
Progress In Electromagnetics Research, Vol. 136, 369–383, 2013

THRESHOLD-BASED RESAMPLING FOR HIGH-SPEED
PARTICLE PHD FILTER

Zhiguo Shi1, Yunmei Zheng1, Xiaomeng Bian2, *, and
Zhengde Yu3

1Department of Information and Electronic Engineering, Zhejiang
University, Hangzhou, Zhejiang 310027, China
2College of Electrical Engineering, Zhejiang University, Hangzhou,
Zhejiang 310027, China
3Naval Unit No. 91656, Shanghai 200439, China

Abstract—In recent years, particle probability hypothesis density
(PHD) filtering has become an active research topic for multiple
targets tracking in dense clutter scenarios. However, it is highly
required to improve the real-time performance of particle PHD filtering
because it is a kind of Monte Carlo approach and the computational
complexity is very high. One of major difficulties to improve the real-
time performance of particle PHD filtering lies in that, resampling,
which is usually a sequential process, is crucial to the fully-parallel
implementation of particle PHD filter. To overcome this difficulty,
this paper presents a novel threshold-based resampling scheme for the
particle PHD filter, in which the particle weights are all set below
a proper threshold. This specific threshold is determined using a
distinguishing feature of the particle PHD filters: The weight sum
of all particles in weight update is equal to the total target number
in the current iteration. This proposed resampling scheme allows the
use of fully-pipelined architecture in the hardware design of particle
PHD filter. Theoretical analysis indicates that the particle PHD filter
employing the proposed resampling technique can reduce the time
complexity by 33% around in a typical multi-target tracking (MTT)
scenario compared with that employing the traditional systematic
resampling technique, while simulation results show that it can
maintain the almost same performance of estimation accuracy.
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1. INTRODUCTION

In the research area of state estimation and target tracking [1–6], the
technique of multiple target tracking (MTT) can estimate the target
number as well as each target’s state in the scene based on a sequence
of uncertain measurements, where the “uncertain” mainly comes from
detection uncertainty, association uncertainty and clutters in radar
systems [7, 8]. Traditional MTT filters, such as multiple hypothesis
tracking (MHT) filters, Markov chain Monte Carlo (MCMC) filters
and joint probabilistic data association (JPDA) [9], mostly adopt the
strategy of measurement-data association to existing tracks and then
track each target with a separate filter based on the assumption that
each target moves independently.

Recently a novel approach called probability hypothesis density
(PHD) filter/cardinalized PHD (CPHD) filter has been widely used
to avoid explicit association between measurements and (target)
tracks [10–12]. The idea of PHD/CPHD filter is to represent the targets
and the uncertain measurements as random finite sets (RFSs) and use
finite set statistics (FISST) to solve MTT problems under the Bayesian
framework. Furthermore, similar to the particle filter (PF) [13–
19], the particle PHD/CPHD mainly consists of three steps, namely,
Generation of Particles (Prediction), Weight Computation (Update)
and Resampling. Based on our analysis in this paper, the resampling
is a major bottleneck to increase the real-time performance of the
particle PHD filter, where, due to its feature of sequential processing,
the main difficulty lies in reducing the processing latency. That is,
the traditional resampling schemes, such as systematic resampling
(SR) and residual resampling (RR), have to start after all the particle
weights are available [20]. Therefore, one of the major challenges for
the real-time hardware implementation of particle PHD filters comes
from the fact that it is difficult to implement pipeline architecture
between Weight Computation and Resampling. Though CPHD, GM-
PHD and MeMBer filter have their own advantages in terms of real-
time performance, the particle PHD filter is a more general solution
for nonlinear/non-Gaussian MTT problems in dense clutter scenarios.
Therefore, we are interested in improving the real-time hardware design
of particle PHD filters.

In this paper, to overcome the bottleneck in Resampling, we
propose a novel threshold-based resampling for fully-pipelined high-
speed particle PHD filter. The main contributions are summarized as
follows.

• It is disclosed that the Resampling occupies a large portion of the
processing delay in each iteration of the traditional particle PHD
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filter.
• We propose an efficient high-speed particle PHD filter, where

the Resampling is carried out by the proposed threshold-based
resampling scheme based on the distinguishing feature of the
particle PHD filter that the weight sum of all the particles equals
to the target number at each iteration.

• Theoretic analysis indicates that, in comparison with the
traditional SR based particle PHD filters, a particle PHD filter
employing the proposed resampling can reduce the processing time
by 33% around in a typical MTT secnario, while simulation results
show that it can maintain the same level of estimation accuracy.
The rest of this paper is organized as follows. Section 2 presents

a systematic analysis of the time delay in the traditional particle PHD
filter iterations, and proposes the threshold-based resampling along
with the high-speed particle PHD filter, followed by the performance
evaluation in Section 3. In Section 4 we discuss a key parameter a to
determine the threshold T in the proposed high-speed particle PHD
filter. Finally, conclusions are drawn in Section 5.

2. HIGH-SPEED PARTICLE PHD FILTER

2.1. Analysis of Time Delay in Hardware Implementation of
Particle PHD Filter

As an approximate implementation of PHD filter, the particle PHD
filter is a promising candidate for MTT problems [10, 21]. The diagram
of operations in the implementation of particle PHD filter is depicted in
Figure 1, where, {x(i)

k , w
(i)
k } denotes a particle approximation of PHD

at time k, and “Data” denotes the input measurements received from
the radar sensors. The initial particle samples can be obtained by two
ways. One way is to get the initial particle samples by assuming that
the targets distribute uniformly in the scene according to the targets’
prior distribution, and the other is to get the initial particle samples
by determining the target number and targets’ states according to
the input measurements. Once the initial samples are obtained,
the particle PHD filter mainly contains three steps of processings,
namely, Prediction, Update and Resampling, iteratively, and output
the estimated particles from Resampling step to compute the estimated
targets’ states.

Intuitively, the particle PHD filter can be implemented in a fully-
sequential way, and its timing of operations is shown in Figure 2,
where Npredict , Nupdate and Nresampling are the number of clock cycles
required for Prediction, Update and Resampling in the particle PHD
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Figure 1. The diagram of operations of particle PHD filter.
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Figure 2. Timing of operations in the fully-sequential implementation
of particle PHD filter.

iteration, respectively. Consequently, the overall processing time of
one particle PHD iteration (e.g., the k-th iteration) is TFS-PHD =
(Npredict + Nupdate + Nresampling)Tclk , where Tclk is the number of time
cycles of system clock.

However, if we look insight into the operation of Figure 2, the
Prediction step and the Update step can be pipelined naturally, because
once a particle is generated from the Prediction, its weight can be
updated in the next time step. The timing of operation of this
implementation is shown in Figure 3. We term this implementation
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Figure 3. Timing of operations in the partially-pipelined
implementation of particle PHD filter.
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Figure 4. Timing of operations in the fully-pipelined implementation
of particle PHD filter.

“partially-pipelined implementation”.
In general, it is difficult to pipeline the Update and Resampling

for the traditional PF and particle PHD filter due to their inherent
sequential nature. In specific, resampling can not be started until the
updated weights of all the particles are ready because the resampling
is to keep the relatively more important particles and discard those
relatively less important particles, and the relative importance can be
decided only after all the particle weights are obtained. As seen in
Figure 3, the partially-pipelined implementation with traditional SR
has to occupy N + M − 1 clock cycles, that is, Tresampling = (N + M −
1)Tclk, where N , M are the particle numbers before resampling and
after resampling, respectively. And the overall processing time of one
particle PHD iteration is

TPP -PHD = (L + N + (N −M + 1))Tclk

= (L + 2N −M + 1)Tclk ≈ (2N −M)Tclk (1)

considering that L is much less than N . This is the case for particle
PHD filter with most existing resampling scheme.
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However, if a fully-pipelined particle PHD filter is achievable as
shown in Figure 4, the overall processing time of one particle PHD
iteration is

TFP -PHD = (L + N + Lr)Tclk ≈ NTclk (2)

considering that L and Lr are much smaller than N . Typically, we
have N = 2M for many multiple target tracking scenarios when
using particle PHD filter, then from Eq. (1) and Eq. (2), we have
TPP -PHD = 3MTclk and TFP -PHD = 2MTclk . That means, the
fully-pipelined particle PHD filter can save M clock cycles which is
approximate 33% of the total cycle time of the partially-pipelined
particle PHD filter. In other words, the fully-pipelined particle PHD
filter is of great value in accelerating the processing of particle PHD
filtering. In this paper, we will propose a threshold-based resampling
scheme which can be adopted in the particle PHD iteration to achieve
the fully-pipelined implementation.

Although some threshold-based resampling techniques have been
proposed to improve the processing speed in particle filtering, none
of them can implement fully-pipelined operations of the three main
steps [22, 14, 23]. In particular, Ref. [22] presents a kind of threshold-
based resampling to reduce the computation complexity and processing
time, which is a partial resampling because only part of all particles are
resampled. Ref. [14] proposes a compact threshold-based resampling
and the corresponding efficient hardware implementation, where the
threshold is set as S/N , with S representing the sum of all the updated
weights and N representing the total particle number at each iteration.
Although the clock cycles are only N , because the sum of all the
updated weights still have to be obtained to determine the threshold
for resampling, the bottleneck of the sequential nature of resampling
has not been broken.

In this paper, to the best of our knowledge, it is the first time that
a threshold-based resampling for the particle PHD filter is proposed,
which can implement fully-pipelined particle PHD filter, as shown in
Figure 4.

2.2. High-speed Particle PHD Filter

From the viewpoint of processing speed, most of the existing
resampling approaches can start only when the weights of all
the involved particles are ready, giving rise to the bottleneck in
increasing the processing speed. To combat this, we make use of the
distinguishing feature of the particle PHD filter that the weight sum
of all the particles equals to the target number at each iteration, and
propose a threshold-based resampling for the particle PHD filter [10].
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In particular, the target number from previous weight update is used
as an approximation of the weight sum in the current iteration, which
is formulated as follows.

Ok+1 ≈
Lk+Jk∑

i=1

w̃
(i)
k (3)

where Lk and Jk denote the particle number for the survival targets
and spontaneous birth targets, respectively.

Note that the above equation can be applied with the assumption
that the target number does not change too abruptly, which is a
reasonable assumption in most cases.

Therefore, the proposed threshold-based PHD resampling is
described as in Algorithm 1,

Algorithm 1 The threshold-based resampling for particle PHD filter.
Initialize threshold:

Set T = Sk−1/(a×N), a > 1;
Begin:

1: n = 0;
2: for j = 1, . . . , N do
3: if w

(j)
k > T then

4: n ← n + 1;
5: x̂(n)

k ← x(j)
k ;

6: end if
7: end for
8: r = 1;
9: for j = 1, ..., M do

10: Assign sample: x̃(j)
k ← x̂(r)

k

11: Assign weight: w̃
(j)
k ← Sk/M

12: r ← mod(r, n) + 1;
13: end for

where x(j)
k and x̃(j)

k represent the particles before resampling and after
resampling, respectively; x̂(j)

k represents the substantial particles; Sk

represents the sum of all weights after weight update at time k; N
and M represent the particle number before resampling and after
resampling, respectively; a is the parameter in the threshold T , which
satisfies a > 1.

The threshold should be smaller than Sk/N in theory. Otherwise,
all particles will be discarded when they have equal weights, i.e.,
w

(j)
k = Sk/N for j = 1, . . . , N . Obviously, there is a trade-off
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Algorithm 2 High-speed particle PHD filter.

1: Step 1: Prediction
2: for i = 1, . . . , Lk−1 do
3: sample xi

k ∼ qk(·|xi
k−1, zk)

4: compute the predicted weights of survival particles:

wi
k|k−1 ←

φk|k−1(xi
k,xi

k−1)

qk(xi
k
|xi

k−1,zk)
wi

k−1

5: end for
6: for i = Lk−1 + 1, ..., Lk−1 + Jk do
7: sample xi

k ∼ pk(·|zk)
8: compute the predicted weights of spontaneous birth weights:

wi
k|k−1 ← 1

Jk

γk(xi
k)

pk(xi
k
|zk)

9: end for
10: Step 2: Update
11: for each z ∈ Zk do
12: compute:

Ck(z) ← ∑Lk−1+Jk

i=1 ψk,z(x
i
k)wi

k|k−1

13: end for
14: for i = 1, ..., Lk−1 + Jk do

15: update weights: wi
k ←

[
1− PD(xi

k) +
∑

z∈Zk

ψk,z(xi
k)

κk(z)+Ck(z)

]
wi

k|k−1

16: end for
17: compute the sum of all weights: S ← ∑

wj
k

18: Step 3: Resampling
19: if k = 1 then
20: Set T = 1/(a×N), a > 1;
21: else
22: Set T = Sp/(a×N), a > 1;
23: end if
24: n = 0;
25: for j = 1, . . . , N do
26: if w

(j)
k > T then

27: n ← n + 1;
28: x̂

(n)
k ← x

(j)
k ;

29: end if
30: end for
31: r = 1;
32: for j = 1, ..., M do
33: Assign sample: x̃

(j)
k ← x̂

(r)
k

34: Assign weight: w̃
(j)
k ← S/M

35: r ← mod(r, n) + 1;
36: end for
37: Sp = S;
38: Step 4: Target estimation
39: estimate the target number: Nk ← round(Nk|k);
40: use clustering algorithm to determine the Nk peaks of the posterior, which are

the estimates of target states.
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in determining the threshold T . Too large a value would discard
some of the substantial particles while too small a value would select
some of the negligible particles. In practice, if the threshold is
determined according to the sum of all weights Sk at the time k, then
the resampling can not be started until all the particle weights are
updated. Therefore, conditioned on that the target number does not
vary abruptly with time in subsequent iteration and the particle PHD
filter has the distinguishing feature that the weight sum of all the
particles equals to the target number at each iteration, the weight sum
at the previous iteration Sk−1 can be used to approximate Sk, that is,
T < Sk−1/N or T = Sk−1/(a×N). The selection of parameter a will
be discussed in Section 5.

With the above threshold-based resampling scheme, the proposed
high-speed particle PHD filter is described in Algorithm 2.

3. TRACKING PERFORMANCE EVALUATION

3.1. Target Tracking Model

To evaluate the overall processing efficiency of the proposed high-
speed particle PHD filter, the following multi-target scenario is used
for illustrating the tracking performance of the proposed algorithm.
The dynamics equation of the targets is the following:

xk+1 =




1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1


xk +




∆T 2/2 0
0 ∆T 2/2

∆T 0
0 ∆T


wk (4)

where xk = [x vx y vy]Tk is target state vector at time k∆T (k is
the time index, and ∆T is the sampling interval), wk = [wx,k wy,k]T
is the vector of independent zero-mean Gaussian white noise with
wk ∼ N(0, Q(k)).

The measurements originate from either targets or clutters. The
target-originated measurement equations are

rk =
∥∥∥∥
[
1 0 0 0
0 0 1 0

]
xk −

[
xs

ys

]∥∥∥∥ + ν1,k (5)

θk = arctan
(

[ 0 0 1 0 ] xk − ys

[ 1 0 0 0 ] xk − xs

)
+ ν2,k (6)

where νk = (ν1,k, ν2,k) is the vector of independent zero-mean Gaussian
measurement noises with standard deviations.

The probability of target survival is ek|k−1(·) = 0.95 and no
spawning is considered here. Each spontaneous birth target has an
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Figure 5. Estimated trajectories and true trajectories.

initial Gaussian distribution with mean and covariance

x = [100 m 3m/s 100 m −3m/s]T (7)
Qx = diag

([
10m2 1 (m/s)2 10m2 1 (m/s)2

])
(8)

The number of spontaneous birth targets has a Possion
distribution with an average rate of 0.2 target per scan. For simulation
parameters, the sampling interval is ∆T = 1; the process noises
are σwx,k

= 0.8 and σwy,k
= 0.08, respectively; the probability of

detection is PD(xk) = 0.98; the measurement noises are σν1,k
= 2.5 and

σν2,k
= 0.005. Clutters are uniformly distributed over a 300 m× 100m

rectangle region. The number of clutter points per scan has a Poisson
distribution with an average rate of r = 10. The number of all particles
are 2048, wherein Lk = 1024 particles are for survival targets and
the other Jk = 1024 particles are for spontaneous birth targets. The
parameter a for the proposed threshold-based resampling is set to 2.

To evaluate the error between the estimated and the true state, the
Optimal Sub-Pattern Assignment (OSPA) is adopted as a multi-target
miss-distance metric, which is described in detail in [24]. Compared
with the former Wasserstein distance metric [25], the OSPA distance
can jointly capture the differences in cardinality and individual
elements between two finite sets in a mathematically consistent and
intuitively meaningful way. According to Ref. [24], the parameters
p = 2 and c = 100 are used in our simulation.

3.2. Simulation Results

The simulated true tracks of three targets over 40 scans, as well as
the estimated trajectories, are plotted in Figure 5. Correspondingly,
Figure 6 depicts the tendency of the x- and the y-components of the
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tracks vs time, respectively. For comparison, the tracking results using
the traditional particle PHD filter are also presented. It is seen that
the estimated positions based on both the traditional particle PHD
filter and the proposed particle PHD filter are similar and they are all
close to the true tracks at a single Monte Carlo (MC) trial.

Figure 7 plots the estimated target number against the ground
truth and the OSPA multi-target miss distance at each time instant.
It can be seen that the proposed high-speed particle PHD filter has
the similar tracking performance as the traditional particle PHD filter.
Also it is noticed that for both the propose PHD filter and the
traditional one, the multi-target miss distance exhibits peaks at the
instances where the estimated target number is incorrect. When the
estimated number is correct, the OSPA miss distance is relatively
small.

Figure 8 presents a set of OSPA distances averaged over 5000 MC
runs for p = 2 and c = 100, which provides a natural and
intuitive interpretation of the OSPA metric in terms of localization
and cardinality errors. From this figure, it is clear that the high-speed
particle PHD filter achieves the similar performance to the traditional
particle PHD filter. Note that in terms of cardinality error, the OSPA
distance demonstrates a small pulse once the target number changes.

Intuitively, the tracking performance will be degraded due to
the threshold difference between the approximation and the original
one when the target number changes in two successive time index.
However, note that although the idea of proposed resampling is to keep
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the relatively more important particles and discard those relatively less
important particles according to the threshold, the particles and the
corresponding weights other than the threshold is directly related to
the tracking performance. This makes the simulation results above
reasonable. Besides, the occasions that the target number changes do
not happen very frequently.

4. DISCUSSIONS

In this section, we further discuss how to determine the threshold
T , or more specifically, the parameter a. To compare the proposed
resampling with the traditional SR for the particle PHD filter, a
simulation-based experiment on the averaged OSPA distance based
5000MC trial is carried out. The results are shown in Figure 9, where
tracks with different initial conditions are simulated, and we can have
the following inferences.

• For a certain particle number, e.g., N = 1000, it is found that
the particle PHD filters with a larger threshold corresponding to
a smaller parameter a has a smaller averaged OSPA distance, and
thus a better tracking accuracy.

• In the traditional particle PHD filter with SR as shown in
Figure 9, the particle number characterizing the multi-target
posterior probability density is determined from a trade-off
between the tracking accuracy and the computation cost. That
is, a larger particle number leads to higher estimation accuracy,
which requires more computation cost at the same time.

• However, for the proposed threshold-based resampling based
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particle PHD filter, the meaning of the threshold T = Sk−1/(a×
N) are two-folds. On one hand, for a fixed value of parameter
a, a larger particle number N means a lower threshold, which
will degrade the resampling accuracy, and consequently affect the
overall filtering accuracy. On the other hand, for a fixed value of
threshold T , a larger particle number leads to higher estimation
accuracy. So the expected tracking accuracy of the proposed
particle PHD filter is determined by the combination of a and
N .

Hence, to obtain better tracking accuracy by increasing the
particle number, we can adopt a strategy of keeping the threshold
constant for a reasonable value. For example, for one case that a = 10
and N = 1000, the averaged OSPA distance is 18.9059. If we want to
obtain better tracking accuracy by doubling the particle number with
N = 2000, the value of parameter a can be halved at the same time,
and the consequent averaged OSPA distance is 18.3245. Obviously,
the latter case outperforms the former case in terms of the tracking
accuracy.

5. CONCLUSION

In this paper, we have proposed a novel threshold-based resampling
scheme for high-speed particle PHD filtering, where the threshold is
determined according to the target number estimated in the previous
iteration. It has been shown that the particle PHD filter with the
proposed resampling is able to fully pipeline the Prediction, Update
and Resampling, and thus significantly reduce the processing latencies
of the particle PHD filter. Meanwhile, the particle PHD filter with
the proposed resampling scheme has similar tracking accuracy as the
traditional particle PHD filter.
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