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Abstract—In this paper, we examine the imaging ability of a planar
superlens in both the transverse and vertical dimension. By studying
the field patterns of the image from different objects (points and
scattering surfaces with subwavelength details) in front of a planar
superlens, we show the relation between the transverse and vertical
resolutions. We mainly discuss why we cannot get high subwavelength
resolution for three dimensions at the same time, and there is a trade-
off between the transverse and vertical resolution capabilities which is
fundamental in nature for a planar superlens.

1. INTRODUCTION

Metamaterials [1–7], whose permittivity and permeability can be
designed artificially from negative to positive values, can be engineered
to exhibit special electromagnetic responses that do not exist in natural
materials. Following the first theoretical work of Veselago [1], Pendry
et al. [2, 3] fueled enormous interest in validating a low loss negative
index metamaterial. Researchers have made many efforts in trying to
fabricate metamaterials in our real world [5] and especially one that
would provide these properties at optical frequencies (e.g., [8]). A
very interesting and potentially high impact application of artificial
metamaterials is their use in the development of an imaging system
which could obtain an image resolution of an object beyond the
diffraction limit. Super resolved images are important in many
areas, but the diffraction limit is a road-block for conventional optical
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instruments. How to get an image with subwavelength details
has been the goal for much research over the last 60 years, but
appropriately designed negative index materials provide one of the first
real opportunities to achieve this physically. Pendry found that if the
refractive index of a layer is exactly minus one, it can act as a perfect
lens which has the ability to recover, in principle, all the subwavelength
information of an object in the image domain [9]. This pioneering
work has encouraged immense amounts of research to theoretically
design [10–23] or experimentally fabricate [24–30] a super resolution
imaging system.

Although many well known experiments have made progress in
trying to realize a superlens and some encouraging results have been
reported, the main obstacle for the superlens to be applied to real
application is that fabrication issues remain a challenge. Further
innovations are necessary in order to realize a practically negative
index metamaterial with minimal losses [31, 32]. However, when the
loss of the metamaterial has been sufficiently diminished (e.g., using
gain compensation), do we still need to investigate the performance
of a superlens? For most optical imaging systems, research is focused
on getting better resolution in all three dimensions, which means that
the transverse super resolution is necessary as well as a good depth of
focus (i.e., good resolution along the optical axis). Namely, to image an
object in three dimensions clearly, we need both good transverse and
vertical resolution. Mesa et al. made interesting observations about the
viability of getting three dimensional superresolution of a point source
using a planar superlens in [33]. In this paper, we will further study
the capability of the planar superlens for the purpose of imaging three
dimensional object, and investigate the relation between the transverse
and vertical resolution capabilities.

2. THE DEPTH OF FOCUS OF PLANAR SUPERLENS

The first work on a planar superlens proposed by Pendry [9] has
attracted many researchers. We consider the evanescent wave transfer
of the EM field scattered by an object containing subwavelength-scale
details placed in front of such a planar superlens. For clarity, we
begin with point objects located at different positions in front of the
superlens (illustrated as points A, B and C shown in Figure 1). As
the properties of the superlens are identical in the plane parallel to the
interface of the planar superlens, it is convenient to convert the 3D
problem to a 2D one, and we only consider s-polarized waves since the
discussion of the p-polarization case is similar. We use infinitesimal
dipoles to represent these point objects, and Eq. (1) describes its
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Figure 1. Illustration of the planar superlens studied in this paper.
The point objects A, B and C are set at different positions in front of
the lens, and the relative distance between them is indicated by L, L′,
∆x and ∆z, respectively. The index of the superlens is set to be −1
and the surrounding is air with refractive index +1.

electric field profile by Fourier expansion. The Fourier components
can be divided into propagating waves (with |kx| < k0) and evanescent
waves (|kx| > k0), where kx is the transverse wave vector and k0 the free
space wave vector. To get the super-resolved image, the information
carried by the evanescent waves is essential and must be transferred to
the image domain in order to replicate the sub-wavelength features of
the sources.

E =
∑

kx

E(kx) exp (ikzz + ikxx− iωt) (1)

where k2
x + k2

z = k2
0, with −∞ < kx < +∞.

The superresolution imaging process can be described as follows:
at first, the amplitude of each evanescent wave (|kx| > k0) generated
by the point source decreases exponentially when leaving the source
position. Once this exponentially decaying evanescent field reaches the
left interface of the superlens, its amplitude will increase exponentially
when passing through the superlens, and then exponentially decay
again when it leaves the lens to the image plane. Consequently, if
we need to recover the object perfectly in the image domain, we need
the amplitude of each Fourier component of kx to equal that at the
object plane. This can be fulfilled only when the index of the superlens
is impedance matched with the surrounding media (we assume air and
n2 = 1), i.e., when n1 = −1 the lens can form a perfect image of the
object [9].
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Figure 2. The field strength variation of evanescent waves generated
by the point objects propagating through the planar superlens to
the image position. The evanescent waves generated by point A are
plotted in solid and that of B in dashed curves. Red and blue colors
indicate evanescent waves with transverse wave vectors kx = 1.5k0 and
kx = 3k0, respectively. We assume that all the evanescent waves have
equal normalized field strength at their original position.

We show the evanescent field changing graphically in Figure 2.
Suppose that the superlens (with index n1 = −1) is located between
z = −0.05 and z = 0.05 (i.e., the thickness of planar lens is 0.1).
The operating wavelength is 0.2 in this paper. Here we use unitless
parameters for the geometry and wavelength given the scaling law of
Maxwell’s equations, and the discussion and results are valid for any
frequency band. The red and blue solid curves indicate the variation of
field strength of the evanescent wave generated by point A go through
the superlens with kx = 1.5k0 and kx = 3k0, respectively.

If the index of the superlens is exactly minus one and without
any loss, the field strength of every evanescent wave is equal at the
position of A and A′, and therefore the image at A′ will be perfect.
However, this is not the whole story, and we find that the image is
somehow not perfect. For a real three dimensional object, we hope to
obtain information in all three dimensions, and thus the depth of focus
is always an important parameter for an optical instrument. We will
mainly examine the depth of focus of the planar superlens using point
sources in this part. Suppose that there is another point B behind
point A (as shown in Figure 1) and that ∆z is the distance between A
and B. According to the imaging principle of the planar negative
index lens, we find the image position B′ at L2 = L′ − ∆z. We also
plot the evanescent field variation generated from point B in Figure 2
with red and blue dashed curves representing kx = 1.5k0 and kx = 3k0,
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respectively. The amplitude of each evanescent wave is assumed to be
unity at the original position. We can see that the field strength will
decrease exponentially when they leave the point source (decreasing
on both sides of A and B), thus indicating there are two peaks at
positions A and B which ensures the two points can be distinguished
clearly. In the image domain, the situation is quite different. For the
area before A′ (with positions z > 0.1) the field a perfect copy of that
before A (with position −0.05 > z > −0.1), but for the area behind
A′ (with positions 0.1 > z > 0.05) the field distribution is totally
different as the field amplitudes are decreasing from a very high level
to 1 when they reach A′ from the back interface of the superlens. This
evanescent wave behavior results in only the area at A′ being a perfect
duplicate of the field at object A, which is not a real 3D perfect image
of the entire object. Another drawback is that all images of the object
behind A will be covered by the “tails” of the field of image A′. It
can be clearly seen from Figure 2 that the front part field of image B′
will be a perfect replica of that of point B (every evanescent wave will
recover to 1 as that of the object), but at the same time the tails of
the fields of the evanescent waves from A going to A′ will be present.
For each evanescent wave with kz, the field of an evanescent wave of A′
is quite high (exp (kz∆z)), much higher than the recovered field at B′
(as compared to unity). Such a field pattern will make it easy to see
that there does not exist two field peaks at A′ and B′ anymore, since
the image B′ will be covered by the field of image A′ which makes it
hard to distinguish the two points.

With a fixed thickness of the superlens, the “tails” of field of A′
at position B′ are growing exponentially as kz increases. This can
be seen by comparing the field strength of the red and blue curve in
Figure 2 for kx = 1.5k0 and kx = 3k0). This indicates that if we
want to get a higher transverse (along x axis) image resolution (i.e.,
evanescent waves with higher kx (and thus higher kz) to be recovered
at the image position), the depth of focus of planar superlens will drop
more rapidly.

In principle, an infinite number of evanescent waves are generated
by a point source (i.e., −∞ < kx < +∞), but realistically, the negative
index planar superlens has a finite ability to deal with the highest
frequency evanescent waves because of the finite size of the unit cell
of the metamaterials, or their unavoidable material loss [31, 32]. Such
material drawbacks will rapidly diminish the evanescent waves with
kx larger than a certain threshold kc. For clarity we investigated
the imaging of points positioned along the z axis (like A and B in
Figure 1), here we directly apply a cut-off to the whole range of
(−∞ < kx < +∞) to (−kc < kx < +kc). This behaves as a special
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high transverse wave vector filter which removes all the information
carried by evanescent waves with |kx| > kc. In Figures 3(a) and (b),
we show the calculated electrical field of different positions along z axis
for kc = 2k0 and kc = 5k0, respectively. The red curves in both figures
are the field profile at the image plane (z = 0.1) of A′. We can see
that the FWHM of the image of kc = 5k0 is quite narrow compared
with that of kc = 2k0, as more subwavelength information is recovered
in Figure 3(b). In Figure 3(a), we also plot the field profile slightly
behind A′ at the position z = 0.09 and z = 0.075, and we can see
that the further the position from A′ the higher field strength we get
(since it is exponentially growing!). Suppose that the brightness of the
two point objects is the same, then any image of B right behind (no
matter how close to) A′ will be covered by the stronger field from A′,
and this is confirmed both in Figures 3(a) and (b). Nevertheless, it is
not to say that such a lens will not have any depth of focus at all. For
the point-like scatterers having a shift in the lateral direction (e.g., the
image of point C in Figure 1 whose image C ′ is not directly behind the

(a)

(b)

Figure 3. Electric field distributions at different position along z axis
for a point object A located in front of a planar superlens (L = 0.1).
(a) and (b) are the profiles for kc = 2k0, and for kc = 5k0, respectively.
The red curve is the image of point A under different kc, and the dashed
pink curve represent the image of point C in Figure.1 with an x shift
of ∆x = 0.15.
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image A′), there is still a possibility to distinguish them in the image
space. When kc is small (as in Figure 3(a)), we can see that the field
strength of the image C ′ is still larger than the tail of A′ at the position
of z = 0.075 and x = 0.15, and therefore it is possible to distinguish
the two points having such a position relationship. But this property
of depth of focus will become worse very quickly, when kc is larger
(meaning better transverse subwavelength resolution). This can be
confirmed in Figure 3(b), at the position z = 0.075 and x = 0.15, the
image of C will be buried totally in the overlaid field of A′. Therefore,
if we want to get a higher resolution in the transverse direction (along
x axis), we will necessarily suffer from a worse depth of focus (along z
axis).

The center field strength of the superresolved image A′ can be
expressed as:

EA′ = EC′ =
∑

−kc<kx<kc

E(kx) exp (ikxxA′ + ikzzA′ − iωt) (2)

where, (xA′ , zA′) indicates the position of A′. As point C has the
same brightness as A, the center field strength of C ′ should be equal
to that of A′. Since C ′ has a shift of ∆x, the field of A′ at the position
(xA′ + ∆x, zA′ −∆z) is:

Ep=
∑

−kc<kx<kc

E(kx) exp (ikx(xA′ + ∆x) + ikz(zA′ −∆z)− iωt)

=
∑

−kc<kx<kc

E(kx) exp(ikxxA′+ikzzA′−iωt)exp(ikx∆x−ikz∆z) (3)

Therefore, if we want to distinguish C ′ from the ‘noise’ of A′, we
need at least:

|EC′ | > |Ep|
From Eq. (3) and Figure 3, we know that the overlapping field Ep

of image A′ decreases as ∆x increases, or kc decreases, and then larger
∆z (i.e., the depth of focus) is allowed, but we know that larger ∆x
and smaller kc mean a reduction of the transverse resolution.

3. SUBWAVELENGTH IMAGE OF SCATTERING
DIELECTRIC SURFACE

To illustrate more thoroughly the above discussion, next we show
some calculations for the image of a scattering surface containing
subwavelength details. In Figure 4(a), we put a dielectric bulk object
in front of the superlens instead of point sources, and the refractive
index of the scattering object is set to 1.5 and the thickness of lens to
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(a)

(c) (d)

(b)

Figure 4. (a) Illustrates when a dielectric object (with refractive index
1.5) with stepped surface is located in front of the planar superlens,
and illuminated by a plane wave (λ = 0.2). The dashed curve is the
image position of the object surface as determined by the imaging
law of planar superlens. (b) to (d) are the |E| field distributions with
different threshold kc. As the evanescent wave is growing exponentially
when transferring through the superlens, any field strength larger than
1.6 is plotted in dark red to make the distribution easier to see.

0.1. The object has a random stepped surface which has subwavelength
details, and is illuminated by a plane wave. Because of the imaging
rule for a perfect slab lens, if we take the stepped surface as the
object, it should produce an image in the image domain (indicated
by the dashed stepped curve in Figure 4(a)). The incident plane wave
from bottom of the figure with λ = 0.2 is scattered by the rough
surface with sub-wavelength features. If a perfect image is formed, the
field pattern along the dashed stepped curve should be a copy of that
on the object surface. This turns out to be correct, if there is not
any disturbance from the imaging of neighboring segments. However,
from the discussion in the last section we know this is impossible. In
Figures 4(b) to (d) we show the |E| patterns for kc = 2k0, kc = 5k0
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and kc = 10k0, respectively. As the field is growing exponentially on
both sides of the upper interface of the planar superlens, the field is
plotted in dark red when its strength exceeds 1.6.

From Figure 4, we can see that when kc is small, the area of
very high field strength (dark red area) does not overlap the image
position (dashed curve) that much, and the field pattern close to the
dashed curve is still comparable to that of the object surface. When
kc is growing larger, the dark red area will spread over the dashed
curve and swamp the image positions having smaller z components,
and in Figure 4(d) we see that a large part of the image is thus
destroyed. But we could also find that the field patterns at the image
locations occupying higher (or highest) z positions and the area beyond
them are not affected by the dark red area, which means that the

(a)

(b)

Figure 5. (a) Field profile along the image position (dashed curve in
Figure 4) for different kc, dashed curve is the field distribution on the
object surface. (b) Is the case when we use material loss δ instead of
kc. For convenience, the object surface profile is plotted in each figure
by the black solid stepped curve.
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planar superlens does a perfect job recovering the field patterns of the
corresponding object area. In Figure 5(a), we plot the field distribution
along the black dashed curve in Figures 3(a)–(b), and for comparison
we also plot the field pattern on the object surface in the same picture.
The dashed pink curve is the situation kc = k0 which means that no
subwavelength information is recovered at the image position, thus the
image does not show any details of the object. It is clear that when
kc is larger the image is degraded worse and worse. In Figure 5(b),
we also show the calculated results of the field pattern of the image
by adding material loss to the negative material instead of using kc.
The parameter of the negative index material of the superlens is set
to ε = −1 + δi and µ = −1 + δi. Comparing Figures 5(a) and (b), we
can see the same variation of the field pattern at the image position
and easily find that a smaller material loss correspond to a larger kc.
The discussion above means that for a superlens there is an inevitable
trade-off between the transverse (x direction) and vertical (z direction)
resolutions.

In Figure 6, we change the stepped object to a random surface
with smooth curvature (the profile of the surface is shown in black
solid curves in Figure 6). The drop between the highest peak and
deepest valley of the curvature is ∆z = 0.025 which is half that
of the stepped surface in Figure 5 and contains smaller transverse

Figure 6. Field profile along the image surface for different kc, for a
dielectric object (n = 1.5) with a smooth curvature on its surface (as
shown in black solid curve). The imaging system is just the same as
in Figure 4(a) except the curved surface replaces the stepped surface.
The dashed curve is the field distribution on the object surface. The
distance between the highest peak and lowest valley is ∆z = 0.025.
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subwavelength details. Comparing Figures 5 and 6, we find that with
a smaller ∆z and lesser high kc disturbance, even kc = 10k0 does not
affect the image that much. In Figure 6, the red curve shows the case of
kc = 2k0, and we can see that the image field profile cannot represent
the correct object surface because subwavelength information is cut
off by the filter kc = 2k0. Similarly for kc = 5k0 and kc = 10k0, the
subwavelength details can be distinguished at the image position but
with a significant disturbance in the image profile corresponding to
those lower valleys. This result clearly shows the trade-off between the
transverse (x direction) and vertical (z direction) resolution.

4. CONCLUSION

To summarize, in this paper we study the depth of focus of a
planar superlens to examine its imaging capability when using a three
dimensional object. We show that for an object which extends in both
the transverse (x) and vertical (z) dimensions, the object details closest
to the front interface of the superlens will destroy the image quality
of those object parts behind it. It seems that there is an intrinsic
limitation of the planar superlens when imaging an object with a 3D
volume perfectly. To image an object with transverse subwavelength
details using superlens, we must accept the lower quality of depth
of focus. As a result of this trade-off between the transverse (x)
and vertical (z) resolution, one has to make more effort (such as
utilizing some computational methods) to assist with improving the
superresolution of a three dimensional image when using a planar
superlens.
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