, and the training
and testing date sets are generated by the amplitude of the scattering
data calculated by MoM. On the one hand, it is more precise than
MLPNN and single-output LS-SVM; on the other hand, it needs
not to train each unknown like SVM or single-output LS-SVM. The
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simulation results show that even the data are added with 20 dB
Gaussian white noise, the multi-output LS-SVM can still reconstruct
the target in the right position. It can be concluded that the multi-
output LS-SVM to the position reconstruction of buried PEC target
below rough surface is valid.
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