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Abstract—This paper considers an electromagnetic waveguide
composed of two periodic, perfectly conducting, rippled surfaces. This
periodic system has a band structure given by a dispersion relation that
allows us characterize eigenmodes of the system. We considered the
cases of both smooth and rough surfaces, using an integral numerical
method to calculate field intensities corresponding to eigenmodes over
a wide frequency range. Under certain conditions, the system presents
disordered patterns of field intensities with smooth surfaces. We
believe that the explanation of disordered patterns is the following:
for smooth surfaces, the phenomenon of electromagnetic chaos; and for
rough surfaces, the speckle phenomenon. Since it is well known that
the surfaces of materials always have a certain degree of roughness,
it can be concluded that both chaos and speckle contribute to the
presence of disordered field patterns.

1. INTRODUCTION

It is now recognized that the basic random interference phenomenon
underlying disordered patterns has close parallels in many other
branches of physics and engineering [1]. Perhaps the earliest
investigations of the properties of electromagnetic fields scattered from
rough surfaces were those conducted by Lord Rayleigh [2]. It is also
well known that, as a result of the interference among the distinct
random contributions from the scattering centers, on scale of the
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* Corresponding author: Hector Pérez-Aguilar (hiperezag@yahoo.com).
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optical wavelength, the scattered field pattern appears disordered, with
certain granularity. This irregular pattern is best described by methods
of probability theory and statistics. The physical origin of the observed
granularity, now know as “laser speckle”, was quickly recognized by
early workers in the field [3, 4].

The study of the statistical properties of disordered systems is of
fundamental importance because it leads to phenomena such as weak
(enhanced backscattering) [5] and strong (Anderson) [6] localization,
intensity correlations [7], and universal conductance fluctuations [8].
Furthermore, recent developments on the theory of disordered systems
based upon nonlinear o models using supersymmetry theory [9] have
led to the recognition that the extreme diffusive limit of disordered
systems also behaves similarly to quantum chaotic systems.

One particularly important issue in this field is the attempt
to identify evidence of chaos in the transport properties of ballistic
systems. In fact, the magnetoresistance has been measured in
chaotic and in regular cavities showing clearly distinctions in quantum
transport [10]. The signature of chaos in classical transport through
waveguides has also been investigated, and shows a completely
different behavior on the resistivity when the system is regular or
chaotic [11, 12].

This paper examines an electromagnetic waveguide composed
of two periodic, perfectly conducting, rippled surfaces, taking into
account the cases of both smooth and rough surfaces. Thus, this paper
completes the study of the system introduced in Ref. [13]. The results
of this study show that the system has many interesting properties.

The study of the transport properties of random systems has
considered that disorder in the system is usually represented by
impurities that are randomly distributed over the whole sample.
However, it is worth mentioning that our system of a waveguide with
smooth rippled surfaces can present disordered field patterns; under
certain conditions, of course. This kind of systems has been the
subject of several studies in recent years due to their importance in
the design of antennas and rectangular waveguides for macroscopic
systems [14–16] and waveguides that are related to photonic crystals,
as per Ref. [13]. These systems, which constitute periodic arrays
of different materials with a unit cell of dimensions of the order of
the wavelength, hold the potential to develop new technologies of
integrated optical circuits [17].

The geometry of waveguides with smooth rippled surfaces has
been considered to constitute some billiard systems in order to study
their quantum and classical transport properties [12, 18, 19]. Hence,
it is important to mention that using the geometry of the proposed
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system with smooth surfaces for modeling a classical waveguide,
usually leads to chaotic behavior in the trajectories of the particles
that are transported through it. Thus, this paper also considers
the manifestation of classical chaotic dynamics in the corresponding
electromagnetic system through an infinite rippled waveguide.

A disordered pattern is not enough to ensure the presence of
chaos since it is difficult to distinguish between chaotic and speckle
patterns [20, 21]. However, these chaotic and speckle phenomena
have applications in various uses, such as coupling high pump power
into chaotic double-clad EDFA’s [20], mechanical models of Chua’s
circuit [22], cryptography based on chaotic systems [23], algorithmic
trading [24], measurements of coherence [25], surface roughness [26],
and displacement of an object [27], among others.

This paper is organized as follows: Section 2 introduces an integral
method to calculate the field intensities of an infinite optical waveguide
based on the ideas of Ref. [28]. Section 3 shows numerical results of
disordered patterns in a waveguide with surfaces modeled with smooth
harmonic profiles. Section 4 uses another integral method to obtain
some numerical results in the case of a more realistic finite waveguide
with rough surfaces. Finally, Section 5 presents our conclusions.

2. THEORETICAL APPROACH

Analysis is based on a waveguide composed of two periodic, perfectly
conducting, rippled surfaces. The medium between the surfaces is
vacuum. We assume translational symmetry of our system along
the z-direction. The geometry of the infinite system is sketched in
Figure 1(a).
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Figure 1. (a) Waveguide composed of two infinite periodic, perfectly
conducting, rippled surfaces. (b) Graphic description of the infinite
waveguide formed by two rippled walls in the xy-plane. The Γ contours
define the unit cell of the system with periodicity in the x-direction.
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In order to describe the infinite waveguide formed by two rippled
walls in the xy-plane (shown in Figure 1(b)), we consider that the
periodic profiles of the walls have period P , that the average width
of the waveguide is given by b, and that the surface profiles can be
represented by the harmonic functions b/2 + A1 cos(2πx/P ) (upper
profile) and −b/2 + A2 cos(2πx/P − ∆φ) (lower profile), where A1

and A2 represent the amplitudes and ∆φ stands for a phase difference
between the two profiles. The region enclosed by the curves Γ1, Γ2,
Γ3 and Γ4 can be considered as a unit cell of the system. The set
of an infinite number of unit cells is a waveguide of infinite length
represented by a perfect crystal. A finite number (large enough) of
unit cells is a waveguide of finite length represented by a truncated
crystal (see Ref. [13]).

Let us consider the problem of finding the electromagnetic field
inside the waveguide. An integral method is used that can be
formulated by following the same ideas developed elsewhere [28–30].
This problem can be studied using the scalar theory by considering two
complementary polarization states given the symmetry of our physical
system along the z-direction. This work considers only the case of an
electromagnetic field with TE polarization with Ez representing the
z-component of the electric field.

It is well-known that the function Ez(r) satisfies the Helmholtz
equation

∇2Ez (r) +
(ω

c

)2
Ez (r) = 0, (1)

where ω is the frequency of the electromagnetic wave, c the speed of
light in vacuum, and r =xı̂ + ŷ a two-dimensional vector independent
of the coordinate z.

The periodicity in the x-direction is another symmetry condition
that is considered. Due to this property and the form of the differential
equation Eq. (1), the Bloch theorem can be applied for the x-direction.
In this way, the following expression can be derived

Ez (x− P, y) = exp (−ikP ) Ez (x, y) , (2)

where k is the one-dimensional Bloch vector.
In order to determine the electric field, first of all we have to find

the dispersion relation ω = ω(k). With this in mind, let us consider
a Green’s function for a two-dimensional geometry that can be used
to solve the Helmholtz equation. The Green’s function considered is
G(r, r′) = iπH

(1)
0 (K|r − r′|), where H

(1)
0 (%) is the Hankel function of

the first kind and zero order, and K = ω/c. Considering the geometry
of the unit cell shown in Figure 1(b) and applying the two-dimensional
second Green’s theorem for the functions Ez and G, we obtain the
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expression
1
4π

∮

Γ

[
G(r, r′)

∂Ez(r′)
∂n′

− ∂G(r, r′)
∂n′

Ez(r′)
]

ds′ = Ez (r) θ (r) , (3)

being θ(r) = 1 if r is inside the unit cell and θ(r) = 0 otherwise. ds′ is
the differential arc’s length, n′ the outward normal vector to Γ, and the
observation point r is infinitesimally separated of contour Γ outer to the
unit cell. The geometry of the problem is described by representing the
points along the contour Γ with Cartesian coordinates X(s′), Y (s′) as
parametric functions of the arc’s length s′ and their derivatives X ′(s′),
Y ′(s′), X ′′(s′) and Y ′′(s′), up to second order.

In order to solve numerically Eq. (3), we divide the curve Γ in
four segments Γ1, Γ2, Γ3 and Γ4 (Fig. 1(b)) and take a sampling
Xn = X(sn), Yn = Y (sn) along the each curve. The corresponding
number of points along the curves are N1, N2, N3 and N4 respectively,
and N = N1 + N2 + N3 + N4 to the total number of points is
defined. It is important to mention that the points (Xn, Yn) on
Γ3 must be corresponding to those on Γ4 (Xn − P, Yn), in this way
N3 = N4. Besides these considerations, we take into account the
boundary condition at the perfectly conducting surfaces (with curves
Γ1 and Γ2). Therefore, Eq. (3) can be represented numerically in terms
of a homogeneous system of N algebraic equations as follows:

N1∑

n=1

Lmn(1)Φn(1) +
N2∑

n=1

Lmn(2)Φn(2) +
N3∑

n=1

Lmn(3)Φn(3)

−
N3∑

n=1

Nmn(3)Ψn(3) +
N4∑

n=1

Lmn(4)Φn(4) −
N4∑

n=1

Nmn(4)Ψn(4) = 0, (4)

for m = 1, 2, . . . , N . In Eq. (4) the source functions Ψn(3) and Φn(j)
represent numerically the field Ez and its normal derivative. Besides,
the subscripts n(j), j = 1, 2, 3, 4 denote the n-th point along the Γj

contour. The matrix element Lmn(j) and Nmn(j) are given by [28, 29]

Lmn(j) = i
∆s

4
H

(1)
0

(ω

c
dmn

)
(1− δmn) + i

∆s

4
H

(1)
0

(
ω

c

∆s

2e

)
δmn , (5)

and

Nmn(j) = i
∆s

4
ω

c
H

(1)
1

(ω

c
dmn

) Dmn

dmn
(1−δmn)+

(
1
2
+

∆s

4π
D′

n

)
δmn , (6)

where

dmn =
√

(Xm −Xn)2 + (Ym − Yn)2, (7)

Dmn = −Y ′
n (Xm −Xn) + X ′

n (Ym − Yn) , (8)
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D′
n = X ′

nY ′′
n −X ′′

nY ′
n. (9)

H
(1)
1 (%) is the Hankel’s function of first kind and first order. The

function δ
(j)
mn represents the Kronecker’s delta and ∆s is the arc’s length

between two consecutive points of a given curve. In Eqs. (8) and (9),
we have defined X ′

n = X ′(s)|s=sn , X ′′
n = X ′′(s)|s=sn , and so forth.

For simplicity we have omitted the contour index (j) but it must be
implicitly understood that n = n(j) wherever it appears in Eqs. (5)–
(9).

By applying Eq. (2) we obtain the equations Ψ(4)
n =

exp(−ikP )Ψ(3)
n , and Φ(4)

n = − exp(−ikP )Φ(3)
n . The minus sign

appearing in last equation results because the normals to corresponding
points at Γ3 and Γ4 have opposite directions. Using these equations,
we obtain

N1∑

n=1

Lmn(1)Φn(1)+
N2∑

n=1

Lmn(2)Φn(2)+
N3∑

n=1

(
Lmn(3)−exp (−ikP ) Lmn(4)

)

×Φn(3) −
N3∑

n=1

(
Nmn(3) + exp (−ikP ) Nmn(4)

)
Ψn(3) = 0, (10)

with m = 1, 2, . . . , N . Eq. (10) constitutes a linear system that has an
associated representative matrix, Mmn , that depends on the frequency
ω and the Bloch vector k. Since the equation system is homogeneous,
a nontrivial solution can be obtained if the determinant of such matrix
defined as

D (k, ω) = ln (|det (M)|) (11)

is zero. Numerically this function (Eq. (11)) presents local minimum
points that will give us the numeric dispersion relation ω = ω(k).

For our purposes, this work requires analyzing the intensity,
defined by E∗

zEz, in a unit cell. In order to calculate it for a eigenmode
at a given point (k, ω), one must consider the dispersion relation
obtained numerically by the use of a homogeneous equation system.
Additional details of the numerical method employed can be found in
Ref. [13].

3. CLASSICAL CHAOTIC BEHAVIOR AND ITS
ELECTROMAGNETIC COUNTERPART

We mentioned above that the geometry of the proposed system herein
has been considered in order to study its quantum and classical
transport properties [12, 18, 19]. According to this study, the system
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analyzed could present some signatures of electromagnetic wave chaos
for certain parameters.

We shall calculate certain eigenmodes in the unit cell to observe
some traces of the chaotic behavior of our system. But first the
corresponding classical system must be examined to demonstrate the
presence of chaos.

Let us consider the corresponding billiard-ball model of our infinite
waveguide with rippled walls (see Figure 1(b)) with the following
geometric values b = 1.5µm, ∆φ = π/2 and P = 2π µm. The dynamics
of the system can be qualitatively described by the Poincaré plots,
which are determined by the set of points (xn, pn = cos θn). Here,
xn, θn are the x-coordinate and the angle that the trajectory of the
particle makes with the x-axis just after the n-th collision with the
upper wall. In order to obtain all possible orbits in the Poincaré plots,
several initial conditions of the particle in the phase space need to be
considered and due to the periodicity of the channel, the structure
of the Poincaré section is periodic with period 2π. For this reason,
we choose the x-interval [π, 3π] to study the dynamics of the system.
The Poincaré plots exhibit a generic transition to chaos as the ripple
amplitude is increased (the reader is referred to [12] for a detailed
discussion of this phenomenon). Here, we restrict our approach to just
two cases. The first is the flat channel (A = 0), where the dynamics of
the particle is regular, as shown in Figure 2(a). The second corresponds
to a channel with A = 0.4b; here the system presents mixed dynamics
(the dynamics of the particle may be regular or chaotic depending on
its initial conditions), as shown in Figure 2(b).

We have shown that in the classical channel, mixed chaos
phenomenon is presented with the parameters used to obtain
Figure 2(b). Thus, using the geometry of the proposed system for
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Figure 2. Poincaré plots for the narrow channel (b = 1.5µm) with
a phase difference ∆φ = π/2 and amplitudes, (a) A = 0.0, and
(b) A = 0.4b.
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Figure 3. Field intensities in a flat waveguide with b = 1.5µm for
the lower frecuency (a) ν = 123.203THz and the higher frequency
(c) ν = 5720.244THz. The corresponding autocorrelation functions
are shown in (b) and (d), respectively.

modeling a classical waveguide, usually leads to the appearance of
chaotic phenomena. Likewise, chaotic behavior must also appear in
the study of the electromagnetic waveguide. This can be shown by
examining the case of high frequencies.

Now, we shall to consider our waveguide, illustrating some of the
characteristics of electromagnetic wave chaos as follows: by depicting
intensity of eigenmodes, normalized in the region defined by the unit
cell, for the cases of low and high frequencies. Also, the corresponding
autocorrelation functions will be shown, as they have been found to be
important in the interpretation of electromagnetic wave chaos [20].

Figures 3(a) and 3(c) show the intensities inside a flat waveguide
with b = 1.5µm. We obtained the figures for both the low
frequency ν = 123.203 THz [Figure 3(a)], and the high frequency
ν = 5720.244THz [Figure 3(c)], using the Bloch vector k = 0. The
corresponding autocorrelation functions are shown in Figures 3(b)
and 3(d), respectively. We consider the correlation length l defined
as the standard deviation of the spatial autocorrelation. For the lower
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frequency, the correlation length was l = 0.4133, while for the higher
frequency it was l = 0.4123. In the case of a waveguide with flat walls,
no chaos phenomenon appears. This is a straightforward statement and
one easily to understand. As a result, similar values for the correlation
lengths were obtained.

In order to make reliable calculations in the case of high
frequencies, it is necessary to use small discretization intervals. Due
to numerical approximations involved, ∆s = c/20νmax ≈ 0.0026µm
was used. This value produced a good resolution in our calculations,
which was then verified by comparing the numerical results with the
corresponding analytical results for the flat waveguide.

Figures 4(a) and 4(c) show the intensities in an infinite rippled
waveguide with the parameters: P = 2π µm, b = 1.5µm, ∆φ =
π/2, and A = 0.4b. We obtained the figures for both the low
frequency ν = 82.771THz [Figure 4(a)], and the high frequency
ν = 5684.344THz [Figure 4(c)], using the Bloch vector k = 0. The
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Figure 4. Field intensities in an infinite rippled waveguide with
b = 1.5µm, A = 0.4b and ∆φ = π/2 for the lower frequency
(a) ν = 82.771THz and the higher frequency (c) ν = 5684.344THz.
The corresponding autocorrelation functions are shown in (b) and (d),
respectively.



338 Pérez-Aguilar et al.

corresponding autocorrelation functions are shown in Figures 4(b)
and 4(d), respectively. For the lower frequency, the correlation length
was l = 0.3241, while for the higher frequency it was l = 0.0977.

Upon comparing the correlation lengths obtained, the latter case
had a small value for the parameter l. We believe this is a manifestation
of electromagnetic wave chaos, since in this regime led us to think
that the intensity of the eigenmode is an uncorrelated random variable
as a function of a point (x, y) in the unit cell. In this case, the
intensity cannot be represented by a function with smooth variations
that give rise to the appearance of disordered peaks. This effect is
also a characteristic of quantum chaos (see Ref. [18]). A disordered
pattern is not enough to ensure the presence of chaos; nevertheless,
the corresponding classical channel obviously presents chaos behavior,
and this is our main argument.

4. FINITE ROUGH WAVEGUIDE

In the previous section, Figure 4(c) was included to show some
signatures of chaotic behavior using the intensity of the eigenmode
in the real space. Other results are shown in a similar way in
Ref. [20, 21]. It is well known that the surfaces of materials always
have a certain degree of roughness, and that is difficult to distinguish
chaotic patterns from speckle patterns [20]. This motivated us to
present some calculations for waveguides with rough surfaces that give
rise to intensities with disordered patterns; patterns that are similar to
those shown in Figure 4(c). This makes it possible to present a system
in which chaos and speckle appear simultaneously.
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Figure 5. (a) Field intensity above a one-dimensional rough surface
with rms height δ = 0.08 and correlation length a = 0.4. (b) Speckle
pattern in far field.
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The speckle effect occurs if the size of surface roughness is around
of the wavelength of the incident beam [31]. With this in mind, one
can properly choose the parameters for the numerical simulations. As
an example, Figure 5(a) shows the speckle pattern (field intensity)
by a one-dimensional perfectly conducting rough surface. The surface
is illuminated at 30 degrees by a Gaussian beam with a wavelength
λ = 0.6120µm. The roughness profile is a certain realization of an
ensemble used to model a random surface with Gaussian statistics.
The ensemble has a mean profile that corresponds to a flat surface.
The theoretical parameters assumed in obtaining these results were
the length correlation a = 0.4µm and the rms height δ = 0.08 µm
for the frequency ν = 490.1940THz [32]. The corresponding speckle
pattern in far field zone is shown in Figure 5(b).

As a consequence of the surface roughness on the scale of the
optical wavelength, the various wavefronts are added with markedly
different phases, resulting in a highly complex pattern of interference.
The image of this pattern [Figure 5(a)] is found to have threads (or
granular) appearance with a multitude of bright and dark threads (or
spots). This calculation also makes it possible to see the scattered
field intensity in the far field zone, which appears as a curve with very
abrupt changes [Figure 5(b)].

Now, another of our interests was to obtain speckle patterns in a
waveguide formed by rough surfaces. For this case, it is necessary
to consider a finite waveguide composed of two periodic, perfectly
conducting, rippled surfaces illuminated by an incident electromagnetic
wave, as shown in Figure 6(a). To approach this problem, some
considerations must be assumed and we shall bear in mind it in the
xy-plane. Since the size of the system is finite, to avoid edge effects
we illuminate it with a tapered Gaussian beam whose intercept with
the plane of the channel has a half-width g. This parameter must be
smaller than the total length of the system Ly = 2l + b, but much
larger than the width of the aperture b (see Figure 6(b)).

Under these considerations, the incident field can be expressed in
terms of its angular spectrum A(q, k‖)

Ψinc(x, y) =

ω/c∫

−ω/c

dq

2π
A(q, k‖) exp{i [qx− α0(q)y]}, (12)

where α0(q) = [(ω/c)2 − q2]1/2 with <e α0(q) > 0 and =mα0(q) > 0.
In this work we choose

A(q, k‖) =
√

πg exp
{−g2(q − k‖)2/4

}
, (13)

where the parameter k‖ = (ω/c) sin θ0, being θ0 the angle of incidence
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Figure 6. (a) Waveguide composed of two finite periodic, perfectly
conducting, rippled surfaces illuminated by a Gaussian beam. The
reflected and transmitted field patterns are shown. (b) Schematic
description of the waveguide of width b and length d with rippled
surfaces in the xy-plane is illuminated by a Gaussian beam in region 0.
Regions 1 and 2 constitute the perfect conductor. The 1/e half-width
of the modulus of the incident Gaussian beam projected on the plane
x = 0 is g. The angles of incidence θ0 and scattering θs for reflection
are also shown.

(see Figure 6(b)). Additional details of the numerical method can be
found in Refs. [13, 33].

A field speckle pattern by two perfectly conducting rough surfaces
is shown in Figure 7. The waveguide was illuminated at normal
incidence by a Gaussian beam with a wavelength λ = 0.3112µm. The
theoretical parameters used in obtaining these results were a = 0.4712
and δ = 0.075 for the frequency ν = 964.0289 THz. The roughnesses
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Figure 7. Field speckle pattern produced by two perfectly conducting
rough surfaces with a = 0.4712 and δ = 0.075 for the frequency
ν = 964.0289THz.

belong to an ensemble whose mean profiles correspond to flat surfaces.
Figure 7 also shows a disordered pattern with the appearance of

a multitude of bright and dark spots. This irregular pattern is formed
by the interference among scattered fields produced by the two rough
surfaces on scale of an optical wavelength, as was shown for only a
rough surface [Figure 5(a)]. Obviously, the disorder is seen here a
consequence of the speckle phenomenon.

In the previous section, we considered a waveguide of infinite
length, a property that is essential to ensuring that our system has
a well-defined dispersion relation ω = ω(k). The numerical method
used to calculate intensities assumes a perfect periodicity. However,
a realistic waveguide always has a finite length. A finite number
(large enough) of unit cells is a waveguide of finite length that can
be represented by a truncated crystal. Fortunately, only a few periods
are suffice to obtain some of the main results for the perfectly periodic
waveguide [13]. It is important to take into account specific eigenmodes
of the infinite waveguide for the proper selection of parameters for the
case of finite waveguides.

In order to study how the effects of speckle change the intensity
pattern of a waveguide with rippled surfaces, we consider surfaces with
both smooth and rough profiles. Figure 8(a) shows the field intensity
in a finite waveguide with smooth surfaces.The waveguide has the
following parameters d = 20π µm, P = 2π µm, b = 1.5µm, ∆φ = π/2
and A = 0.1b. The waveguide was illuminated at normal incidence by
a Gaussian beam with a frequency ν = 963.4667THz [Figure 8(a)].
Considering a waveguide with rough surfaces, Figure 8(b) shows the
corresponding field intensity. The rough profiles [in Figure 8(b)] were
obtained by adding the smooth profiles [Figure 8(a)] to the rough
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Figure 8. Field intensities in (a) a finite smooth waveguide with
b = 1.5µm, A = 0.1b and ∆φ = π/2 for ν = 963.4667THz and
in (b) a finite rough waveguide with a = 0.025P and δ = 0.05b for
ν = 960.4062THz.

profiles used in Figure 7. In this case, Figure 8(b) was obtained for
the frequency ν = 960.4062THz. In the remainder of this paper, only
one section of the finite waveguide of length d = 20π µm is sketched,
in order to achieve a clearer representation.

It can be seen clearly that the pattern in Figure 8(a) is disturbed
due to surface roughness. Of course, the disorder pattern in Figure 8(b)
is a consequence of the speckle phenomenon.

Finally, let us consider a system in which the effects of both
chaos and speckle contribute to the appearance of disordered field
patterns. To obtain the presence of chaos phenomenon it is necessary
to realize calculations for high frequencies. Figure 9 presents the field
intensity associated with a finite waveguide with rough surfaces of
length d = 20π µm. The surfaces profiles were obtained analogously to
the case of Figure 8. The parameters used were: b = 1.5µm, A = 0.4b,
∆φ = π/2, a = 0.025P and δ = 0.05b. For this case, the frequency
ν = 3822.2316THz was used.

We believe that the disordered pattern in Figure 9 is the
result of the combination of chaos and speckle, though these two
phenomena are mixed in a way that renders them indistinguishable.
The autocorrelation function associated with the field intensity in
Figure 9 is similar to the function shown in Figure 4(d). For
this case, a correlation length of l = 0.0451 was obtained. The
disorder in Figures 4(c) and 9 was compared using the corresponding



Progress In Electromagnetics Research B, Vol. 48, 2013 343

15 17 19 21 23 25

20

40

60

80

100

120

140

160

180

x [µm]

y 
[µ

m
] 

-0.5

0.5

1.5

-1.5

-1

0

1

Figure 9. Field intensity pattern in a finite rough rippled waveguide
with b = 1.5µm, A = 0.4b, ∆φ = π/2 for the frequency ν =
3822.2316THz.

autocorrelations given a similar behavior, since the values of the
correlation lengths were almost identical.

It is noteworthy that the numerical calculations realized to obtain
these figures show that the energy conservation is satisfied above 95%.
This comment is important because the disordered that appears in
Figure 9 could be interpreted as numerical instability, but this is not
the case. Our experience with integral methods applied to a variety of
systems allow us to affirm that, if numerical instabilities occur, then
the energy conservation would be violated at a high percentage.

5. CONCLUSIONS

An integral numerical method was applied to study a waveguide
composed of two periodic, perfectly conducting, rippled surfaces. It
is important to note that for certain conditions, disordered patterns
of field intensities in waveguides with smooth surfaces were obtained.
In general, disordered patterns are associated with disordered systems,
whereby this result contrasts with this belief and it is interesting for
possible applications.

The corresponding classical model of our electromagnetic system
presents a chaotic behavior under certain conditions. This is our main
argument in terms of interpreting some of our results as manifestations
of electromagnetic wave chaos. The signature of the classical chaotic
behavior in the electromagnetic model is manifested in the spatial
statistical properties of the probability density. In particular, the
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correlation length of the autocorrelation function goes to zero when
the corresponding classical system is chaotic.

It is also possible to obtain a disordered pattern for low frequencies
by the effect of roughness that produces a speckle pattern. This allows
us to extend the frequency range for obtaining disordered patterns.

Since the surfaces of materials always have a certain degree of
roughness, it can be concluded that both chaos and speckle contribute
to the presence of disordered field patterns.
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