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Abstract—The pattern of each element in conformal array has a
different direction for the curvature of conformal carrier, which results
in polarization diversity of conformal array antenna. Polarization
parameters of incident signals are considered in snapshot data model
in order to describe the polarization diversity of conformal array
antenna. It is required that the polarization parameters and direction
of arrival (DOA) of incident signals are estimated together. An
integrated frequency and DOA estimation method is proposed in
this paper for cylindrical conformal array antenna. The frequency
estimation of signal source is obtained by constructing state-space
matrix. Through well-designed configuration of elements on cylindrical
carriers along with estimation of signal parameters via propagator
method (PM), the decoupling scheme for DOA and polarization
parameters is implemented. A novel parameter pairing method for
frequency and DOA of multiple sources utilizing the interpolation
technique is given, based on which the fast frequency-DOA estimation
algorithm is developed. Effectiveness of the proposed method is
demonstrated by simulation experimental results.

1. INTRODUCTION

Conformal antenna array, i.e., array antennas with antenna elements
arranged conformal on a curved surface, will find its potential and
promising applications in a variety of fields ranging from space-
borne, airborne, ship-borne, and missile-borne radar, space vehicles,
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wireless communication to sonar [1, 2]. Its advantages include dramatic
reduction of aerodynamic drag and the weight of arrays, wide angle
coverage of 360◦, space-saving, reduction of radar cross-section, as
well as potential increase in available aperture. Much of the existing
research in conformal antenna array has mainly focused on the design
of antenna elements [3–5], the pattern synthesis and optimization of
conformal antenna [6–10]. The high resolution direction of arrival
(DOA) estimation algorithms [11–14] based on conformal antenna
array has not been studied as intensively [15, 16].

Most high resolution DOA estimation algorithms, such as
multiple signal classification (MUSIC)-based and estimation of signal
parameters via rotational invariance techniques (ESPRIT)-based
algorithms, when used on uniform liner array with omni-direction
antenna elements, always have high performances [17–19]. But
usually, these algorithms cannot be used for conformal antenna array
directly because of the varying curvature. Therefore, conformal
antenna array presents many challenges to the high resolution DOA
estimation. Firstly, MUSIC algorithm estimates DOA of incident
signals for every array geometry. If the steering vector of the array
is incomplete (Conformal array has the “shadow effect” due to the
metallic cylinder, meaning that only the incident wave from a special
angle, rather than all the antenna elements can receive this signal),
the performance of MUSIC algorithm deteriorates quickly [15]. Sub-
array divided MUSIC algorithm could solve this problem efficiently.
However, the complexity of the spectral searching may still be too
high. The interpolated ESPRIT algorithm has been applied to the
conformal antenna array in order to reduce the calculation complexity;
nevertheless, the performance is still affected by the interpolated
error [16]. Secondly, the element pattern is always defined in the
element local coordinates, which leads to a polarization diversity
characteristic of the conformal antenna array. In order to describe
the polarization diversity characteristic, the polarization parameters
of incident signals are considered in the snapshot data model of the
conformal antenna array [20]. Thirdly, the mutual coupling between
elements becomes more complicated and thus has to be taken into
account. These characters restrict the application of conventional DOA
algorithms on conformal antenna array for direction finding. The
proposed algorithms in [14] could be used when the incident signals
have the same frequency, but it could not be used when the incident
signals have different frequencies. With the help of state-space and
ESPRIT algorithm, the 2-D parameters estimation of joint frequency
and angle has been turned into two 1-D parameters estimation [21].
However, polarization diversity characteristic makes it difficult to use
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these ESPRIT algorithms on conformal antenna array.
In this paper, state-space and PM algorithm proposed in [23]

are integrated to achieve the fast frequency and 2-D angle estimation
based on the mathematics model of conformal antenna array proposed
in [20]. And a novel parameters pairing method of frequency and
DOA using the interpolation technique is proposed. Simulation results
indicate the efficiency and accurately of the proposed algorithm. The
remainder of this paper is organized as follows. In Section 2, the design
configuration of elements on cylindrical carriers and the signal model
of arbitrary conformal array configurations with polarization diversity
are introduced. In Section 3, state-space and PM algorithm based on
divided sub-array technique is described in detail. The parameters
pairing methods are discussed. In Section 4, the Cramer-Rao Bound
(CRB) is derived. Section 5 provides some final conclusions.

2. THE ELEMENTS CONFIGURATION ON CYLINDRI-
CAL CARRIERS AND THE NARROWBAND DATA
MODEL

2.1. The Elements Configuration on Cylindrical Carriers

Unlike ordinary circular array, conformal array has a “shadow effect”
due to the metallic cylinder, which means that only the incident wave
from a special angle, rather than all of the antenna elements can
receive this signal. The sub-array divided technique proposed in [16]
is adopted in this paper. Three sub-arrays are divided averagely, and
each sub-array is in charge of azimuth coverage of 120◦. According to
the summery in the cylindrical structure, each sub-array has the same
structure. Therefore, the parameters estimation method of each sub-
array is exactly the same. All the analysis and simulation depend on
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Figure 1. The sub-array structure of cylindrical conformal antenna
array.
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sub-array 1 in this paper. The parameters estimation results of three
sub-arrays are synthesized in order to estimate the incident signals’
parameters for the scope of the entire space. Fig. 1 represents the
model of cylindrical conformal array, and the elements configuration
is well arranged on cylindrical carriers. The distance of the adjacent
element in the same cross section is λ/4, the distance of the adjacent
cross section is λ/4, and the radius of the cylindrical cross section is
5λ, λ represents the shortest wavenumber of the incident signals.

2.2. The Narrowband Data Model of Conformal Array

Assuming that the sampling frequency of the system is fs = 1/Ts,
Ts represents the sampling intervals (Ts < 1/2fmax, and fmax denotes
the highest frequency of incident signals). According to the incident
signal based on the assumption of the narrowband and far field, the
normalized incident signal has the equation si(n + 1) = φisi(n), where
i (i = 1, 2, . . . , r) is the ith incident signal, r is source number, and
s(n) is the discrete sampling sequence of the incident signal. φi =
exp(−j2πfi/fs) is the time-shift factor, and fi denotes the frequency
of the ith incident signal. In Fig. 2, the model of incident signal is
constructed, and u is the direction vector of the incident signal with
elevation θ and azimuth ϕ.

Establishing the model of array to receive data accurately is a
prerequisite to parameter estimation. The steering vector captures the
essence of array antenna’s response to a unit intensity of the incident
signal space. For conformal array antenna, the element pattern
in different location has different direction because of the varying
curvature. In the process of constructing the model for conformal
antenna, the impact of each element pattern must be taken into
account. In this paper we combine the models constructed in [15, 20].
The steering vector of the conformal array antenna is given by

a (θ, ϕ, f)=
[
r1e

−j2πc
p1·u

f , r2e
−j2πc

p2·u
f , . . . , rMe

−j2πc
pM ·u

f

]T
(1)

ri=
(
g2
iθ + g2

iϕ

)1/2 (
k2

θ + k2
ϕ

)1/2 cos (θigk)
=|gi| |pl| cos (θigk) = gi · pl = giθkθ + giϕkϕ (2)

Pi=sin (θoi) cos (ϕoi)x+sin (θoi) sin (ϕoi)y+cos (θoi) z (3)
u=sin (θ) cos (ϕ)x+sin (θ) sin (ϕ)y+ cos (θ) z (4)
gi=giθ (θ, ϕ)uθ + giϕ (θ, ϕ)uϕ (5)
uθ =sin (θ) cos (ϕ)x+sin (θ) sin (ϕ)y+ cos (θ) z (6)
uθ =− sin (ϕ)x+cos (ϕ)y (7)

where Pi is the position vector of the ith element which is in the global
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Figure 3. The element’s re-
sponse to the incident signal.

coordinate. θoi and ϕoi are the elevation and azimuth respectively
for direction vector of the ith element in the global coordinate. u is
the direction vector of the narrowband far field incident signal with
elevation θ and azimuth ϕ in the global coordinate. f and c represent
the frequency and light velocity respectively. As shown in Fig. 3,
kθ and kϕ are the component products which projected the incident
signal polarization vector onto polarization basis vectors uθ and uϕ

respectively. uθ and uϕ are orthogonal unit vector. gi is a unit pattern.
pl is direction vector of electric field. ri is the element’s response to
the ith unit strength incident signal in the global coordinate. giθ, giϕ

are the component products which projected the ith element pattern
onto uθ and uϕ respectively. θigk is the angle between the vector gi

and pl, and (·)T denotes the transpose.
The narrowband snapshot data model of conformal array antenna

is expressed as

X (n)=G ·AS (n) + N (n)
=(Gθ ·AθKθ + Gϕ ·AϕKϕ)S (n)+N (n)=BS (n)+N (n) (8)

S (n)=[s1 (n) , s2 (n) . . . , sr (n)]T (9)

N (n)=[n1 (n) , n2 (n) . . . , nr (n)]T (10)
Gθ =[gθ (θ1, ϕ1, f1) ,gθ (θ2, ϕ2, f2) , . . . ,gθ (θr, ϕr, fr)] (11)
Gϕ=[gϕ (θ1, ϕ1, f1) ,gϕ (θ2, ϕ2, f2) , . . . ,gϕ (θr, ϕr, fr)] (12)
Aθ =[aθ (θ1, ϕ1, f1) ,aθ (θ2, ϕ2, f2) , . . . ,aθ (θr, ϕr, fr)] (13)
Aϕ=[aϕ (θ1, ϕ1, f1) ,aϕ (θ2, ϕ2, f2) , . . . ,aϕ (θr, ϕr, fr)] (14)
Kθ =diag (k1θ, k2θ, . . . , krθ) (15)
Kϕ=diag (k1ϕ, k2ϕ, . . . , krϕ) (16)

where G is the M × r pattern matrix, and A is the M × r manifold
matrix. B = G·A includes the incident signal information of DOA and
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polarization status. S(n) is the r×1 signal vector. S(n + 1) = Φ·S(n),
Φ = diag[φ1, φ2, . . . , φr] is the time-shift rotational invariance matrix
which is used to obtain the frequencies of incident signals. N(n) is
the M × 1 additive Gaussian white noise. K = diag(k1, k2, . . . , kr)
means that K is a diagonal matrix, and the main diagonal elements
are k1, k2, . . . kr. θi and ϕi represent elevation and azimuth in the
global coordinate which respond to the ith incident signal. kiθ and kiϕ

are the component products which projected the ith incident signal
polarization vectors onto uθ and uϕ respectively.

The snapshot data model of conformal array antenna must take
into account the fact that the definition and design of each element
refer to its local coordinate. A spatial rotation transformation is always
necessary to find the element pattern in the array global coordinate.
The data received by array is determined by the DOA and polarization
parameters of the incident signal. While estimating the DOA of the
cylindrical conformal array antenna, the decoupling between the DOA
and the polarization must be completed. The pairing of frequency and
DOA has also been a challenging problem caused by different element
patterns.

3. JOINT FREQUENCY AND ANGLE ESTIMATION

3.1. The Array Structure and the Model of the Receive Data

The array geometry structure used in the proposed algorithm is shown
in Fig. 1. 1∼m is array 1, 2∼m+1 is array 2, m+2∼2m+1 is array 3,
and 2m+2∼3m+1 is array 4. The first pair of sub-array 1 consists of
array 1 and array 2, the distance vector is ∆P1, and |∆P1| = d1 = λ/4
is shown in Fig. 4(a). From Fig. 4(b), it can be seen that the second
pair of sub-array 2 consists of array 1 and array 3, the distance vector
is ∆P2. The third pair of sub-array 3 consists of array 1 and array 4,
the distance vector is ∆P3, |∆P2| = d2 = |∆P3| = d3 = λ/4. The
elements which share the same busbar have the same pattern direction,
therefore the elements from 1 to m + 1 have the same pattern g1, the
elements from m + 2 to 2m + 1 have the same pattern g2, and the
elements from 2m + 2 to 3m + 1 have the same pattern g3. If we
make full use of the characteristics of the array structure, the coupling
between the DOA and the polarization could be solved.

Assuming that X1, X2, X3, X4 stand for array 1, array 2, array 3,
array 4 respectively, and the coordinate origin is regarded as a reference
point of the received signals. The signal that each array receives can
be represented as

X1 = BS + N1 (17)
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Figure 4. (a) The distance vector ∆P1 between array 1 and array 2.
(b) The distance vector ∆P2 between array 1 and array 3, and the
distance vector ∆P3 between array 1 and array 4.

X2 = BΨ1S + N2 (18)
X3 = BΨ2S + N3 (19)
X4 = BΨ3S + N4 (20)

where
Ψ1 = diag [exp (−jω11) , exp (−jω12) , . . . , exp (−jω1r)] (21)

Ψ2 = diag
[
r3 (θ1, ϕ1, f1)
r1 (θ1, ϕ1, f1)

exp (−jω21) ,

r3 (θ2, ϕ2, f2)
r1 (θ2, ϕ2, f2)

exp (−jω22) , . . . ,
r3 (θr, ϕr, fr)
r1 (θr, ϕr, fr)

exp (−jω2r)
]

(22)

Ψ3 = diag
[
r4 (θ1, ϕ1, f1)
r1 (θ1, ϕ1, f1)

exp (−jω21) ,

r4 (θ2, ϕ2, f2)
r1 (θ2, ϕ2, f2)

exp (−jω22) , . . . ,
r4 (θr, ϕr, fr)
r1 (θr, ϕr, fr)

exp (−jω2r)
]

(23)

ω1i = (2πfi/c) d1∆P1 · ui

= (2πd1fi/c) [sin (θ∆P1) cos (ϕ∆P1) sin (θi) cos (ϕi)
+ sin (θ∆P1) sin (ϕ∆P1) sin (θi) sin (ϕi)+cos (θ∆P1) cos (θi)] (24)

ω2i = (2πfi/c) d2∆P2 · ui

= (2πd2fi/c) [sin (θ∆P2) cos (ϕ∆P2) sin (θi) cos (ϕi)
+ sin (θ∆P2) sin (ϕ∆P2) sin (θi) sin (ϕi) + cos (θ∆P2) cos (θi)] (25)

ω3i = (2πfi/c) d3∆P3 · ui

= (2πd3fi/c) [sin (θ∆P3) cos (ϕ∆P3) sin (θi) cos (ϕi)
+ sin (θ∆P3) sin (ϕ∆P3) sin (θi) sin (ϕi) + cos (θ∆P3) cos (θi)] (26)

θ∆Pi and ϕ∆Pi represent elevation and azimuth in the global
coordinate which respond to the distance vector ∆Pi. ri (i = 1, 2,
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3) is the pattern of each array element. The received data matrix can
be reconstructed as:

X4m×r =
[
XT

1 XT
2 XT

3 XT
4
]T

(27)

3.2. The Frequency Estimation Based on State-space

In the observation time window, L+1 points are sampled. From
S (n + 1) = Φ · S(n), we obtain

X (k) = BS (k)+N (k)

= BΦS (k − 1)+N (k) = . . . , . . .BΦkS (k)+N (k) (28)

4Nm× (L−N + 1) matrix is constructed as:

XN =




X (1) X (2) . . . X (L−N + 1)
X (2) X (3) . . . X (L−N + 2)

...
...

. . .
...

X (N) X (N + 1) . . . X (L + 1)


 (29)

where N is the temporal smoothing parameter. The temporal
smoothing matrix XN can be constructed by delaying the row
[X (1) , X (2) , . . . , X (L−N + 1)]. Assuming that all the incident
signals have different frequencies (here, m > r). The signals are
divided into r groups (each group has the same DOA). Suppose pi

is the number of signal source in the ith group. XN is full rank if and
only if N ≥ max

i pi. The temporal smoothing approach can distinguish
the signals which have the same DOA but different frequencies, more
details can be found in [19].

When N ¿ fs, we take (28) into (29), then (29) is written in
another form

XN =




BΦS (1) BΦS (2) . . . BΦS (L−N+1)
BΦS (2) BΦ2S (3) . . . BΦ2S (L−N+2)

...
...

. . .
...

BΦNS (N) BΦNS (N + 1) . . . BΦNS (L + 1)


+NN

=




BΦ
BΦ2

...
BΦN




[
Φs (1) Φ2s (2) . . . ΦNs (L−N + 1)

]
+NN

=(B⊗K)
(
KT ¯ s

)
+ NN = BNKs + NN (30)

where K denotes [Φ Φ2 . . . ΦN ]T, and s denotes [s1, s2 . . . , sr]T . ⊗
is the left Kronecker product and ¯ the Hadamard product. It can be
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seen that (30) and (8) have a similar expression form. B is merely
replaced by BN . The eigenvalue decomposition of the covariance
matrix of XN is represented as

R =
4Nm∑

k=1

σ2
kukuH

k (31)

The r eigenvectors are response to the r larger eigenvalues.
u1 u2 , . . . , ur and BN span the same space

span ([u1 u2 , . . . , ur]) ' span (BN ) (32)

The estimation of signal subspace Û is

Û = [u1 u2 , . . . , ur] (33)

There exists a unknown r × r matrix T, then the transform matrices
BT and ΦT are represented as

B̂T = B̂T =
(
Û

)
1:1

Φ̂T = T−1ΦT =
(
Û

)†
1:4m−1

(
Û

)
2:4m

(34)

where (·)† denotes the Moore-Penrose pseudoinverse, and (Û)k:l is the
sub-array from the kth to the lth (the sub-array is 4m× r). ΦT and Φ
have the same eigenvalues. The eigenvalue decomposition of ΦT can
be represented as

ΦT = EΛE−1 (35)

It is known that the eigenvalues of ΦT correspond to the eigenvalues
of Φ, therefore, the estimation of frequencies for the incident signals
can be obtained as

fi = [angle (φi)× fs]/2π, i = 1, 2, . . . r (36)

A diagonalization of ΦT is completed by E, which provides a estimation
of transform matrix T−1

B̂ = B̂TE (37)

3.3. The DOA Estimation Based on PM Algorithm

Since the steering vector has column full rank and r rows of B are
linearly independent, other rows can be represented by these r rows.
Assuming that the former r rows are linearly independent, the steering
vector B is divided into 2 blocks

B =
[
BT

1 BT
2

]T (38)
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B1 and B2 are r × r and (m− r)× r matrices.
The propagator V is defined as

VHB1 = B2 (39)

The 4m× r matrix can be constructed as

C4m×r =
[
BT (BΨ1)

T (BΨ2)
T (BΨ3)

T
]T (40)

The matrix C is also divided into 2 blocks

C =
[
BT

1 CT
1

]T (41)

where

C1=
[
BT

2 (B1Ψ1)
T (B2Ψ1)

T (B1Ψ2)
T (B2Ψ2)

T (B1Ψ3)
T (B2Ψ3)

T
]

(42)

C1=V̄HB1, and V̄ is the propagator whose dimension is r× [4m− r].
From (37), the matrix B̂ is divided into 2 blocks

B̂ =
[
B̂T

1 B̂T
2

]
(43)

where, B̂1 is r×r matrix, and B̂2 is (4m−r)×r matrix. The propagator
V̄ can be represented as

V̄ =
(
B̂2B̂−1

1

)H
(44)

The matrix B̂ is divided into 7 blocks, which are equal to the 7
blocks of the matrix C1 respectively. When r ≤ [4m− r], i.e., r ≤ 2m,
the right inverse matrix V̄# of V̄ is

V̄# =
(
V̄HV̄

)−1
V̄H (45)

The equation is obtained by combining (42) and (45)

V̄#
1 V̄3B1 = B1Ψ1 (46)

V̄#
1 V̄5B1 = B1Ψ2 (47)

V̄#
1 V̄7B1 = B1Ψ3 (48)

It can be seen that the eigenvalues [λ11 λ12 . . . λ1r], [λ21 λ22 . . . λ2r],
[λ31 λ32 . . . λ3r] of V̄#

1 V̄3, V̄#
1 V̄5, V̄#

1 V̄7 are corresponding to the
diagonal elements of Ψ1, Ψ2, Ψ3. The DOA estimation of signals is
acquired under the condition that the frequencies of incident signals
are already known.

Because r1, r3 and r4 are real numbers, the phase ambiguous
problem caused by the positive and negative inconsistent of r1, r3 and
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r4, is solved by eigenvalues λ2i and λ3i squared.
ω1i = − angle (λ1i) (49)

ω2i = −1
2

angle

([
r3 (θi, ϕi, fi)
r1 (θi, ϕi, fi)

exp (−jω2i)
]2

)

= −1
2

angle
(
exp (−jω2i)

2
)

= −1
2
angle

(
(λ2i)

2
)

(50)

ω3i = −1
2

angle
(
(λ3i)

2
)

(51)

Assuming that ∆p12 = sin (θ∆P1) sin (ϕ∆P1), ∆p13 = cos (θ∆P1),
∆p2i, ∆p3i (i = 1, 2, 3); γ1i = sin(θi) cos(ϕi), γ2i = sin(θi) sin(ϕi),
γ3i = cos(θi). The equation is determined by solving (24), (25), (26)
and (49), (50), (51) simultaneously

− c

2π




angle(λ1i)
d1fi

angle((λ2i)
2)

2d2fi

angle((λ3i)
2)

2d3fi


 =

[∆p11 ∆p11 ∆p11

∆p11 ∆p11 ∆p11

∆p11 ∆p11 ∆p11

][
γ1i

γ2i

γ3i

]
(52)

The solution of (52) is

[
γ1i

γ2i

γ3i

]
= − c

2π

[ ∆p11 ∆p11 ∆p11

∆p11 ∆p11 ∆p11

∆p11 ∆p11 ∆p11

]−1




angle(λ1i)
d1fi

angle((λ2i)
2)

2d2fi

angle((λ3i)
2)

2d3fi


 (53)

There are two ways to solve the angle θi and ϕi.
One way is

θi = arccosγ3i

ϕi = arcsin
(

γ1i

cos (θi)

)
or ϕi = arcsin

(
γ2i

sin (θi)

)
(54)

The other way is

ϕi = arctan
(

γ2i

γ1i

)

θi = arccos
(

γ1i

cos (ϕi)

)
or θi = arcsin

(
γ2i

sin (ϕi)

) (55)

The joint frequency and angle estimation for the cylindrical
conformal array antenna are completed. However, under the condition
that the signal source number r ≥ 2, the eigenvalues of the 2D-DOA
cannot be paired accurately, and the frequency and angle cannot be
paired appropriately either due to the varying curvature.



62 Si et al.

3.4. The Pairing Method

In practical calculations the eigenvalue decomposition of Ψ1, Ψ2, Ψ3

is done independently. As a result, the sequence of eigenvector may
be different from each other. The sequence of eigenvector should be
adjusted in order to obtain the accurate parameters. In this paper, the
eigenvalue and eigenvector matrices T1, T2, T3 are obtained through
eigenvalue decomposition of Ψ1, Ψ2, Ψ3. Since the eigenvectors
corresponding to the eigenvalues of T1, T2, T3 are not relevant to
each other, let G1= TH

1 T2, the largest element value in each row of
matrix G1 can be utilized to achieve the eigenvalue pairing of Ψ1, Ψ2.
The eigenvalue pairing of Ψ1, Ψ3 and Ψ2, Ψ3 be achieved using the
same approach.

Since the conventional parameter pairing methods could not be
used under the varying curvature situation, the 2-D interpolation
technique is adopted to achieve the pairing of frequency and angle. It
is necessary for the 2-D interpolation algorithm to interpolate values
at the direction of ϕ and θ simultaneously. The impact of different
frequencies on the interpolation values should be taken into account.
In practice, the 3-D interpolation method is used here. Interpolation
of frequency value is carried out at first. According to the order
of magnitude for the frequency estimation (e.g., kHz, MHz, GHz),
the interpolation value is one thousandth of the order of frequency
magnitude. In this paper, Assuming that frequency ranges from fa to
fb (the order of magnitude is GHz), one interpolation value is taken at
each MHz intervals. The 2-D interpolation value from fa to fb can be
represented as

[Φa,Θa] = [(ϕ, θ)a1, (ϕ, θ)a2 , . . . , (ϕ, θ)aK ]
...

...
...

...

[Φj , Θj ] =
[
(ϕ, θ)j1 , (ϕ, θ)j2 , . . . , (ϕ, θ)jK

]

...
...

...
...

[Φb, Θb] = [(ϕ, θ)b1 , (ϕ, θ)b2 , . . . , (ϕ, θ)bK ]

(56)

where K = K1 × K2, K1 is the number of interpolation values at
the direction ϕ, and K2 is the number of interpolation values at
the direction θ. For instance, at fa, the real array manifold via
interpolation is transformed as

Ga ·Aa = [f (ϕ, θ)a1 a (ϕ, θ)a1 , f (ϕ, θ)a2 a (ϕ, θ)a2 , . . . ,

f (ϕ, θ)aK a (ϕ, θ)aK ] ∈ CMN×K (57)

where MN is the total number of virtual array elements. After
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interpolation, the manifold for virtual array Āa becomes
Āa = [ā (ϕ, θ)a1 , ā (ϕ, θ)a2 , . . . , ā (ϕ, θ)aK ] ∈ CMN×K (58)

The transformation matrix Ba can be found to satisfy (59)

τ =

∥∥Āa −BH
a (Ga ·Aa)

∥∥
F

‖Ga ·Aa‖F

(59)

‖ · ‖F denotes the Frobenius norm. If τ is small enough, for example,
0.001, then accept Ba. The position of elements is known exactly, and
the matrix Aa is determined. Using Āa = BH

a (Ga ·Aa), the pattern
matrix Ga is obtained. The pattern matrix for other frequency point
can be obtained in the same way. More details about interpolation
technique can be found in [24–26]. Although the virtual transformation
is computationally intensive, it could be done off-line as a preprocessing
step. The matrix Ba needs to computed only once and stored in the
system for any given array. We can find the pattern corresponding to
the frequency and angle after the frequency and angle are estimated.

The first m rows in B̂1 are extracted from the matrix B̂. The
frequencies and angles are used to construct the matrix Â1, the pattern
matrix g1 is found in the system simultaneously. If the frequency and
angle are paired successfully, the Equation (60) should be satisfied

min
∥∥∥B̂1 − g1 · Â1

∥∥∥
F

, θi, ϕi, fi (i = 1, 2, . . . , r) (60)

where min ‖ · ‖ is the minimum of the Frobenius norm.
The algorithm is summarized in the following steps:

1) Divide the whole array into 3 sub-arrays using the method
illustrated in [15];

2) For (31), the estimation matrix R̂XN
of covariance matrix R is

achieved by using the limited length sampling data.
3) The eigenvalue decomposition of R̂XN

is done, and the signal
subspace Ûs corresponding to R̂XN

is obtained.
4) According to (36), the frequency estimation f̂i of the incident

signal is obtained.
5) According to (44), the propagator V̄ is acquired. The matrix V̄

is divided into into 7 blocks from V̄1 to V̄7 corresponding to the
7 blocks of C1.

6) According to (54) or (55), the DOA estimation is completed
estimation of frequencies.

7) The pairing of 2-D DOA is done, at first and the pairing
of frequency and angle using (60) is completed at last. The
integrated joint frequency and angle estimation for cylindrical
conformal antenna array is accomplished.
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4. CRAMER-RAO LOWER BOUND

Setting a lower bound proves to be extremely useful for any
estimator. It provides a benchmark against which we can compare
the performance of any unbiased estimator. Moreover, it tells us the
impossibility of finding an unbiased estimator whose variance is less
than the bound. One such bound is the CRB [27]. We derive the
CRB for the algorithm proposed in this paper. The derivation process
approximates the method proposed in [22].

Assuming a P×1 deterministic signal vector s(k; u) with unknown
parameter vector is

u = [u1 u2 . . . uq] (61)

The observation vector with additive noise is

x (k) = s (k;u) + n (k) =




s1 (k;u)
s2 (k;u)

. . .
sp (k;u)


 + n (k) ∈ Cp (62)

where n(k) is a P × 1 noise vector. Assume that n(k) is a white
Gaussian noise (WGN) with σ2 variance and we have collected M
time samples of the signal x(k). Then, the log likelihood function of
the signal can be written as

L (x;u) =−MP

2
ln

(
2πσ2

)

− 1
2σ2

M∑

k=1

[x (k)−s (k;u)]H [x (k)− s (k;u)] (63)

The gradient of the signal vector s(k;u) with respect to u is denoted
by Dk(u), i.e.,

Dk (u) =
[

∂s(k;u)
∂u1

∂s(k;u)
∂u2

. . . ∂s(k;u)
∂uq

]
(64)

then the so-called Fisher information matrix is given by

I (u) =
1
σ2

Re

(
M∑

k=1

DH
k (u)Dk (u)

)
(65)

The CRB for estimating the ith parameter ui is obtained from the
inverse of the Fisher information matrix as

CRB (ui) =
[
I−1 (u)

]
ii

(66)

In order to simplify the derivation process, the source correlation
matrix is assumed to be known. So the covariance matrix R
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contains 5r unknown parameters, i.e., r frequency parameters, 2r angle
parameters, and 2r polarization parameters. Since the decoupling
between the angle and the polarization has been done, only 3r
parameters need to be estimated, which can be expressed as a vector

p = [f1, θ1, ϕ1, f2, θ2, ϕ2, . . . , f3r, θ3r, ϕ3r] (67)
The model in (28) is simplified as

x (k) = B (θ, ϕ)Φk + n (k) (68)
The unknown 3r × 1 parameter vector is

u = [fθϕ]T (69)
Define

D (θ) =
[

∂b1(θ1,ϕ1)
∂θ1

∂b2(θ2,ϕ2)
∂θ2

. . . ∂br(θr,ϕr)
∂θr

]

Φk = diag
{

ϕk
}

.
(70)

Evaluating the derivative of s(k;u) with respect to each parameter, we
get the following:

∂s (k;u)
∂θ

= DθΦk =: Dk (θ)

∂s (k;u)
∂ϕ

= DϕΦk =: Dk (ϕ)

∂s (k;u)
∂f

= kBΦk−1 =: Dk (f)

(71)

The Ik(u) be defined as

Ik (u) =
1
σ2

Re



D (θ)H

D (ϕ)H

D (f)H






D (θ)H

D (ϕ)H

D (f)H




H

(72)

So the Fisher information matrix is

I (u) =
M∑

k=1

Ik (u) =
1
σ2

Re



∆ PH QH

P Λ RH

Q R Γ


 (73)

where M is the number of time samples, and

∆ =
M∑

k=1

Φ−kDH
θ DθΦk (74)

Λ =
M∑

k=1

Φ−kDH
ϕ DϕΦk (75)
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Γ =
M∑

k=1

k2Φ1−kBHBΦk−1 (76)

P =
M∑

k=1

Φ−kDH
ϕ DθΦk (77)

Q =
M∑

k=1

kΦ1−kBHDθΦk (78)

R =
M∑

k=1

kΦ1−kBHDϕΦk (79)

5. SIMULATION RESULTS

Simulations experiments are conducted to evaluate the performance
of the proposed method. In this section, the model of the cylindrical
conformal antenna array is shown in Fig. 1(a). We assume that two
far field, equal power signals s1 and s2 are impinging on the antenna
array. The DOA and center frequency of s1 are θ1 = 60◦, ϕ1 = 100◦ and
f1 = 1GHz, and those of s2 are θ1 = 50◦, ϕ1 = 95◦ and f2 = 2 GHz,
respectively. The data is sampled at a rate of 5 GHz, and the snapshot
number is 200. The number of elements is 25, i.e., each sub-array
has 8 elements. k1θ = 0.5, k1ϕ = 0.5; k2θ = 0.3, k2ϕ = 0.7, the
element pattern is giθ = sin(θ′j −ϕ′j), giϕ = cos(θ′j −ϕ′j), θ′j and ϕ′j are
the elevation and azimuth respectively for direction vector of the ith
element in the local coordinate. The spatial rotation transformation
of the element pattern from element local coordinates to array global
coordinates could be found in [20]. All simulation results are based
on 100 Monte Carlo simulation experiments (a computation method
based on “random number”. The main idea is that the “frequency”
of the events determines the “probability” of the events). A successful
experiment is defined as the experiment with estimation error of less
than 2 degree. The successful rate is defined as the proportion of
the number of the successful experiments to the total number of the
experiments.

An important part of frequency estimation is selecting the
temporal smoothing parameter N . For frequency estimation, the
primary computational cost concentrate on the eigendecomposition of
a 4Nm× 4Nm matrix, which has a complexity about O(16N2Lm2) +
O(64N2Lm2), meaning that the N should not be too large, because
the computation cost could increase tremendously. Fig. 5 shows how
temporal smoothing parameter N affects the frequency estimation
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errors. From the curve, it is shown that the estimation performance
of frequency gets better as parameter N increases. The extension
of array manifold dimension is based on the time delay. The time
aperture gets larger with the increasing temporal smoothing, which
leads to higher estimation accuracy of frequency. The steering vector is
a joint function of frequency and DOA. The estimation performance of
DOA gets better as the estimation accuracy of frequency increases. In
general condition, we should notice that the length of the observation
time window is fixed, and the interval of sampling data depends on the
sampling frequency of the system, so the total number of snapshot is
deterministic. Increasing N too much will also result in the reduction
of number of columns in the matrix XN (The number of the columns
is L−N +1). The sampling covariance matrix R̂XN

is the asymptotic
estimation of R. The reduction of number of columns in XN will lead

Figure 5. The frequency estimation error versus SNR.

(a) (b)

Figure 6. The DOA estimation error versus SNR. (a) DOA = (100◦,
60◦), (b) DOA = (95◦, 55◦).
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to larger estimation error between the R̂XN
and R, which reduces

the overall estimation accuracy of signal and noise subspace, so N
should not be made too large in order to improve the system stability.
The computation complexity of the proposed algorithm is related to L
and N . So we must consider the trade-off between the computational
complexity and estimation accuracy.

The effect of SNR (signal to noise ratio) on the DOA estimation
error is shown in Fig. 6. In order to confirm the real-time processing
ability of the proposed algorithm and reduce the effect of smoothing
parameter on the performance of DOAs for two signals estimation,
the smoothing parameter N = 5 is adopted in this paper. As shown
in Figs. 6(a) and 6(b), DOAs are estimated accurately. When SNR
> 7 dB, the root mean square error (RMSE) is almost less than
0.1 degree. The difference in estimation performance between azimuth
angles and elevation angles has been caused by the different radiation
patterns in these two directions. As the SNR increase, the DOA
estimation error would approach the CRB for the proposed algorithm.

In Fig. 7(a), it is shown that, apart from the estimation error, the
success rate is also improved by increasing SNR. When SNR > 5 dB,
the success rate would reach 100% in the condition that the snapshot
number is 200 (In the simulation experiment, the snapshot is that all
the elements of the array sample the data at the same time for just
one time. the snapshot number is the number of the sampling snapshot
which is used for simulation.). It is shown in Fig. 7(b) that when SNR
> 0 dB, the success rate would reach 100% in the condition that the
snapshot number is 1000. Thus increasing the snapshot number could
improve the success rate just as increasing SNR.

(a) (b)

Figure 7. (a) The success rate versus SNR at snapshot number 200.
(b) The success rate versus SNR at snapshot number 1000.
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6. CONCLUSIONS

In this paper, a novel integrated frequency and DOA estimation
method is proposed for cylindrical conformal antenna array. The
pattern of each element in conformal array has a different direction
because of the varying curvature of conformal carrier, which makes
most modeling or parameter estimation techniques used for planar
array unsuitable in this condition. Three key techniques are developed
in this paper. Firstly, the frequencies estimation of signal sources is
obtained by constructing state-space matrix. Secondly, the decoupling
method for DOA and polarization parameters is implemented via PM
algorithm. Thirdly, the interpolation technique is utilized to complete
the pairing between frequencies and DOAs. Based on the above
techniques, the parameters of combined frequency and DOA estimation
could be computed efficiently and accurately. The pairing approach
based on interpolation technique could be used for any arbitrary
conformal arrays. Numerical results indicate that the proposed
algorithm is effective and accurate for the combined frequency and
DOA estimation on cylindrical conformal antenna array.
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