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Abstract—A three-dimensional (3-D) source localization algorithm
of joint elevation, azimuth angles and range estimation for the mixed
near-field (NF) and far-field (FF) sources is presented in this paper.
We first estimate the elevation angles of all mixed sources by using
the generalized ESPRIT method. With the elevation angle estimates,
the range parameters of all mixed sources are obtained, and then
both the NF and FF sources are distinguished. Finally, with the
elevation angle and range estimates, the azimuth angles of all mixed
sources are acquired based on the conventional high-resolution MUSIC
method. The proposed algorithm avoids parameter match operation,
and requires neither a multidimensional search nor high-order statistics
(HOS). Simulation and experiment results show the performance of the
proposed algorithm in this paper.

1. INTRODUCTION

Source localization is one of the most important topics in the passive
sonar, radar, microphone arrays, and seismic exploration systems [1].
Parameter estimation methods of multiple sources generally assume
that all sources are in the FF [2–8] or NF [9–20] of the array. When all
sources are in the FF [2–8], each signal received by the array has planar
wavefront. For the FF sources scenario, many one-dimensional (1-D)
methods [2–5] for estimating azimuth angle have been proposed based
on the 1-D linear array, such as 1-D MUSIC algorithm [2] and 1-D
ESPRIT algorithm [3]; and then based on some two-dimensional (2-D)
arrays, these 1-D estimation methods [2–5] are extended by researches
so as to form 2-D methods for estimating the elevation and azimuth
angles [6–8].
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However, when a source is in the Fresnel region of the array
aperture (see [9] for more details), the plane-wave approximation
to the spherical wave-fronts is no more valid and a more accurate
approximation is required. The wave-front shape varies nonlinearly
with the array position and is characterized by both the azimuth
angle and the range parameters of the source. For the NF sources
scenario, many 2-D parameters (azimuth angle and range) estimation
methods [9–12] have been also presented based on the 1-D linear array,
and then corresponding three-dimensional (3-D) parameters (elevation
and azimuth angles and range) estimation methods [13–20] have been
also developed.

Generally, most of FF source localization algorithms [2–8] assume
that all sources are the pure FF ones, and most of NF source
localization algorithms [9–20] assume that all sources are the pure NF
ones. However, in some practical applications, the NF sources and
FF sources may coexist, such as speaker localization using microphone
arrays or acoustic source localization using sonar arrays [21–23]. If so,
the above-mentioned algorithms [2–20], which are designed to locate
the pure FF sources or pure NF sources, may fail to locate the mixed
sources [21–23]. To solve the localization issue of the mixed NF and
FF sources, recently, a two-stage MUSIC (TSM) algorithm [21], based
on the HOS, is presented. However, for requiring HOS and spectral
peak search, the TSM algorithm has a higher computational burden.
In order to reduce the computational cost, He et al. present a 1-
D MUSIC-based localization (1-DML) algorithm [22]. Nevertheless,
when estimating the parameters (elevation angle and range) of
the NF sources, the 1-DML algorithm [22] obtains lower azimuth
angle estimation performance than the TSM algorithm [21]. In
addition, Wang et al. also propose a sparse signal reconstruction-based
localization (SSRL) algorithm [23], and the SSRL algorithm gains
better estimation performance than the TSM algorithm.

TSM algorithm [21], 1-DML algorithm [22] and SSRL algo-
rithm [23] are the outstanding contribution in the area of the mixed
NF and FF sources localization. However, these localization algo-
rithms [21–23] for the mixed NF and FF sources scenario are only
based on the uniform linear array (ULA), and thus are only able to
estimate 1-D parameter (azimuth angle) for the FF sources and 2-D
parameters (azimuth angle and range) for the NF sources [21–23]. Up
to now, the relevant paper about 3-D parameters (elevation, azimuth
angles and range) estimation of the mixed NF and FF sources is very
rare. Therefore, in this paper, based on the ESPRIT and MUSIC
methods and by employing a crossed array, a 3-D mixed NF and FF
sources localization algorithm is proposed. The proposed algorithm
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is based on the second-order statistics (SOS) and requires only 1-D
search, therefore it has low computational burden. At the same time,
the proposed algorithm is able to avoid parameter pairing procedure.

The following notations will be used throughout. Superscripts T
and H represent the transpose and conjugate transpose, respectively,
while diag{·}, arg(·) and det{·} define a diagonal matrix, calculates
phase and calculates determinant, respectively.

2. 3-D MIXED SIGNAL MODEL

Consider K narrowband independent radiating sources sk(t), 1 ≤ k ≤
K, generated by the mixed NF and FF sources, impinging on a crossed
array placed in the X-Z plane (Fig. 1), and assume that the first K1

sources are the FF sources (other K−K1 sources are the NF sources).
Each uniform linear array (ULA) branch consists of 2M + 1 uniformly
spaced omni-directional sensors with interelement spacing d.

Let the center of array be the phase reference point. The
ULA output aligned with the X and Z axes are expressed [16, 17]
respectively as

X(t) =
K∑

k=1

a(θk, ϕk, rk)sk(t) + Nx(t) = A(θ, ϕ, r)S(t) + Nx(t) (1)

Z(t) =
K∑

k=1

b(θk, rk)sk(t) + Nz(t) = B(θ, r)S(t) + Nz(t) (2)

where both X(t) = [x−M (t), x−M+1(t), . . . , x0(t), . . . , xM (t)]T and
Z(t) = [z−M (t), z−M+1(t), . . . , z0(t), . . . , zM (t)]T are (2M + 1) × 1
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Figure 1. The crossed array configuration.
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array output vectors. S(t) = [s1(t), . . . , sk(t), . . . , sK(t)]T is the K×1
mixed NF and FF sources vector. Both Nx(t) and Nz(t) represent the
(2M + 1) × 1 noise vectors. A(θ, ϕ, r) represents the 3-D manifold
matrix of the mixed NF and FF sources, which is given [16, 17] by

A(θ, ϕ, r) = [a(θ1, ϕ1, r1),a(θ2, ϕ2, r2), . . . ,a(θK , ϕK , rK)] (3)

a(θk, ϕk, rk) =
[
ej[(−M)αxk+(−M)2βxk], ej[(−M+1)αxk+(−M+1)2βxk],

. . . , ej[mαxk+m2βxk], . . . , ej[Mαxk+M2βxk]
]T

(4)

αxk = −2π
d

λ
sin θk cosϕk (5)

βxk = π
d2

λrk

(
1− sin2 θk cos2 ϕk

)
(6)

where λ is the wavelength of sources. d ≤ λ/4 [9–12] is the
distance between two adjacent sensors. θk ∈ [0, π], ϕk ∈ [0, π] and
rk ∈ [0.62(D3/λ)1/2, +∞) [24] with D representing the array aperture
denote the elevation angle, azimuth angles and range of the k-th source,
respectively. And B(θ, r) represents the 2-D manifold matrix of the
mixed NF and FF sources, which is expressed [21] as

B(θ, r) = [b(θ1, r1),b(θ2, r2), . . . ,b(θK , rK)] (7)

b(θk, rk) =
[
ej[(−M)αzk+(−M)2βzk], ej[(−M+1)αzk+(−M+1)2βzk],

. . . , ej[mαzk+m2βzk], . . . , ej[Mαzk+M2βzk]
]T

(8)

αzk = −2π
d

λ
cos θk (9)

βzk = π
d2

λrk
sin2 θk (10)

Note that, when the k-th source is a FF source, {βxk, βzk} are
approximated by zero due to farther range of FF source (see [21, 22] in
detail). Therefore, the FF source can be considered as the special NF
one, and the steering vector of any one source (NF or FF source) can
be expressed by (4) or (8).

Throughout the paper, the following assumptions are assumed
to hold: 1) The number of sources is known or correctly estimated
by the minimum description length (MDL) detection criterion or the
Akaike information criterion (AIC) [25]; 2) The incoming source signals
are statistically independent, zero-mean complex Gaussian random
processes; 3) The noise is zero-mean, complex circular Gaussian, and
spatially uniformly white, and is statistically independent of all the
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signals; 4) Before localizing the sources, the array errors, such as gain
and phase errors, position errors and mutual coupling errors etc., have
been calibrated through relevant array errors calibration method as [1–
25].

3. PROPOSED ALGORITHM

3.1. Estimate the Elevation of All NF and FF Sources

From (2), one can observe that the ULA output Z(t) aligned with the
Z axes only contains both the elevation angle and range parameters.
We divide the ULA aligned with the Z axes into two subarrays. The
first subarray comprises the first 2M sensors, while the second one
comprises the last 2M sensors (inverse order). The signal output of
the two subarrays can be given respectively by

Z1(t) = [z−M (t), z−M+1(t), . . . , z0(t), . . . , zM−1(t)]T

= B1(θ, r)S(t) + Nz1(t) (11)

Z2(t) = [zM (t), zM−1(t), . . . , z0(t), . . . , z−(M−1)(t)]
T

= B2(θ, r)S(t) + Nz2(t) (12)
B1(θ, r) = [b1(θ1, r1),b1(θ2, r2), . . . ,b1(θK , rK)] (13)

where the matrix B1(θ, r) is the first 2M rows of the matrix B(θ, r)
and B2(θ, r) is constructed with the last 2M rows of B(θ, r) in
reverse order. Both Nz1(t) = [n−M (t), . . . , n0(t), . . . , nM−1(t)]T and
Nz2(t) = [nM (t), . . . , n0(t), . . . , n−(M−1)(t)]T are the subarray noise
vectors. The relationship between B1(θ, r) and B2(θ, r) can be written
as

B2(θ, r) = [G(θ1)b1(θ1, r1), . . . ,G(θK)b1(θK , rK)] (14)

where

G(θk) = diag
{

ej2αzkM , ej2αzk(M−1), . . . , ej2αzk(−M+1)
}

(15)

Note that G(θk) only contains the elevation angle information.
And the relationship between B(θ, r) and B1(θ, r), B2(θ, r) can

be expressed as

B(θ, r) =
[

B1(θ, r)
last row of B(θ, r)

]
=

[
first row of B(θ, r)

JB2(θ, r)

]
(16)

where J is a 2M × 2M matrix having 1′s along the anti-diagonal, and
J2 = I.

Eigendecompose the array covariance matrix Rz = E{Z(t)ZH(t)}
to construct a (2M +1)×K signal-subspace matrix Us whose columns
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are the (2M + 1) × 1 eigenvectors associated with the K largest
eigenvalues of Rz, and (2M + 1) × (2M + 1 − K) noise-subspace
matrix Un whose columns are the (2M +1)×1 eigenvectors associated
with the (2M + 1 − K) smallest eigenvalues of Rz. Based on the
ESPRIT method, there exists a K ×K full-rank matrix T satisfying
Us = B(θ, r)T. Therefore, Us can be rewritten as

Us =
[

Us1

last row of Us

]
=

[
first row of Us

Us2

]
=B(θ, r)T

=
[

B1(θ, r)
last row of B(θ, r)

]
T =

[
first row of B(θ, r)

JB2(θ, r)

]
T

⇒
{

Us1 = B1(θ, r)T
Us2 = JB2(θ, r)T

(17)

where Us1 is the first 2M rows of the signal-subspace Us, while Us2

is the last 2M rows of the signal-subspace Us.
Similar to the generalized ESPRIT method [4] for 1-D elevation

angle estimation, we define a matrix

Φ(θ)Us1 − JUs2

= [Φ(θ)B1(θ, r)−B2(θ, r)]T = [(Φ(θ)−G(θ1))b1(θ1, r1),
. . . , (Φ(θ)−G(θK))b1(θK , rK)]T (18)

where Φ(θ) = diag{ej2αzM , ej2αz(M−1), . . . , ej2αz(−M+1)}.
From (18), we can observe that the k-th column of the matrix

Φ(θ)B1(θ, r)−B2(θ, r) becomes equal to zero when θ = θk. In such a
case, the matrix Φ(θ)Us1−JUs2 will drop rank. Furthermore, we can
obtain the elevation angle estimates as when the matrix UH

s1Φ(θ)Us1−
UH

s1JUs2 [4] drops rank for the values of θk, k = 1, . . . , K. Therefore,
the following spectral function can be used to find θk, k = 1, . . . , K:

P (θ) = 1/det
{
UH

s1[Φ(θ)Us1 − JUs2]
}

(19)

By means of only 1-D search over θ, the estimates θ̂k, k =
1, . . . , K of the elevation angles θk, k = 1, . . . , K of all NF and FF
sources can be obtained.

3.2. Estimate Range Parameters of All NF and FF Sources
and Distinguish NF Sources from the Mixed Sources

Based on the MUSIC method [2], a 2-D MUSIC spectrum function can
be given by

P (θ, r) = 1/
[
bH(θ, r)UnUH

n b(θ, r)
]

(20)



Progress In Electromagnetics Research, Vol. 136, 2013 441

Since the elevation angle estimates θ̂k, k = 1, . . . , K of all NF and
FF sources have been obtained in Section 3.1, (20) can be rewritten as

P (r) = 1
/[

bH
(
θ̂k, r

)
UnUH

n b
(
θ̂k, r

) ]
, k = 1, 2, . . . , K (21)

Based on (8), we define b(θk, r) as
b(θk, r) = γk(r)υk (22)

where

γk(r) = diag
{

ej(−M)2βzk , ej(−M+1)2βzk , . . . , ej(M)2βzk

}
(23)

βzk(r) = π
d2

λr
sin2(θk) (24)

υk =
[
ej(−M)αzk , . . . , ejmαzk , . . . , ejMαzk

]T
(25)

As [26, 27], we denote z = ejβzk , and then (23) can be rewritten
as

γk(z) = diag
{

z(−M)2 , z(−M+1)2 , . . . , z(M)2
}

(26)

Similar to the Root MUSIC method [26, 27], the denominator of
function (21) can be rewritten as the following polynomial:

gk(z) = υH
k γH

k (1/z)UnUH
n γk(z)υk, k = 1, . . . , K (27)

With the elevation angle estimates θ̂k, k = 1, . . . , K, we can
obtain L(L ≥ 1) closest to the unit circle roots zk

i , i = 1, . . . , L of
gk(z) by substituting each θ̂k back into (27).

Further, if L = 1, that is to say, when there exists only one closest
to the unit circle roots zk

i , i = 1 = L of gk(z), we can determine that
there exists only one source at θk direction.

If L = 2, that is to say, when there exist two roots which are closest
to the unit circle, zk

i , i = 1, 2 of gk(z), we can determine that there
exist two sources at θk direction (that is to say, the two signal sources
have the same elevation angle). Therefore, we can easily determine
how many sources exist at the same direction.

Then, based on z = ejβzk , we can obtain the range estimates r̂k of
range rk:

r̂k =
πd2 sin2

(
θ̂k

)

λ · arg
(
zk
i

) , i = 1, . . . , L (28)

when r̂k ∈ [0.62(D3/λ)1/2, 2D2/λ] (Fresnel region [24]), the source
sk(t) corresponding to r̂k is a NF source. On the contrary, when
r̂k ∈ (2D2/λ, +∞), the source sk(t) corresponding to r̂k is a FF source.
Thus, we can easily distinguish whether the source is NF or FF one.
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3.3. Estimate Azimuth Angles of All NF and FF Sources

From (1), we can see that X(t) contains 3-D parameters, namely
elevation, azimuth angles and range. The eigendecomposition of the
covariance matrix Rx = E{X(t)XH(t)} can be written as

Rx = ŪsΛsŪH
s + ŪnΛnŪH

n (29)

where Λs and Λn are the diagonal matrices that contain the signal- and
noise-subspace eigenvalues of Rx, respectively, whereas Ūs and Ūn are
the orthonormal matrices that contain the signal- and noise-subspace
eigenvectors of Rx, respectively. Based on the MUSIC method, a 3-D
MUSIC pseudo-spectrum scalar function is given by:

P (θ, ϕ, r) = 1/
[
aH(θ, ϕ, r)ŪnŪH

n a(θ, ϕ, r)
]

(30)

With the elevation angle and range estimates {θ̂k, r̂k}, k =
1, . . . , K, (30) can be rewritten as

P (ϕ) = 1/
[
aH(θ̂k, ϕ, r̂k)ŪnŪH

n a(θ̂k, ϕ, r̂k)
]
, k = 1, . . . , K (31)

By means of only 1-D search over ϕ, the estimates ϕ̂k, k =
1, . . . , K of the azimuth angles ϕk, k = 1, . . . , K of all NF and FF
sources can be obtained.

3.4. Summary of the Proposed Algorithm

The proposed algorithm can be described as follows:

Step 1: Obtain the estimate R̂z = (1/N)
∑N

n=1 Z(t)ZH(t) of
the covariance matrix Rz, and then implement the eigen-
decomposition of R̂z to obtain Us and Un, where N is the number
of snapshots;

Step 2: Based on the generalized ESPRIT method, obtain the
estimates θ̂k, k = 1, . . . , K of the elevation angles θk, k =
1, . . . , K of all NF and FF sources from (19);

Step 3: Similar to the Root MUSIC method, with the elevation
angle estimates θ̂k, k = 1, . . . , K, achieve the estimation of the
range parameters of all NF and FF sources from (28), and then
distinguish the NF and FF sources according to the size of the
range parameters of sources;

Step 4: Obtain the estimate R̂x = (1/N)
∑N

n=1 X(t)XH(t) of
the covariance matrix Rx, and then implement the eigen-
decomposition of Rx so as to obtain Ūn;



Progress In Electromagnetics Research, Vol. 136, 2013 443

Step 5: With the elevation angle and range estimates {θ̂k, r̂k},
k = 1, . . . , K, estimate the azimuth angles ϕ̂k, k = 1, . . . , K
from (31).

3.5. Discussion

In this section, when estimating the elevation angle and range
parameters, the proposed algorithm is compared with both the TSM
algorithm [21] and 1-DML algorithm [22] in two aspects: Estimation
accuracy and Computational complexity. And then we analyze
the performance of the proposed algorithm in other two aspects:
Parameter pairing and Number of dimensions.

Estimation accuracy : in [22], when estimating the elevation
angle of FF sources, 1-DML algorithm is able to locate 2M sources
using a ULA of (2M +1) sensors by means of the conventional MUSIC
method, while the NF estimator (see Equation (23) in [22]) of 1-DML
algorithm is only able to locate M sources using a ULA of (2M + 1)
sensors. So eventually 1-DML algorithm is only able to locate M mixed
sources using a ULA of (2M + 1) sensors. And when estimating the
elevation angle of NF sources, 1-DML algorithm only utilizes part of
the (anti-diagonal) information of the covariance matrix. However, by
using the generalized ESPRIT method, the proposed algorithm can
locate (2M − 1) sources using a ULA (aligned with the Z axes) of
(2M+1) sensors and makes full use of all information of Rz. Therefore,
the proposed algorithm is able to locate more sources than 1-DML
algorithm, and it is expected that for estimating the elevation angle
of NF sources, the proposed algorithm can gain better estimation
performance than 1-DML algorithm. In addition, when estimating the
range parameters, the proposed algorithm utilize Root MUSIC-Like
method (see Equation (27)) to estimate the range parameters of the
mixed sources. This indicates that the proposed algorithm can obtain
better range parameter estimation accuracy than 1-DML algorithm
according to the results of [26].

Computational complexity : in this discussion, we only
consider the major computations. In [21], the HOS-based TSM
algorithm is computationally inefficient, compared with the SOS-
based 1-DML algorithm. Furthermore, to obtain the elevation angle
estimates of mixed NF and FF sources, 1-DML algorithm needs to form
one (2M+1)×(2M+1) and one (2M+2−T )×(2M+2−T ) matrices, to
perform eigendecompositions of the two matrices, and to execute twice
one-dimensional MUSIC spectral search, where T denotes the number
of overlapping subvectors (see Equation (18) in [22]). Moreover,
1-DML algorithm executes K − K1 times one-dimensional MUSIC
spectral search so as to obtain the estimates of the range parameter.
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However, to estimate the elevation angles of the mixed NF and FF
sources, the proposed algorithm only needs to form one (2M + 1) ×
(2M + 1) matrix, to perform eigendecomposition of the matrix, and
to execute once one-dimensional search. Moreover, the proposed
algorithm executes K times root-polynomial construction and solution
for range parameter estimation, which is less computational cost than
the MUSIC method according to [26, 27]. From the analysis above, it is
obvious that the proposed algorithm gains less computational cost than
both the TSM algorithm and 1-DML algorithm when estimating both
the elevation angle and range parameters. In addition, for estimating
the azimuth angle, the proposed algorithm also needs to form another
(2M + 1) × (2M + 1) matrix, to perform eigendecomposition of the
matrix, and to execute one-dimensional search.

Parameter pairing : many 2-D estimation algorithms [5–8] for
the pure FF sources and 3-D estimation algorithms [14, 16, 17] for the
pure NF sources need to pair parameters so as to achieve the source
localization. The failure in pairing will cause severe performance
degradation. However, the proposed algorithm first estimates the
elevation angle θ̂k, then with the elevation angle estimate θ̂k obtains the
range estimate r̂k, and last obtains the estimate ϕ̂k with the estimate
{θ̂k, r̂k}. Therefore, the proposed algorithm avoids parameter match
operation.

Number of dimensions: until now, many 1-D elevation angle
estimation algorithms [2–4] for the pure FF sources, 2-D elevation and
azimuth angles estimation algorithms [5–8] for the pure FF sources,
2-D azimuth angle and range estimation algorithms [9–12] for the
pure NF sources, 3-D elevation, azimuth angles and range estimation
algorithms [13–20] for the pure NF sources, and 2-D azimuth angle
and range estimation algorithms [21–23] for the mixed NF and FF
sources are proposed. However, by now, the relevant paper about 3-
D parameters (elevation, azimuth angles and range) estimation of the
mixed NF and FF sources is very rare. Therefore, based on ESPRIT
and MUSIC methods, we present a 3D localization algorithm of the
mixed NF and FF sources so as to solve the 3D localization issue of
the mixed sources.

4. SIMULATIONS AND EXPERIMENT

In this section, to verify the performance of the proposed algorithm,
without loss of generality, we consider a crossed array placed in the
X-Z plane, and each ULA branch consists of 7 (M = 3) uniformly
spaced omni-directional sensors with a quarter-wavelength inter-sensor
spacing. In the following each experiment, the performances of
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all mentioned algorithms are measured by the estimated root-mean-
square error (RMSE) [28, 29] of 500 independent Monte Carlo [30, 31]
experiments. For comparison, when estimating the elevation angle and
range parameters, we simultaneously execute 1-DML algorithm. Note
that 1-DML algorithm uses the same ULA aligned with the Z axes with
the proposed algorithm. In addition, the related CRLBs [21, 22, 32, 33]
are given in the following relevant figures. Note that as [34], the
estimation performance of the range parameter is only for NF source
in the following each experiment, and we would not give the estimation
performance of the range parameter of FF source although the range
parameter of FF source can be obtained by (28).

4.1. Pure NF Sources

In the first experiment, a pure NF source case that the two NF sources
have different elevations, azimuth angles and range parameters is
considered. The two sources are located at {θ1 = 70◦, r1 = 2.3λ, ϕ1 =
40◦} and {θ2 = 120◦, r2 = 1.6λ, ϕ2 = 50◦}, respectively. The
snapshot number is set equal to 600 and signal-to-noise ratio (SNR)
varies from 0 dB to 30 dB. From Figs. 2 and 3, it can be seen that
the proposed algorithm has much better elevation angle and range
estimation performance than 1-DML algorithm, which is consistent
with the analysis given in Section 3-Discussion. Moreover, the RMSEs
of the range estimation for the second source, which is closer to the
array, are smaller than that of the first source. From Fig. 4, one can
see that with high SNRs, the azimuth angle estimation performance of
the proposed algorithm is reasonably close to the deterministic CRLB.
In addition, from Figs. 2, 3 and 4, one can find that the elevation
angle estimation accuracy of the proposed algorithm is higher than its
range estimation accuracy, and further its range estimation accuracy
is superior to its azimuth angle estimation accuracy. This is because
the range estimates are based on the elevation angle ones, and the
elevation angle estimates are based on the range ones.

4.2. Mixed NF and FF Sources

In the second experiment, a general case that one NF source and
one FF source coexist and have the different elevation and azimuth
angles, is considered. The two sources are located at {θ1 = 110◦, r1 =
1.2λ, ϕ1 = 45◦} and {θ2 = 60◦, r2 = ∞, ϕ2 = 25◦}, respectively. The
snapshot number is set equal to 400 and SNR varies from 0 dB to
30 dB. The simulation results are presented in Figs. 5, 6 and 7. Fig. 5
shows that the proposed method has much better performance than 1-
DML algorithm for the elevation angle estimation of NF sources, and
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Figure 2. RMSEs of elevation
angle estimates for pure NF
sources versus SNR.

Figure 3. RMSEs of range
estimates for pure NF sources
versus SNR.

Figure 4. RMSEs of azimuth
angle estimates for pure NF
sources versus SNR.

Figure 5. RMSEs of elevation
angle estimates for mixed sources
versus SNR.

they have approximate RMSE for the elevation angle estimation of
FF sources. It can be observed from Fig. 6 that the range estimation
performance of the proposed algorithm is superior to 1-DML algorithm.
Moreover, Fig. 7 shows the RMSE of the azimuth angle estimates of
both the NF and FF sources.

4.3. Pure FF Sources

In the third experiment, a pure FF source case that two sources are
located at {θ1 = 120◦, r1 = ∞, ϕ1 = 130◦} and {θ2 = 60◦, r2 =
∞, ϕ2 = 50◦} respectively, is considered. The snapshot number is
set equal to 800 and SNR varies from 0dB to 30 dB. From Fig. 8, it
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Figure 6. RMSEs of range
estimates for mixed sources versus
SNR.

Figure 7. RMSEs of azimuth
angle estimates for mixed sources
versus SNR.

Figure 8. RMSEs of eleva-
tion angle estimates for pure FF
sources versus SNR.

Figure 9. RMSEs of azimuth an-
gle estimates for pure FF sources
versus SNR.

can be seen that the proposed algorithm has approximated estimation
accuracy with 1-DML algorithm. Moreover, one can know from Fig. 9
that RMSEs of the azimuth angle estimates of the two FF sources
are approximate. In addition, as it is expected, when SNR increases,
the RMSEs of the elevation and azimuth angle estimates decrease and
approach to the CRLB.

4.4. Resolution

In the fourth experiment, we examine the performance of the proposed
algorithm when the angles of sources are close to the horizon, and
simultaneously examine that of the angle resolution, by using a united
simulation experiment. We consider two NF sources which are located
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at {θ1 = 90◦, r1 = 1.5λ, ϕ1 = 145◦} and {θ2 = 90◦ + ρ1θ, r2 =
1.5λ, ϕ2 = 145◦}, with ρ1θ varying in the range [−10◦, 10◦] by steps
of 2◦. It is obvious from the definition of elevation angle (see Fig. 1)
that the elevation angle of the first source is in the horizon and the
elevation angle of the second source varies around the horizon. SNR is
fixed at 5 dB and snapshots number is set to 300. Simulation results
are shown in Figs. 10, 11 and 12. From Figs. 10, 11 and 12, we can see
that on the one hand, when the elevation angles are close to or in the
horizon, both the proposed algorithm and 1-DML algorithm obtain
satisfactory elevation, azimuth angle and range estimation accuracy,
and further the estimation performance of the proposed algorithm is
superior to that of 1-DML algorithm for the estimates of the elevation,
azimuth angle and range parameters; on the other hand, both the
proposed algorithm and 1-DML algorithm begin to degrade when the
elevation angles of the two sources are gradually close to each other,
while the 1-DML algorithm degrade more quickly than the proposed
algorithm for the estimates of the elevation, azimuth angle and range
parameters, which indicates the proposed algorithm has much better
elevation, azimuth angle and range resolution than 1-DML algorithm.
Note that when the two sources have the same elevation angle, the data
covariance matrix is equivalent to obtain double sampling number, and
thus both the proposed algorithm and 1-DML algorithm obtain better
estimation performance at ρ1θ = 0 point than at ρ1θ 6= 0 point.

In the fifth experiment, we consider two NF sources which are
located at {θ1 = 80◦, r1 = 1.5λ, ϕ1 = 145◦} and {θ2 = 70◦, r2 =
1.5λ + ρ2λ, ϕ2 = 145◦}, with ρ2λ varying in the range [−0.5λ, 0.5λ]
by steps of 0.1λ. Let snapshot number and SNR be 300 and 15 dB,

Figure 10. The RMSE of
elevation angle estimates versus
the varied elevation angle of
second source.

Figure 11. The RMSE of
range estimates versus the varied
elevation angle of second source.
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Figure 12. The RMSE of
azimuth angle estimates versus
the varied elevation angle of
second source.

Figure 13. The RMSE of
elevation angle estimates versus
the varied range of second source.

respectively. From Fig. 13, it can be seen that the elevation angle
estimates are insensitive to the change of range parameters. It can
be observed from Fig. 14 that the range estimates of the first source
are also insensitive to the change of the range parameters of the
second source. However, when the range of the first source is larger
than that of the second source, the RMSEs of the range estimates
of the first source is much higher than that of the second source;
while when the range of the first source is smaller than that of the
second source, the RMSEs of the range estimates of the first source
is much lower than that of the second source. Meanwhile, when the
two sources have same ranges, the RMSEs of the two range estimates
approximates to each other. From Fig. 15, one can see that the changes
of RMSEs of azimuth angles are consistent with those of RMSEs of
range parameters, because the azimuth angle estimates are based on
the range estimates.

In the sixth experiment, we consider two NF sources which are
located at {θ1 = 80◦, r1 = 1.5λ, ϕ1 = 145◦} and {θ2 = 70◦, r2 =
1.5λ, ϕ2 = 145◦+ρ3ϕ}, with ρ3ϕ varying in the range [−5◦, 5◦] by steps
of 1◦. Let snapshot number and SNR be 300 and 15 dB, respectively.
It can be seen from Fig. 16 that the azimuth angle estimates are still
insensitive to the change of azimuth angle.

In the seventh experiment, a special case that two NF sources
which are located at {θ1 = 65◦, r1 = 2λ, ϕ1 = 30◦} and {θ2 = 45◦, r2 =
1.5λ, ϕ2 = 45◦} respectively and two FF sources which are located at
{θ3 = 45◦, r3 = ∞, ϕ3 = 45◦} and {θ4 = 25◦, r4 = ∞, ϕ4 = 60◦}
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Figure 14. The RMSE of range
versus the varied range of second
source.

Figure 15. The RMSE of
azimuth angle versus the varied
range of second source.

Figure 16. The RMSE of
azimuth angle versus the varied
azimuth angle of second source.

Figure 17. The spatial spectrum
of elevation angle of the proposed
algorithm.

respectively coexist, is considered. Obviously, the second FF source
has the same elevation and azimuth angle as the first NF one, namely
{θ2 = θ3, ϕ2 = ϕ3}. SNR is set to 20 dB for all these four sources
and snapshot number is 500. The simulation results are shown in
Figs. 17, 18 and 19. Likewise, in Fig. 18, we filter these roots whose
module are below R1 = 0.9 or up R3 = 1.1; and with the estimated
elevation angle θ1 the first time obtained roots of Equation (27) are
denoted by circle (◦), with the estimated elevation angle θ2 = θ3 the
second time obtained roots of Equation (27) are denoted by asterisk
(×) and with the estimated elevation angle θ4 the third time obtained
roots of Equation (27) are denoted by plus sign (+). From Figs. 17, 18
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Figure 18. The distribution of roots of Equation (27) with the first
elevation angle θ1 (first time solve Equation (27)), second and third
elevation angles θ2 = θ3 (second time solve Equation (27)) and fourth
elevation angle θ4 (third time solve Equation (27)).

Figure 19. The spatial spectrum of azimuth angle of the proposed
algorithm.

and 19, one can observe that the proposed algorithm can accurately
obtain the elevation and azimuth angle and range parameter estimates.
Furthermore, when the ranges of sources are different, all parameters
(elevation, azimuth angles and range) can be estimated accurately even
though the NF source and FF source have the same elevation and
azimuth angles.

4.5. Experiment

In this section, we verify the validity of the proposed algorithm
experimentally using the in-field data. The data is obtained by
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collecting the sine sound wave using the following measurement setup:
the experimental setup is shown in Fig. 20. A crossed array is placed in
the X-Z plane, and each ULA branch along X and Z axes consists of
5 uniformly spaced omni-directional sound sensors with an λ/5 inter-
sensor spacing. The total 9 active sound sensors are connected to a
data acquisition system (DAS) developed by our project group and
placed in a fixed crossed support. The DAS has 9-channel 24-bit
analog-to-digital converter module with sample rates of 4 kHz/channel,
and the digital data first is collected by a Field Programmable Gata
Array (FPGA) and then is transmitted to computer by a Peripheral
Component Interconnect (PCI) Card. The sound wave velocity is
340m/s, and two sound sources which transmit the 680HZ sine wave
signal are located at {θ1 = 98◦, r1 = 10λ, ϕ1 = 69◦} and {θ2 =
63.5◦, r2 = λ, ϕ2 = 42◦} respectively. According to the definition in
Section 2, it is obvious that the Fresnel region of the array is 0.44λ <
r < 1.28λ, and thus the first source is FF one and the second source is
NF one. Note that for being far from the array, the FF source is out of
the camera and thus can not be seen in Fig. 20. The snapshot number
is 500. After the array errors are calibrated, the experiment results are
shown in Figs. 21, 22 and 23. Fig. 22 clearly shows the positions of roots
of the corresponding sources. Moreover, it can be seen clearly from
Figs. 21 and 23 that the elevation angles of the two sources are about
97.8◦ and 63.4◦, respectively, and the azimuth angles of the two sources
are about 68.7◦ and 42.3◦, respectively. Note that from the experiment
results shown in Figs. 21 and 23, we can see that there exists angle
estimation errors {∆θ1 = 0.2◦, ∆θ2 = 0.1◦; ∆ϕ1 = 0.3◦, ∆ϕ2 = 0.3◦},

data

module

3-D array 
structure

near-field 
source

sound sensor

acquisition

Figure 20. Experimental setup. Figure 21. The spatial spectrum
of elevation angle of the proposed
algorithm.
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Figure 22. The distribution of
roots of Equation (27) versus the
NF and FF sources.

Figure 23. The spatial spectrum
of azimuth angle of the proposed
algorithm.

because the two sound sources are small plane sound sources rather
than the ideal point sound sources. Therefore, from the experiment
results, we can determine that the proposed algorithm successfully
achieves the localization of the mixed sources, and further verifies the
validity of the proposed algorithm.

5. CONCLUSION

In this paper, based on ESPRIT and MUSIC methods, a mixed sources
localization algorithm for mixed 3-D NF and FF sources is proposed.
It first utilizes the ULA aligned with the Z axes which contains 2-D
information (elevation angle and range) so as to estimate the elevation
angle and range parameters of the mixed NF and FF sources. And
then with the estimates of the elevation angle and range parameters,
the proposed algorithm uses the ULA aligned with the X axes which
contains 3-D information (elevation azimuth angles and range) to
obtain the azimuth angle estimates of all mixed sources. Moreover,
under the condition that the elevation angles can be resolved clearly,
the proposed algorithm is able to accurately obtain the estimates of
the elevation, azimuth angle and range parameters. The proposed
algorithm has much better performance than 1-DML algorithm when
estimating the elevation angle and range parameters of the NF sources,
and approximate performance with 1-DML algorithm when estimating
the elevation angle parameters of the FF sources. Besides, the
proposed algorithm has low computational burden and does not require
parameter pairing procedure.
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