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Abstract—The capability of Ground Penetrating Radar (GPR)
systems of accurately reconstructing the geometrical features of buried
objects when working in critical conditions is investigated. A
customized microwave tomographic approach is used to tackle the
imaging through the processing of comparative experimental and
synthetic GPR data. The first ones have been gathered in laboratory
controlled conditions, while the second ones have been obtained by
exploiting an ad-hoc implementation of a CAD tool. Attention is paid
to the significant case of ‘strong’ scatterers having size comparable
to the wavelengths of the probing signal, and possibly located close
to the interface where the GPR antennas move. The results from
imaging point out the potential of the proposed approach, showing
in particular to which extent in challenging operational settings, it is
possible to recover also the information about the shape of metallic
targets in addition to their correct location and size.
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1. INTRODUCTION AND BACKGROUND

Ground Penetrating Radar (GPR) is a well-assessed tool to provide fast
and reliable investigations for subsurface prospecting in a large variety
of applications [1, 2]. GPR is often employed for nondestructive testing
close to a ground interface with the aim of localizing buried targets
in the shallow subsurface, such as in landmine detection and other
important civil, forensic, archaeological, geophysical, and planetary
applications [1–10].

In particular, GPR has extensively been used for the detection
and recognition of metallic objects. Indeed, radar reconstruction can
successfully be achieved in various soil and material conditions and
for different scatterer dimensions and depths [1, 5, 11–13]. On the
other hand, the estimation of the target geometric parameters, such
as size and shape, is much more challenging and, to our knowledge,
very few papers have tackled this problem [14]. Several authors,
for instance, have addressed the problem of pipes or rebar radius
estimation [12, 15, 16], however no specific work has been done on the
reconstruction of geometrical features.

It should also be emphasized that in order to validate any
algorithm of shape reconstruction, it is fundamental to perform a
controlled experiment, where both the electromagnetic parameters
of the host material and the geometry, dimension, and depth of
the metallic targets can be measured with a good accuracy. These
conditions are difficult to be achieved in a large test site (see,
e.g., [17, 18] and the literature therein) but can be obtained in
laboratory scale experiments [14, 19–21].

Many different studies have also explored various types of
‘forward’ GPR scattering problems by means of analytical and
numerical approaches [1, 2, 20, 22–25]. Nowadays, the use of Computer
Aided Design (CAD) software enables for very flexible and efficient
tools providing ‘realistic’ analyses of quite complex GPR scenarios,
which nonetheless should require suitable validation through compared
experimental evidence. With regards to these issues, useful test cases
which can be found in the literature are however rather limited [20].

The reliability and effectiveness of the reconstructed images,
providing information on the geometrical features of the objects (i.e.,
location, size, and shape), depend both on the amount and quality
of the GPR data and on the adopted imaging procedures, which are
mostly based on the solution of an inverse scattering problem [26]. The
imaging algorithms that can be implemented for these applications
are extremely various, since efficient ad-hoc procedures are usually
searched for in connection with the peculiarities of the scenarios to be
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investigated [27–31].
In particular, a good number of methods have been developed

to tackle the problem of the shape reconstruction of nonpenetrable
objects. A first class of approaches are based on the solution of
a nonlinear inverse scattering problem via an iterative minimization
scheme [32, 33]. However, due to the nonlinearity of the inverse
problem, the solution scheme may suffer of the presence of local minima
(‘false’ solutions) affecting the overall reliability of the reconstruction
procedure, and suitable regularization strategies have to be adopted to
assure the consistency of the results [34]. Other classes of approaches
are those exploiting the definition of ‘topological derivative’ [35] and
the so-called ‘qualitative’ methods [36]. In particular, among these
latter the Linear Sampling Method (LSM) [37, 38] is worthy to be
considered since it allows a morphological reconstruction of single
or multiple objects (dielectric and/or metallic) from single-frequency
scattered-field data, without requiring approximations and a priori
information. Unfortunately, LSM can properly work provided that a
suitable amount of multi-view and multi-static data are available [39].
This kind of data cannot be gathered with the commonly adopted GPR
systems, which allow only multi-monostatic (transmitting antenna,
Tx, coincident with the receiving antenna, Rx) or multi-bistatic (Tx
antenna separated by a fixed offset from the Rx one) measurement
configurations.

In this work, we consider solution schemes based on a
simplified model of the electromagnetic scattering such as Kirchhoff
approximation [40–43]. Under the Kirchhoff approximation, the
reconstruction provides an image corresponding to the support of the
induced surface-current distribution on the illuminated region [40–
42] and the unknown-to-data mapping is linear. This linear inverse
problem is regularized by using the Singular Values Decomposition
(SVD) [26]; the absence of local minima favorably affects the reliability
of the results and the low computational burden allows us to deal with
‘large’ (in terms of wavelengths) investigation domains, as the ones
considered in the following. A first Kirchhoff-based inverse model for
half-space geometry has been presented and analyzed in [44] when the
incident field is a plane wave, whereas the case of a multi-monostatic
configuration has been dealt with in [45] by considering a homogeneous
scenario. Now, by exploiting the concepts in [43–46], we present
a Kirchhoff-based inversion scheme in the case of a multi-bistatic
configuration and a half-space scenario.

The outlined variety of studies performed on these topics
illustrates therefore that the GPR diagnostics is influenced by several
factors, mainly concerning the overall operative settings, the quality of
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the data of the forward scattering problem, and the adopted inversion
procedures. In this frame, our study addresses here such important
issues in connection with the following adoptions:

- A complete and efficient technique is searched for GPR detection
as regards the features of metallic targets, which involves both
location and geometry of the scatterers, with attention to the
recovery of the dimensions and also of the shape of buried objects.
- Our tests are concerned with critical functional conditions under
which GPR reconstructions are performed. In particular, these
are characterized by the investigation of challenging realistic
scenarios, where ‘strong’ scatterers are placed in a shallow
subsurface and have dimensions comparable to the resolution
limits, the Tx/Rx antennas have offsets usually larger than the
target depth and also work in near-field regions (instead of far-
field ones, as usual in most of the scattering approaches).
- The direct data from measurements are achieved through
a tailored laboratory setup of a ‘sand-box’ experiment with
control of physical and geometrical parameters. Metallic targets
with canonical shapes are buried in a ground medium and a
commercial bistatic GPR instrument, moving at the interface,
gathers scattered field data. Such realistic measurements also
allow us to test the quality of imaging in the presence of noise
on data and uncertainties about the background scenario.
- A versatile customized CAD setup is also used for more efficient
and accurate comparisons, thus significantly widening the cases
of potential interest for GPR applications. This numerical tool
is able to deal with quite complex electromagnetic scenarios,
accounting for realistic details of the antenna system, of the
signal waveforms, of possible dispersive and ohmic effects, of
inhomogeneities of the media, etc.. These synthetic data on the
scattering can also be reported under the usual B-scan forms.
- A stable and robust approach to the inverse scattering problem
is applied through an implementation of a microwave tomographic
approach, according to the above-outlined features. As said, this
algorithm is able to account for different kinds of configurations
(as the multi-bistatic one adopted here) and various environments
(e.g., half spaces, layered media, etc.), and here it is specifically
designed for strong scatterers, as considered in the following.

Under these assumptions, the imaging results derived from both
measured and synthetic data are able to clarify how it is possible to
estimate the fundamental geometrical features of the buried scatterers,
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not only in terms of accurate location of their depth from interface but
also for the geometry of the illuminated part of the target.

The work is organized as follows: Section 2 illustrates the
experimental setup for the scattering problem, which involves shallow
metallic targets buried in a sandy soil and revealed by a commercial
GPR instrument. Section 3 presents the main characteristics of the
CAD implementation used as a reference for additional quantitative
information on the forward problem. Section 4 describes the distinctive
features of the microwave tomographic approach, which faces the
imaging as a linear inverse-scattering problem. Section 5 discusses
the results of the imaging, assessing the capability of accurate
reconstruction of location, size, and shape of different targets, in the
frame of the hypotheses and criticalities of the problem. Section 6
outlines some conclusive remarks and further perspectives.

2. GPR EXPERIMENTAL SETUP: RESULTS FOR
SCATTERING

A laboratory setup was built in order to acquire experimental GPR
data to be further processed and inverted. The setup is constituted
by a box made of fiberglass, having approximate dimensions 150 ×
100 × 30 cm (length, width, and height, respectively), which can be
filled by different background materials. (Additional details can be
found in [20], where the same experimental setup was used for different
studies.).

In the case at hand, a mixture of synthetic glass beads
was chosen as hosting material, which can be regarded as an
analogue of a sandy soil [47]. The electromagnetic features of
this material, which is nonmagnetic and with negligible losses, were
investigated independently through a Time Domain Reflectometry
(TDR) analysis [48–50]. Such an analysis allowed us to fix the relative
dielectric permittivity of the glass beads equal to 3.2 [20, 50].

Measurements were performed using the commercial GPR device
“PulseEkko Pro” by Sensors and Software Inc. [51], equipped with a
pair of dipole antennas having a 1 GHz bandwidth around the nominal
central frequency of 1GHz. In the measurements, the GPR antenna
system was moved along the length of the box at the soil smooth
interface, in a multibistatic configuration having an offset between the
Tx/Rx antennas of about 19 cm (center to center). A view of the
laboratory experimental setup is given in Fig. 1: in Fig. 1(a), the box
with filling medium and scatterers are shown; in Fig. 1(b), the GPR
Tx/Rx antennas placed on the ground surface are portrayed.

In order to account for the case of electromagnetic nonpenetrable
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(a) (b)

Figure 1. View of the GPR laboratory experimental setup: (a) the
artificial sand box, filled with a ground medium in which scatterers
are buried; (b) the commercial GPR instrument with coupled Tx/Rx
antennas for the measurements at the interface.

Table 1. Geometry of the objects investigated experimentally.

Object Geometry
Cube Side: 9 cm
Sphere Radius: 8 cm
Cone Base diameter: 9 cm; height: 10 cm

Pyramid with
square basis

Base: 9× 9; height: 10 cm

Cylinder Diameter: 5 cm; height: 10 cm
Parallelepiped with

square basis
Base: 5× 5; height: 10 cm

(metallic-type) scatterers, GPR measurements were carried out for
targets made of hard wood wrapped with aluminum foils. In particular,
several targets having canonical geometries and size comparable in
terms of typical probing wavelengths were considered. The details of
the tested geometries are given in Table 1.

The objects were located at a fixed depth from the air-sand
interface, that is 9(±1) cm with respect to the upper face or top point
of the metallic targets, according to their geometry.

The raw GPR outcomes are given under the usual form of radar
B-scan sections or ‘radargrams’ [1, 2]. These are generated here by
transmitting a Gaussian-type pulse from each position along the survey
line and collecting the signal scattered by the buried objects from
the receiving antenna. As an example, Fig. 2 shows the radargram
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Figure 2. Example of a measured GPR radargram in the synthetic
sand box. The radar signatures are due to different metallic buried
scatterers placed along the major length of the box: a cube (on the
left) and a pyramid (on the right). Details on the physical parameters
chosen are provided in the main text.

measured when a cube was located on the left of the major length of the
box and a square-based pyramid was on the right side at a distance of
about 80 cm. In Fig. 2 the effects of different wave contributions appear
according to well-established classifications [1, 2]. In particular, the
first received event is a ‘direct wave’, which travels straightforwardly
from Tx towards Rx antenna. This effect is partly limited by the
shielding and by the directional features of the radiators and, when
the background has rather homogeneous characteristics, as in the case
at hand, it can be dropped out from the output data, with the so-called
‘background removal’ procedure [20]. Such a processing step gives rise
to a cleaner pattern focused on the scattering contributions arising
from the targets. Further, the roughly-hyperbolic events visible in
the radargram of Fig. 2 are produced by the main ‘scattered wave’ and
clearly emphasize the presence of the buried objects. It is worth noting
a lighter and slightly-delayed hyperbolic event for the pyramid, if
compared to the cube response, which is related to the lower scattering
cross section of the tip wedge with respect to a flat side. Additional
backscattered contributions appearing in Fig. 2 can be associated to
the bottom interface of the sand box. In particular, being the box
located on two lateral wooden tables and airsuspended in its central
part, the reflection effect is particularly visible in the central region
due to the strong dielectric contrast occurring between sand and air.

3. GPR SIMULATION SETUP: RESULTS FOR
SCATTERING

In order to provide further reference GPR data useful for testing the
inversion procedure, the scattering problem was simulated by taking
advantage of a flexible numerical setup. In particular, the commercial
electromagnetic time-domain CAD tool “CST Microwave Studio” [52]
was used to simulate scenarios similar to the experimental ones.



346 Soldovieri et al.

In the simulations, an environment made of a two layers was
considered. The first layer is made by air, while the second one is
given by a dielectric material representing the hosting soil used in the
experiments. Accordingly, such a material is nonmagnetic, lossless
and has a relative dielectric permittivity equal to 3.2. Moreover, since
the irregularities of the sandy interface occurring in the experimental
setup are small with respect to the wavelengths of the probing signals
and their scattering effects can be certainly neglected when compared
to the ones due to the buried metallic scatterers, a flat air-sand
interface was simulated. In this environment, perfect electric conductor
(PEC) objects (whose geometries have been presented in Table 1) were
inserted in locations similar to those considered during the experiments
(about 10 cm deep from the interface).

The overall dimensions of the simulated region are 80-cm length,
and 50 cm in width and depth. The region is discretized by means
of a hexahedral mesh, whose elements have size less than λ/15, λ
being the smaller wavelength in the considered frequency range (0.5–
1.5GHz). Perfect-matched-layer (PML) boundaries conditions have
been imposed on the side walls and the bottom of the simulated
environment, leading to an ideal absence of reflections (homogenous
half spaces). This choice allowed us to efficiently reduce the dimensions
of the simulation region and also to focus our attention exclusively on
the scattering effects of the buried targets. Therefore, the simulations
differ a bit from the experiments, which take also into account the
reflection from the bottom of the box. It is anyway worth noting that
the simulation tool gives the possibility to consider several and complex
scenarios with affordable computational efforts. (Further details on
these aspects can be found in [20], where the numerical setup was
introduced for other types of analysis.).

In order to acquire simulated data as consistent as possible with
the measured ones and then to compare the imaging results obtained
in synthetic and experimental conditions, a pair of wide-band printed
monopole antennas having bandwidth similar to the nominal one used
in the commercial GPR system were designed and simulated. The
simulated system is fed at the Tx antenna input with a Gaussian pulse
signal having a spectrum between 0.5 and 1.5 GHz (defined among
frequencies having 10% of its maximum amplitude) and is generated
as the modulation of a pulse through a 1 GHz sinusoid.

The Tx/Rx antennas are placed on the soil surface, sweeping
along the longer planar direction with step of 3 cm in a bistatic
configuration having a fixed offset of 19 cm, i.e., that occurring in
the laboratory measurements. The simulated setup is exemplified in
Fig. 3: Fig. 3(a) gives a view of the numerical environment including
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Figure 3. The GPR numerical setup based on the CAD tool: (a) view
of the simulation environment, including Tx/Rx printed antennas
placed on the dielectric medium interface and a buried scatterer;
(b) simulated waveform of the GPR transmitted signal.

dielectrics, scatterers, and antenna system; Fig. 3(b) shows a typical
simulated waveform of the GPR transmitted signal.

At each position, the Tx antenna radiates a pulse and at
the output port of the Rx antenna a signal, including the back-
scattered wave from the objects, is gathered. Thus, a grey-scale
2D ‘simulated radargram’ for the investigated domain can also be
generated. Suitable signal processing is anyway needed to properly
emphasize the scattering effects. In particular, as said, the time-
domain output signal is generally made by a first contribution guided
by the soil/air interface along the linear path between Tx and Rx
antennas. This ‘undesired signal’ (direct wave) is followed at a later
time by the ‘useful signal’ (scattered wave) from the buried target.
Under the described assumptions, the direct wave can be considered
as the same for any position along the observation domain and can be
evaluated numerically with a suitable simulation of the Tx/Rx GPR
signal performed in the absence of any scattering object. Then, to
improve the detectability of the targets by emphasizing the relevant
scattering contributions with respect to undesired signals, the direct
wave has been subtracted numerically from each collected trace.

An example of a simulated radargram, generated according to
the numerical procedure described above, is shown in Fig. 4 for the
buried PEC cube with 9-cm side. Specifically, in Fig. 4(a) the result
obtained before the background removal is shown. The direct wave is
here particularly strong, due to the limited shielding between Tx/Rx
antennas in the implementation. The wave scattered by the target
produces, indeed, approximately hyperbolic curves partially masked
by the direct wave. In Fig. 4(b), the radargram after the background



348 Soldovieri et al.

(a) (b)

Figure 4. GPR radargrams obtained with the simulation setup:
(a) complete pattern for a buried PEC cube including direct and
reflected waves; (b) pattern for the scattered field after background
removal. The geometrical parameters are as in the analogue already
considered in the experimental setup (and recalled in the main text).

removal is given. In this figure, only the scattered echo from the cube
is present and the top of the diffraction curve is now clearly visible. It
is seen that the echoes from the lateral sides of the block are weaker
than the echoes from its top. This is an expected outcome, being the
scattering from the top of the cube mainly due to strong reflection by
a flat interface, while the scattering from the side walls is related to
diffracted fields spread over wider angles.

A couple of additional examples of numerical radargrams are
presented in Fig. 5. Scattered field patterns, after the removal of
the interface contribution, are shown both for a buried PEC sphere
in Fig. 5(a) and for a buried PEC pyramid in Fig. 5(b) (see data in
Table 1). Comparisons can be made with the relevant radar sections
from the previous cases and from measurements. For instance, in
Fig. 5(a) it is seen that the sphere, if compared to a cube in a
similar situation (Fig. 4(b)), produces a scattered wave with a reduced
intensity, as expected; whilst from Fig. 5(b) it is noted that the tip
of the pyramid is not well emphasized, in agreement with its reduced
reflecting wedge effect.

It is observed that the behaviors of the radargram patterns agree
very well with those theoretically expected according to the relevant
scattering problem (in terms of amount of reflection, target location,
etc.). All these numerical data appear to be pretty ‘regular’ and
particularly suitable to be processed by the inversion algorithm as
discussed next.
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Figure 5. GPR scattered-field radargrams obtained through the
simulation setup for other canonical shapes of buried scatterers:
(a) PEC sphere; (b) PEC pyramid. The geometrical parameters are
as in the analogue already considered in the experimental setup (and
recalled in the main text).

4. GPR INVERSE PROBLEM VIA A MICROWAVE
TOMOGRAPHIC APPROACH

The GPR experimental and numerical data were processed by
means of a ‘microwave tomographic approach’ based on the
Kirchhoff approximation, which allows us to linearize the inverse
scattering problem for metallic (non-penetrable) objects herein
considered [42, 46]. As is well known, for the forward problem, i.e.,
for the evaluation of the scattered field from the known object, the
Kirchhoff approximation holds for scatterers whose radius of curvature
is large compared to the probing wavelength; on the other hand,
when a shape reconstruction problem is faced, it is possible to relax
this assumption and a Kirchhoff-based inverse approach is able to
give useful information even in the case of objects whose extent is
comparable to the probing wavelength [42].

The approach is here formulated for a 2-D geometry as depicted
in Fig. 6. The environment is assumed as two homogeneous half-spaces
separated by a planar interface (z = 0, being x the horizontal scanning
axis). In our case, the upper half-space, where the antenna system is
located again close to the interface, is air, while the lower half-space
represents the medium hosting the objects and it is assumed to have
known relative dielectric permittivity εb and a possible conductivity σb.
In the following, these parameters are referred to the already presented
glass-bead filling material.
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Figure 6. Geometry of the 2-D inverse scattering problem according
to the microwave tomographic approach.

The incident field source was modelled as time-harmonic (with
a typical exp(jωt) dependence, being ω the angular frequency)
filamentary electric current, invariant along the horizontal y axis
orthogonal to the investigation (x, z) plane of Fig. 6. This
configuration idealizes the position of the GPR dipole antennas having
their major length just oriented along the y-axis. The data were
collected under a multi-frequency multi-bistatic configuration, with
the locations of Tx and Rx antennas separated by an offset distance
∆ = 19 cm (as in the laboratory and in the numerical setups). The
field was evaluated at discrete frequencies uniformly spaced in the
range [fmin, fmax]. The scattered field was collected by moving the
antenna system (Tx/Rx) over a rectilinear observation domain x at the
air/soil interface with the location xs of the transmitter ranging from
−xM to xM . The targets to be imaged were enclosed in a priori-known
rectangular investigation domain D in the xz plane, [−a, a] × [zmin,
zmax] (see Fig. 6).

Within the above hypotheses, under the Kirchhoff approximation,
the scattered field Es collected in the upper half-space for z = 0 at each
ω, when the transmitting antenna is at the source abscissa xs and the
receiving one is at the observation abscissa xs + ∆, is given as:

Es(xs, xs + ∆) = −jωµ0

∫

Γ

G(xs + ∆, x, z)JPO(x, z, xs)dΓ. (1)

In Equation (1), Γ denotes the contour of the scattering object,
while G(xs + ∆, ·, ·) is the ‘external’ Green’s function as evaluated at
the point (xs + ∆, z = 0) for the angular frequency ω:

G(xs + ∆, x, z) = − j

2π

∫ +∞

−∞

e−jw2(u)z

w1 (u) + w2 (u)
e−ju(xs+∆−x)du (2)
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where wi (u) = (k2
i − u2)1/2, ki being the wavenumber of the i-th

medium (i = 1, 2), and u the spectral variable along x. In addition,
JPO is the physical-optics surface current density, evaluated as:

JPO(x, z, xs) =
{

(2n̂i ×Hi(x, z, xs)) · îy on Γi

0 on Γs
(3)

where Hi is the incident magnetic field in the lower half-space when
there are no objects (i.e., the magnetic field transmitted in the lower
region), n̂i(x, z) = (nx(x, z), nz(x, z)) is the outward-directed unit
vector normal on the scatterer surface at the generic point r = (x, z),
while Γi and Γs are the illuminated and shadowed sides of the scatterer,
respectively (Γ = Γi ∪ Γs). By accounting for the relationship existing
among the electric incident field and the magnetic one, the current
density JPO can be expressed as:

JPO(x, z, xs) =





1
π

+∞∫

−∞

[
nx(x, z)u′ + nz(x, z)w2

(
u′

)]

e−jw2(u′)z

w1 (u′) + w2 (u′)
e−ju′(x−xs)du′ on Γi

0 on Γs

. (4)

By replacing Equations (2) and (4) in Equation (1), after some
mathematical passages, the scattered field can be rewritten as:

Es(xs, xs + ∆) = −ωµ0

2π2

+∞∫

−∞

eju(xs+∆)

w1 (u) + w2 (u)

∫ +∞

−∞

eju′xs

w1 (u′) + w2 (u′)

·
∫

D

[
nx (x, z) u′ + nz (x, z) w2

(
u′

)]
δΓ (x, z)

e−j[w2(u′)+w2(u)]ze−j(u′−u)xdxdzdu′du (5)
where the quantity δΓ(x, z) denotes a single-layer distribution and
allows us to pass from an integral over the contour of the scatterer
to the integral over the investigation domain D [26].

According to the above scattering model, the reconstruction
problem is stated as the inversion of the Equation (5), which can be
rewritten for all the frequencies belonging to the considered range in a
synthetic form as:

Es(xs, xs + ∆, ω) = L [γ] . (6)
where the unknown is given by the vector distribution γ(x, z) =
(nx(x, z), nz(x, z)) δΓ(x, z) [46].
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Equation (6) states a linear integral relationship between the
meaningful signal, i.e., the field scattered by the targets, and the
unknown ‘object function’ γ (x, z), which is expressed through the
compact operator L [26, 53].

Being the imaging problem faced as the inversion of the
relationship in Equation (6), an ill-posed linear problem must be
handled with care through a regularized inversion scheme [53]. A well-
known and commonly exploited tool to solve this kind of problems is
the truncated singular value decomposition (TSVD) scheme [26, 53].
Accordingly, an approximate stable solution of Equation (6) is given
as:

γ̃ =
N∑

n=0

1
σn
〈Es,vn〉un (7)

where {σn, vn, un}K
n=0 is the singular system of the matrix L (arising

from the discretization of the compact operator in Equation (6)), 〈·, ·〉
denotes the scalar product in the data space, K denotes the number of
measurements, and N ≤ K. The choice of the N index is performed in
order to ensure a trade-off between the contrasting needs for accuracy
and resolution from one side (which should push to increase such an
index) and for the stability of the solution from the other side (which
should push to limit the increase of the index). As result of our
inversion approach, we consider the quantity |γ̃| =

√
|γ̃x|2 + |γ̃z|2 as

the modulus of the vector γ̃ and this is the quantity shown in the
reconstructed tomographic images in the next section.

Finally, it is worth nothing that the involved computational time
mainly depends on the time needed to fill the matrix L and to compute
its SVD. Such a time grows up with the number of cells discretizing the
investigated domain under test (Ncells), and in particular, according
to [54], the best algorithms for the SVD computation of a K ×Ncells

matrix take a time that is proportional to O(aK2Ncells+bN3
cells), a and

b being constants whose value depends on the adopted algorithm. On
the other hand, since the matrix L and thus its SVD do not change once
the measurement configuration and the features of the investigated
domain have been fixed, they can be computed off-line and stored in a
databank. In this way, the involved computational time is drastically
reduced and real-time results can be achieved.

5. RESULTS FOR THE SCATTERERS THROUGH THE
INVERSION APPROACH

The reconstruction capabilities of the tomographic approach are
investigated by applying the inverse scheme to both the experimental
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and simulated data. The results are given in terms of the normalized
amplitude of the reconstructed function γ̃(·) in Equation (7) with
respect to its maximum inside the investigation domain D. It should
be reminded that the tomographic reconstructions here manage critical
cases of nonpenetrable objects with data gathered under a reflection-
measurement configuration, hence most of the information achievable
is expected relating to the upper illuminated parts of the reflectors that
give rise to the main scattering effects. Accordingly, only the upper
side of the objects is expected to be actually well retrieved.

The relevant inversion results are presented separately, starting
from the simulation setup (Section 5.1), for which a larger and various
set of useful data was derived, and then for the experimental setup
(Section 5.2).

5.1. Inversion with Simulated Data

According to the simulated environment, the investigated domain is in
the lower half-space and its half-size along the longitudinal x axis is
equal to a = 40 cm (80 cm overall), while its extent along the depth
ranges from zmin = 1 cm to zmax = 50 cm.

The measurement configuration assumes a bistatic modality with
source and receiver separated, as said, by an offset ∆ = 19 cm.
The antenna system is moved along the air-soil interface at 25
spatial points with a uniform step of 3 cm. In particular, the Tx
antenna moves between [−40, 40] cm, whereas the Rx antenna moves
within [−21, 59] cm. The working frequency ranges between fmin =
0.5GHz and fmax = 1.5GHz with 41 discrete frequencies spaced of
25MHz. The inversion is regularized by the TSVD approach, where
the TSVD index N is chosen to retain in the summation (7) the singular
values larger than 0.1 times the highest singular value.

The first set of results accounts for three buried PEC cubes having
different sizes in the simulations (5 cm, 9 cm, and 13 cm) and upper
side at depth of 10 cm. Their center is laterally shifted of about 7.5 cm
along x with respect to the center of the investigated domain. The
color-plot reconstructions of the ‘object function’, i.e., the tomographic
images, are shown in Figs. 7(a), (b), and (c) for the three cube sizes,
respectively. In these figures, as in the following ones, the black lines
represent the contour of the actual objects.

The results of Figs. 7(a)–(c) corroborate that, despite the relevant
wavelengths of the signal in the hosting medium are in the range
around 15 cm (i.e., actually comparable to the typical dimensions of
our scatterers), accurate images are obtained. From Figs. 7(a)–(c)
it is seen that the extents of the upper sides are reconstructed with
good accuracy, and this feature is more evident for the larger cubes.
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Figure 7. Tomographic reconstruction from simulations of three PEC
cubes having different sizes (the upper side of the object is at 10 cm
depth from the interface): (a) ‘small’ cube with side 5 cm; (b) ‘middle’
cube with side 9 cm; (c) ‘large’ cube with side 13 cm. Other physical
parameters are given in the text.

Moreover, the main vertical position is properly localized by the peak
values of the TSVD reconstructed function. The thickness of the spot
along the depth is due to the finite working frequency and is anyway
comparable to the ideal resolution limits, given by c0/2B

√
εb = 8.4 cm,

being B = 1 GHz the signal bandwidth.
The second set of results concerns two other metallic targets

previously introduced: a parallelepiped with length 10 cm and square
section with side 5 cm, and a cylinder of the same length and diameter
5 cm, both the objects being 10-cm deep. The two targets are placed
with their axis parallel to the scanning x direction. Fig. 8 shows the
tomographic reconstructions of the parallelepiped (Fig. 8(a)) and of
the cylinder (Fig. 8(b)). Again, the object function describes quite
well the location and size of these scatterers.

The third considered numerical data-set is referred to pyramidal
and conical metallic targets. Both targets have the same height
(10 cm); the pyramid has a square basis with side 9 cm, and the
diameter of the conical basis is 9 cm (see Table 1); the axis of both
targets is placed vertically. Fig. 9 gives the tomographic reconstruction
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Figure 8. Tomographic reconstruction from simulations of buried
PEC parallelepiped and cylinder, placed with their major length along
the scanning x direction: (a) parallelepiped; (b) cylinder. Other
physical parameters in the text.
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Figure 9. Tomographic reconstruction of PEC pyramid and cone from
simulations: (a) pyramid; (b) cone. Other physical parameters in the
text.

of the pyramid (Fig. 9(a)) and of the cone (Fig. 9(b)). It is interesting
to note that the reconstructions are very similar one the other,
according to the features of the two shapes in the imaged slice. In
particular, the main contribution of the object function appears to
be placed slightly below with respect to the upper edge, due to the
reduced scattering effect of the wedge shape.

5.2. Inversion with Experimental Data

The tomographic approach has also been applied to experimental data-
sets as detailed in Section 2. Also in this case, the inversion model
is concerned with an investigation domain similar to that already
presented. Again, the measurement configuration assumes a bistatic
modality with the source and receiver separated by 19 cm, spanning in
the range [−70, 70] cm. The antenna system sweeps along the air-soil
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Figure 10. Tomographic reconstruction of targets from experimental
data for metallic cube and pyramid buried in a sandy soil, as in Fig. 2.
Other physical parameters in the text.

interface at 61 spatial points with a step of 2 cm. In particular, the
Tx antenna moves between [−69.5, 50.5] cm, whereas the Rx antenna
moves within [−50.5, 69.5] cm. The working frequency ranges between
fmin = 0.3 GHz and fmax = 1.3 GHz, with 26 frequencies spaced of
40MHz (this slightly-modified frequency range is related to the specific
evaluation of the effective spectrum of the signal transmitted by the
GPR instrument when positioned on the ground-medium surface).

The first tomographic reconstruction from measured data is shown
in Fig. 10 and is referred to the case of a pair of metallic targets
already presented in Fig. 2, with a cube (9-cm side) and a pyramid
(10-cm height and 9-cm side square basis), both located at a depth
of 9 cm (for the top parts) and spaced side by side along x axis of
80 cm. From this figure, one can observe a spot at about x = −30 cm,
which correctly accounts for the upper side of the cube and provides a
good estimation of the major reflecting side. The spot at the center of
the investigation domain (around x = 0), at depth of about 30 cm, is
concerned with the reflection from the bottom of the dielectric box (as
already emphasized in the radargram of Fig. 2). Finally, the spots at
about x = 50 cm are concerned with the location of the main reflecting
areas of the pyramid shape.

A further inversion result from measurements refers to the case
of parallelepiped and cylinder targets, whose dimensions were already
presented in Section 2. The scatterers were placed in this case with
their major length perpendicular to the scanning direction, and again
spaced along the x axis of about 80 cm and 9 cm deep. The relevant
tomographic reconstruction is presented in Fig. 11. As in the previous
case, the main features of the probed scenario can be enlightened
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Figure 11. Tomographic reconstruction of targets from experimental
data for a metallic parallelepiped and a cylinder buried in a sandy
soil, with their major lengths perpendicular to the scanning direction.
Other physical parameters in the text.

from the tomographic reconstruction. The stronger spot at about
x = −30 cm accounts for the upper side of the parallelepiped. As
above, the wider spot at the center of the investigation domain is
concerned with the bottom of the box. Finally, the spot at about
x = 50 cm is concerned with the proper cylinder location, whose
scattering effect is correctly less strong than that arising from the
parallelepiped (the former presenting a round contour instead of a flat
face and edges).

6. CONCLUSION

The performance achievable by means of typical GPR systems in
connection with an inverse tomographic algorithm was investigated
in terms of geometrical characterization of metallic targets buried in a
ground medium for testing operation.

An efficient inversion technique was applied by processing direct
ad-hoc data on radargrams from both measurements and simulations.
Most of the investigations were performed in challenging practical
conditions, with nonpenetrable scatterers placed in the near-field
region of shallow subsurface and with dimensions comparable to the
typical wavelengths of the GPR signals.

The obtained results on imaging showed a very good capability
of proving a correct spatial localization of the targets, in conjunction
with a satisfactory prediction of the size and shape of their upper side.
This has been observed even for realistic measurements in the presence
of noise on data and uncertainties about the background scenario.
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Intrinsic limits related to the adopted measurement configurations and
the finite range of frequencies of the signal spectrum do not anyway
allow for the identification of finer geometrical details.

Although our study was devoted here to the analysis of metallic
scatterers, it will be interesting to check the potential of this approach
also in the cases of electromagnetic penetrable targets (dielectric
objects with possible ohmic losses) or for other more complex
scenarios (multilayered media, irregular interfaces, etc.), which could
significantly enlarge the areas of application related to the GPR
technique.
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