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Abstract—We propose a novel signal model by combining the sparse
stepped frequency signals with chaotic signals, i.e., the sparse stepped
chaotic signal (SSCS) model, as well as the corresponding compression
algorithm based on compressed sensing. In SSCS, the chaotic signals
are modulated to sparse stepped frequencies to compose a transmitting
burst. When receiving, the echo signals are demodulated to the
baseband and then can be sampled directly at a rate much lower than
the Nyquist rate determined by the bandwidth of chaotic signal of each
subpulse. Compared with radars using conventional stepped frequency
waveforms, the SSCS radar can transmit fewer subpulses in a burst and
directly use lower speed ADC next to the receiver. Both simulated and
real radar data are processed to demonstrate the effectiveness of the
proposed SSCS as well as the compression algorithm by which high
resolution range profiles are very well reconstructed.

1. INTRODUCTION

High-resolution synthetic aperture radar (SAR) and inverse synthetic
aperture radar (ISAR) have been widely applied in both civilian
and military fields. In order to get high-resolution range profile,
the stepped frequency chirp signal (SFCS) was proposed and applied
practically. SFCS is composed of a burst of narrow-band subpulse
chirp signals with their carrier frequencies increased/decreased linearly
or nonlinearly [1–4]. It can be synthesized to get a wide band
signal with subaperture processing [4]. In order to nullify grating
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lobes, the frequency step must be smaller than the bandwidth of each
subpulse [2].

Random noise radar is a kind of radar which transmits
stochastic/pseudo-stochastic signals [5–12]. It has good performance
on electronic counter countermeasure (ECCM) and very low
probability of interception, as well as achieving approximately
“thumbtack” ambiguity function [5, 6]. Chaotic signal is one kind
of pseudo-stochastic signals which has already been used in random
noise radars [9–12]. In [10], point target imaging using chaotic FM
signals was simulated. In [11], placeFlores analyzed a set of chaos-based
FM signals for wideband radar imaging and assessed their resolution
capability and sidelobe distribution on the range-Doppler plane.

The compressive sensing (CS) theory [13–16] states that, it is
possible to reconstruct sparse or compressible signals from highly
incomplete samples or measurements, which are even much fewer
than what is required according to the Nyquist Theorem. As
we know, the application of CS has two preconditions that: (1)
the under reconstructed signal is sparse or compressible, (2) the
measurements are incoherent. Since many SAR/ISAR images are
sparse or compressible in some proper bases, the CS theory has shown
very good prospects in SAR/ISAR applications [17–34].

The usually adopted stepped frequency signals for achieving high-
resolution range profile have obvious drawbacks: (1) quite a few
number of subpulses are needed in a burst and the echoes of each
subpulse must be recorded, this will definitely lead to large amount
of data and bring large pressure on data sampling and storage; (2) It
is sensitive to the phase errors, only small phase errors among the
subpulses can degrade the range profile seriously; (3) the frequency
gaps between adjacent subpulses are not allowed, or it will generate
grating lobes. There were some methods proposed to overcome these
drawbacks. In [36], the authors applied super-SVA methods to fill the
spectrum gaps between subchirps in SFCS model. However when the
gaps are larger than the bandwidth of one subchirp, the method may
fail. In [22–23], the authors proposed sparse stepped frequency chirp
signal for ISAR imaging using CS theory. Although the amount of
data and acquisition time can be reduced, the determinate waveform of
subpulse chirp signal will lead to relatively complicated down-sampling
scheme, and at the same time, this kind of signal is very weak to resist
interference.

Up to now, most of the reported random noise radars use fixed
carrier frequency which once transmit only one pulse. Since it is
usually difficult to generate ultra-wide-band random signals in one
pulse, so is it to obtain high range resolution. Although some works
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on applying CS to random noise radar to reduce the data have been
carried out [31–34], most of them just presented simulation results but
not real experiment results.

In this paper, we propose the sparse stepped chaotic signal (SSCS)
model for ultra wideband SAR imaging through combining the stepped
frequency technology, compressive sensing and chaotic signal together.
In this model, chaotic signals are modulated to sparsely stepped carrier
frequencies. The echo signals are demodulated to the baseband and
then sampled at a rate much lower than the Nyquist rate which is
at least two times of the bandwidth of each chaotic subpulse (the
“Nyquist rate” refers to hereafter in this paper). Since the transmitted
waveform is chaotic, the echo data are incoherent inherently, thus it is
very suitable for applying the CS theory and realizing downsampling
directly. We also propose a novel compressing algorithm for SSCS to
get high-resolution range profile based on both CS and subaperture
algorithms [4, 13–16]. Both simulated data and real radar data of
4GHz bandwidth from a moving train are processed to verify the
proposed algorithm. Compared with the radars using conventional
stepped frequency waveforms [1–4], the SSCS radar may transmit fewer
subpulses in a burst and uses lower speed ADC next to the receiver,
so the hardware design of the radar system can be simplified and
the pressure of data sampling and storage can be alleviated. Due
to the stochastic property of the chaotic signals, the SSCS radar
has good characteristics of low probability of interception (LPI) and
low probability of detection (LPD). Different from the sparse stepped
frequency chirp signal used in [22, 23], the bandwidth of the chaotic
signal of each subpulse is much larger, so we can synthesize a wideband
with just fewer subpulses and the model has more advantages in anti-
jamming. Compared with the Super-SVA technique used in [36], the
CS approach we proposed is more robust, and the frequency gaps
between subpulses can be larger than the bandwidth of one subpulse.

The organization of the paper is as follows. Section 2 reviews
the CS theory briefly. In Section 3, the SSCS model is proposed.
In Section 4, we describe the novel compressing algorithm for SSCS.
The experiment results of simulation and real radar data are given
in Section 5 to show the effectiveness of the proposed approach. The
conclusion is drawn and the further works are addressed in Section 6.

2. OVERVIEW OF COMPRESSIVE SENSING

Suppose a discrete signal x ∈ CN×1, which can be represented by an
orthonormal basis Ψ ∈ CN×N :
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x = Ψα (1)

When there are only K ¿ N nonzero (or far larger than zero) elements
in α ∈ CN×1, we call x a K-sparse signal under the basis Ψ.

We use a matrix Φ ∈ CM×N to represent the measurement
process, the collected data y ∈ CM×1 (M < N) can be expressed
as:

y = Φx + n (2)

n is the additive noise in the measurement process.
By combine (1) and (2), we can get:

y = ΦΨα + n = Θα + n (3)

where Θ = ΦΨ ∈ CM×N is called the sensing matrix.
The reconstruction of x is equivalent to the reconstruction of

α. According to the CS theory, when Θ satisfy the restricted
isometry property (RIP) [13], the signal α can be recovered from y
with overwhelming possibility by solving the following optimization
problem:

min ||α||l1 s.t. ||Θα− y||l2 ≤ ε (4)

where || • ||l1 denotes the l1-norm, ε is an upper bound on the size of
the noisy contribution and ||n||l2 ≤ ε.
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Figure 1. The conventional stepped frequency signal model. (a) Chirp
signal as subpulse waveform; (b) chaotic signal as subpulse waveform.
The subpulse number is J , the bandwidth of each subpulse is B, and
the carrier frequency of j-th subpulse is fcj = fc + (j − 1) ·∆f .
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The RIP imposes that there exists a δK ∈ (0, 1) such that,

(1− δK)||α||2 ≤ ||Θα||2 ≤ (1 + δK)||α||2 (5)

holds for an arbitrary K-sparse vector α. The smallest δK is called
the restricted isometry constant (RIC) of Θ. To recover the K-sparse
vector α, δ2K should be smaller than 1.

The RIP states that the mapping Θ acts like an isometry mapping
on an arbitrary K-sparse vector α. That is to say, an arbitrary subset
of K columns taken from Θ is nearly orthogonal.

There are many approaches can be used to reconstruct the K-
sparse vector α in Equation (4), such as l1-minimization methods,
greedy algorithms, iterative thresholding, and so on. In this paper, we
choose the SPGL1 algorithm owning to its advantages in dealing with
large-scale sparse reconstruction.

3. SPARSE STEPPED CHAOTIC SIGNAL (SSCS)
MODEL

First, let’s describe the conventional stepped frequency signal model
as shown in Figure 1 briefly. Narrowband pulses of some waveforms
are modulated on stepped carrier frequencies forming a burst as the
radar’s transmitting signal. The waveform of subpulse can be chirp
or chaotic signal or other signal forms. Here we take chirp and
chaotic signal as examples. Suppose there are J subpulses in a burst,
and the bandwidth of each subpulse is B. The subpulses’ carrier
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Figure 2. The sparse stepped chaotic signal (SSCS) model. It
is constructed by randomly choosing M subpulses from the total J
subpulses in Figure 1(b).
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frequencies are fcj = fc + (j − 1) · ∆f , in which fc is the start
frequency, ∆f is the frequency step and must be smaller than B,
j = 1, 2, 3, . . . J . The total bandwidth of a burst after synthesization
is Btotal = B + (J − 1) · ∆f . The echo signals of each subpulse are
demodulated to baseband and then sampled at the Nyquist rate FS .
Then the subaperture algorithm in [4] can be used to reconstruct a
high resolution range profile.

Now, we propose the sparse stepped chaotic signal (SSCS) model
as shown in Figure 2. It is constructed by drawing M subpulses from
the total J subpulses of chaotic signals randomly to form a transmitting
burst, whose carrier frequencies are fcj1 , fcj2 , fcj3 , . . . fcjM . At the
same time we use chaotic signal for each subpulse. The echo signals are
demodulated to baseband and then sampled at a rate much lower than
the Nyquist rate FS . The SSCS can be easily implemented into an
existing radar system on the basis of conventional stepped frequency
chirp signal.

4. CS-SUBAPERTURE ALGORITHM

In this section, we propose the CS-subaperture algorithm for compress-
ing the SSCS based on both CS and subaperture algorithms [4, 13–16],
as shown in Figure 3. The algorithm procedure is explained as follows.

Step1: Reconstruct the coarse range profile from the downsam-
pled echo of each subpulse by using the CS algorithm.

In general, the echo signals sR(t) of a subpulse can be written
as the convolution of the transmitted subpulse s(t) with the target
function σ(t), which is described as:

sR(t) =
∫ ∞

−∞
s(t− τ)σ(τ)dτ + η(t) (6)

where η(t) is the additive noise.
Suppose the echo signals are demodulated to baseband and

sampled at the Nyquist rate FS , then in the discrete domain, the echo
data can be written as:

sR [n] =
NT∑

l=1

s[n− l] · σ[l] + η[n] (7)

where NT is the sampling length of sR(t).
Let’s use the vector sR ∈ CNT×1 to represent the sampled echo

data, which can be formulated as:

sR = Aσ + η (8)
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Figure 3. The flowchart of the CS-subaperture algorithm.

In the above equation, σ ∈ CNT×1 is the discrete range profile;
η ∈ CNT×1 is the additive noise in the echo data; A ∈ CNT×NT

is the discrete convolution matrix constructed based on the complex
baseband signal of transmitted subpulse s(t). For the construction of
A one can refer to [26, 27] and it will not be repeated here.

Suppose there are only K (K ¿ NT ) scatterers in the range scene.
That is to say, the number of nonzero elements in the vector σ is K [27].
Then, we can say that sR has a sparse representation under A, and A
is the sparse matrix.

In SSCS radar, the echo signals are sampled at the rate of FD,
which is much lower than FS . Let’s use a vector y ∈ CND×1 to
represent the sampled echo signals, which can be obtained by uniformly
downsampling the echo data sR. This operation can be represented by
a downsampling matrix V, which is a partial unit matrix, and can be
written as:

VND×NT
= {vnd,nt} =

{
1 , nt = D · (nd − 1) + 1
0, others

nd = 1, 2, . . . ND, nt = 1, 2, . . . NT . (9)

where D = FS
FD

is called the downsampling rate.
Then, y can be represented as follows:

y = VsR = V(Aσ + η) = Uσ + n (10)
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In the above equation, n = Vη ∈ CND×1 is the noise in the echo
data of SSCS radar; U = VA ∈ CND×NT is the sensing matrix. A is
the discrete convolution matrix constructed by the transmitted chaotic
subpulse signal. Since the chaotic signal has very good incoherent
property, the correlation between different columns in A is very low,
i.e., A is an approximately orthogonal matrix. U is constructed by
extracting the rows of A uniformly and the approximate orthogonality
in columns can be held on, i.e., U is expected to meet RIP condition
well. This will be verified further in Section 5.

According to the CS theory, we can reconstruct σ through solving
the following equation:

_
σ= arg min ||σ||1 s.t. ||y−Uσ||22 ≤ ε (11)

where ε is the upper bound on the size of the noisy contribution,
||n||l2 ≤ ε.

_
σ is the reconstructed coarse range profile for one subpulse.

We process the M subpulses’ echoes as above respectively, so M
coarse range profiles can be obtained.

Step2: Calculate the spectrum positions of M coarse profiles in
the synthesized spectrum of much wider bandwidth.

Transform the coarse range profiles into frequency domain by FFT
operation, i.e.,

gjm
= FFT

[
_
σjm

]
(12)

where
_
σjm∈ CNT×1 is the range profile reconstructed from the jm-th

subpulse, and gjm
∈ CNT×1 is the corresponding spectrum.

Calculate the relative shift of the spectrum of the jm-th profile
according to the following equation [4]:

fshift(jm) = integer((jm − 1)∆f ·NT /FS) m = 1, 2, · · ·M (13)
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Figure 4. The schematic drawing of jm-th subpulse’s spectrum. The
length of the spectrum is NT , and the length of the effective part zjm

is NF . The indexes corresponding zjm in the synthesized spectrum are
fshift(jm) ∼ fshift(jm) + NF − 1.



Progress In Electromagnetics Research, Vol. 137, 2013 343

Since the bandwidth B of each subpulse is larger than the
frequency step ∆f , the spectra of any two adjacent subpulses will
overlap. We should cut off the overlapped part and reserve the
effective part of each spectrum in the synthesized spectrum. Let’s
use zjm ∈ CNF×1 to represent the effective part of the jm-th
subpulse’s spectrum, which is the shadowed part in Figure 4 and
Nf = integer(∆f · NT /FS). The indexes corresponding zjm in the
synthesized spectrum are fshift(jm) ∼ fshift(jm) + NF − 1.

Step3: Reconstruct the high resolution range profile from the M
subpulses’ spectra utilizing the CS algorithm.

The length of the whole spectrum after synthesizing M subpulses
is still approximately as J ·NF if we always keep the first and the last
subpulses when randomly drawing. Let’s use a vector b ∈ CJ ·NF×1 to
represent the high range profile. So the jm-th subpulse’s spectrum can
be described as the following equation:

zjm = Hjmb (14)

where Hjm is a partial Fourier transform matrix, which can be
structured as follow:

Hjm=




1 W fshift (jm) · · · W fshift (jm)·(J ·NF−1)

1 W fshift (jm)+1 · · · W [fshift (jm)+1]·(J ·NF−1)

...
... · · · ...

1 W fshift (jm)+NF−1 · · · W [fshift (jm)+NF−1]·(J ·NF−1)




NF×J ·NF

(15)

In the above matrix, W = e
−j 2π

J·NF .
After combing the M spectra, a new column vector can then be

constructed:

zM =




zj1
zj2
...

zjM




M ·NF×1

(16)

According to (14) and (16), we have following equations:

zM = HMb (17)

HM =




Hj1
Hj2

...
HjM




M ·NF×J ·NF

(18)

where HM is a random partial unit Fourier matrix, whose columns also
satisfy the approximate orthogonality [23].
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According to the CS theory, we can reconstruct b from the vector
zM by solving the following equation:

_
b= arg min ||b||1 s.t. zM = HMb (19)

_
b is the finally reconstructed high resolution range profile.

5. EXPERIMENT

The experiment radar system works at Ku-band. It can transmit
stepped frequency bursts with chirp or chaotic signal as the subpulse.
The radar hardware system mainly consists of frequency synthesizer,
transmitter, power amplifier, receiver, control electronics and data
recording device. The major technical parameters of the system are
listed in Table 1.

Table 1. Major technical parameters of the radar system.

Carrier

frequency fcj

Frequency

step ∆f

Subpulse

bandwidth B

Subpulse

width Tp

12.78GHz–16.58 GHz 200 MHz 224MHz 4 µs

Subpulse

interval Tg

Subpulse

number J

A/D sampling

rate FS

2 µs 20 250MHz

According to the parameters in Table 1, the total bandwidth after
synthesizing J subpulses is about Btotal = B + (J − 1) ·∆f ≈ 4GHz,
so the corresponding range resolution is about 0.0375 m.

We choose the improved Logistic-Map signal as the subpulse
waveform. The discrete form of this chaotic function is expressed as:

xn+1 = f(xn) = 1− 2(xn)2 xn ∈ (−1, 1) (20)

(20) is a nonlinear mapping function, which can be used to produce
a pseudo-stochastic waveform given an arbitrary initial value. The
detailed properties of the improved Logistic-Map signal can be found
in [12]. Let the chaotic signal pass through a lowpass filter to generate
a bandlimited baseband signal as the real part of the transmitted
baseband waveform, and use the Hilbert transform to get the image
part. Quadrature modulation is applied to get the IF signal, which is
then up-converted to the final transmitted signal. The real part and
the autocorrelation of the complex baseband chaotic signal are shown
in Figure 5.
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Figure 5. The improved Logistic-Map signal: (a) the real part; (b) the
autocorrelation.
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sensing matrix constructed from
the complex baseband Logistic-
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Taking downsampling rate D = 5 as an example, the real part
of the sensing matrix constructed by the complex baseband chaotic
signal is shown in Figure 6, which is mentioned in Equation (10). In
this figure, the green color corresponds to zeros. It is clearly shown
that the sensing matrix is a band matrix, and the nonzero elements
are distributed following a band crossing the matrix from the upper
left corner to the bottom right one. By calculating the scalar product
of each column and the all columns in the matrix including itself, we
can get the autocorrelation matrix, as shown in Figure 7, from which
one can observe that the elements are mostly very small except those
at the diagonal denoting the scalar product of a column itself. So the
approximate orthogonality between different columns is verified, this
means that the sensing matrix satisfy the RIP.
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In the following, we will conduct simulations using SSCS with
the parameters of Table 1 adopted. First, we evaluate the impulse
response of CS-subaperture algorithm with SSCS. In the processing,
we interpolate the results 10 times with zero-padding in frequency
domain in order to show the main lobe and sidelobes clearly, though
the impulse response of CS-subaperture algorithm looks like not
“sparse”. The results are shown in Figure 8. The results of one
single 4 GHz bandwidth chaotic pulse and stepped frequency chaotic
signal having 20 subpulses are represented for comparison, which are
shown in Figures 8(a)–(b). There are grating lobes in the result
of subaperture algorithm with SSCS having 10 subpulses, which are
shown in Figure 8(c). Although super-SVA method can depress the
grating lobes, the result is not perfect, which are shown in Figure 8(d).
The result of CS-subaperture algorithm are shown in Figure 8(e), which
are the same with the results of one single 4GHz bandwidth chaotic
pulse and stepped frequency chaotic signal having 20 subpulses.
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Figure 8. The impulse response diagrams. (a) Matched
filter algorithm with single chaotic pulse of 4 GHz bandwidth;
(b) subaperture algorithm with stepped frequency chaotic signal,
subpulse number M = 20; (c) subaperture algorithm with SSCS,
subpulse number M = 10; (d) subaperture algorithm with SSCS
and super-SVA method filling the spectrum gaps, subpulse number
M = 10; (e) CS-subaperture algorithm with SSCS, subpulse number
M = 10, downsampling rate D = 10.
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We use Monte Carlo method to evaluate our algorithm
on Impulsion Response Width (IRW) and Peak Sidelobe Ratio
(PSLR) [37] under different SNR. The results are shown in Figure 9.
Each result is obtained by averaging the results of 100 runs. The
IRW is consistent with the theoretical value 0.0375 m. The PSLR is
consistent with the theoretical value 13.3 dB in high SNR environment
(SNR > 20 dB). In low SNR environment, when the downsampling
rate D is large, the PSLR is a little lower than 13.3 dB.

Let us carry out one dimensional simulation with multiple targets.
In order to be consistent with the real experiment, we set the interested
scene to be 56–60m far away from the radar. There are 7 targets in
the scene, and the targets’ true positions and amplitudes are listed in
Table 2. The closest two targets are target 4 and target 5, which are
separated by a distance of 0.07 m.

As for comparison reference, we represent the results of matched
filter algorithm with one single chaotic signal of 4GHz bandwidth and
subaperture algorithm with stepped frequency chaotic signal having 20
subpulses, as shown in Figure 10. The result of subaperture algorithm
without filling spectrum gaps and that of super-SVA method with
the spectrum gaps filled are shown in Figure 11. The results of CS-
subaperture algorithm are shown in Figure 12. All the results are
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Figure 9. (a) PLSR versus SNR. (b) IRW versus SNR. The results
are calculated with different subpulse number M and downsampling
rate D.

Table 2. The target parameters (positions and amplitudes).

Target No. 1 2 3 4 5 6 7

Position (m) 56.5000 57.2500 57.6250 58.0000 58.0700 58.7500 59.5000

Amplitude 0.87 0.61 0.71 0.83 0.83 0.56 1.00
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Figure 10. (a) The result of matched filter algorithm with one single
chaotic pulse of 4 GHz bandwidth. (b) The result of subaperture
algorithm with stepped frequency chaotic signal having 20 subpulses.
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Figure 11. The result of subaperture algorithm with SSCS. (a),
(b) and (c) are the results without filling the spectrum gaps, the
corresponding subpulse number M are 16, 12, 8, respectively, while (d),
(e), (f) are the results with spectrum gaps filled by super-SVA method,
the corresponding subpulse number M are 16, 12, 8, respectively.

the original reconstructions without interpolation. From comparison
of Figure 11 and Figure 12 we can see that, the range profiles
reconstructed by subaperture algorithm are degraded seriously due
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to the missing spectrum and the super-SVA method also fail in this
situation, whereas the range profiles reconstructed by CS-subaperture
algorithm with much less data are perfect.
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Figure 12. The results of CS-subaperture algorithm with SSCS with
different subpulse number M and downsampling rate D. (a) M = 16,
D = 5; (b) M = 12, D = 5; (c) M = 8, D = 5; (d) M = 16, D = 10;
(e) M = 12, D = 10; (f) M = 8, D = 10.
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Figure 13. (a) The MSE versus subpulse number M . The results
are calculated with different downsampling rate D in noise free
environment; (b) the MSE versus SNR. The results are calculated with
different subpulse number M and downsampling rate D.
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Next, we use Monte Carlo method to evaluate our algorithm on
the precision of targets reconstruction. The mean squared error (MSE)
is taken as a performance measure, which is defined as follows:

MSE =

∥∥∥∥
_
b −b

∥∥∥∥
2

||b||2 (21)

where
_
b is the reconstructed range profile, and b is the truth. The

MSEs of CS-subaperture algorithm with different subpulse number M
and downsampling rate D in noise free environment are calculated and
presented in Figure 13(a), the MSEs of CS-subaperture in different
SNR are shown in Figure 13(b). Each result is obtained by averaging
the results of 100 runs. From Figure 13(a) we can see that, the
CS-subaperture algorithm works very well in noise free environment
as expected. Figure 13(b) shows that, in high SNR environment
(SNR > 20 dB), the CS-subaperture algorithm can reconstruct the
targets accurately enough. However, in low SNR environment, when
the downsampling rate D is large, the performance of this algorithm
degrades remarkably. A disadvantage of the CS method rest with
that it is sensitive to the environment noise, this point needs further
investigation.

In the above, the proposed signal model and the compressing
algorithm have been tested by simulation. Now, let’s further test
them by real experiment. In the experiment, the Beijing No. 13
light railway train is taken as the imaging target. Figure 14 gives a
photo of the train for reference. The train has six compartments, each
compartment is about 19.2 m long and the total length is about 118 m;
each compartment has four similar doors and three similar windows;
there are ventilators on the top of each compartment at both ends.
In order to catch the whole train, the photo was taken in a squint-
view. In the experiment, the radar system worked in a side-view. The
experiment geometry can refer to Figure 6(c) in [38].

Figure 14. The picture of No. 13 light railway train in Beijing. The
ventilators of air-conditioners are marked in the picture.
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Figure 15. The baseband echoes of a burst of conventional stepped
frequency chaotic signal. There are 20 subpulses in the burst. The
sampling rate FS is 250 MHz.

Figure 16. Imaging by subaperture algorithm with conventional
stepped frequency chaotic signal (the all 20 subpulses are used). In
the picture, ventilators are marked with a red solid circle, a door is
marked with yellow dotted circle and a window is marked with red
dotted circle.

In our experiment radar system, the transmitted burst consists of
20 subpulses. The echo signals are down-converted to baseband and
sampled by the ADC at the rate of 250 MHz. The real parts of a burst
of echoes are shown in Figure 15. There are 30,000 samples totally for
a burst.

Range-Doppler (RD) algorithm is applied for imaging, and the
subaperture algorithm is used to compress the echo signals in range,
while the azimuthal compression can be referred to [35] and will
not repeat here. The two-dimensional imaging result is presented in
Figure 16. We should point out that due to the range profiles have not
be calibrated, the range readings shown by the vertical axis are larger
than the truth. In Figure 16, the six-compartment structure, doors,
windows as well as ventilators are all clearly identified. In the image
we marked ventilators with a red solid circle, a door with yellow dotted
circle and a window with red dotted circle. One may notice that in the
central two compartments, the “doors” and the “windows” are much
blurred. An interesting explanation to this phenomenon is that there
are much more passengers in the central compartments usually and
this is the people lead to the much complicated scattering. We should
illustrate that in order to clearly show the details, the vertical axis has
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been exaggerated about 20 times compared with the horizontal axis.
In the observed scene, the train only occupies a few cells in range

direction, thus, the scene is sparse in range direction. Now, let’s
select the echoes of some subpulses from the total 20 subpulses and
perform downsampling operation on them so as to get the echo data
of SSCS radar. Taking subpulse number 10 and downsampling rate 5
as an example, the real parts of the SSCS radar’s echoes are shown in
Figure 17. So there are just 3,000 samples totally.

The proposed CS-subaperture algorithm is used to compress
the signals in range and traditional algorithm is used for azimuthal
compression as mentioned above. The imaging results with different
subpulse number M and downsampling rate D are presented in
Figure 18 with (a), (b) and (c) respectively showing the results
corresponding to M = 16, D = 5; M = 14, D = 5 and M = 10,
D = 5. By comparing Figures 18 (a)–(c) with Figure 16, it is clearly
shown that they all agree with each other very well, especially for the
imaged structures of ventilators, doors, and windows.

One may ask such a question “why CS reconstruction algorithm
is still workable with SSCS, although the whole signal spectrum is not
continuous?” As we know, usually grating lobes are unavoidable in
this case [2]. Our explanation is that: (1) the measurement matrix is
formed through random selection of the signals along range direction;
(2) the gaps just occupy a small part of the whole spectrum, so the
absence of spectrum does not affect the random characteristics; (3) the
signal is reconstructed through optimization process.

One may ask another question “With how less number of subpulses
and with how less samples we still can reconstruct the range profiles?”
This question is very difficult to answer because they are target
dependent. This will be further investigated in the future. Here we
can only point out a principle should be adhered to: we should keep
the first and the last subpulses not skipped.

Figure 17. The baseband echoes of a burst of the SSCS. The 10
subpulses are choosen from the original total 20 subpulses. The
downsampling rate D = 5, thus the corresponding sampling rate F
in SSCS radar is 50 MHz.



Progress In Electromagnetics Research, Vol. 137, 2013 353

(a)

(b)

(c)

Figure 18. Imaging by CS-subaperture algorithm using SSCS with
different subpulse number M and downsampling rate D. (a) M = 16,
D = 5; (b) M = 14, D = 5; (c) M = 10, D = 5.

6. CONCLUSION

In this paper, we propose a sparse stepped chaotic signal (SSCS) model,
as well as a novel compressing algorithm to get high-resolution range
profile based on both CS and subaperture algorithms. By using SSCS,
we can achieve the same resolution with much less data than that
by using conventional stepped frequency signals. So the pressure of
data sampling and storage for high-resolution radars can be alleviated.
Both simulation and real experiment data are processed to verify the
proposed signal model and the algorithm. However our work is far from
end, there are many works deserve to be done in the future. Some of
them are:

(1) At represent, the CS-subaperture algorithm is just suitable for
targets with low radial velocity. The phase distortions caused
by the velocity in subpulses are small and can be ignored in the
processing. However, for moving targets with high radial velocity,
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the distortions caused by the velocity can be large, which will
degrade the range profile seriously, i.e., the motion compensation
is inevitable. In most situations, the moving targets are sparse on
the range-velocity plane, using CS theory to estimate the velocity
of the targets and reconstruct the high-resolution range profile is
a topic we are researching on.

(2) In the current experiment, the echo of SSCS radar is extracted
from the existing echo data which is sampled according to the
Nyquist sampling rate. In the future, we will construct the SSCS
radar veritably by modifying our existing radar system;

(3) In this paper, we assume that the targets are point-like reflectors
at discrete spatial positions, and the number of targets is much
less than the total number of discrete spatial positions. Complex
objects are approximately equal to a combination of independent
point reflectors at discrete spatial positions. However, this model
may not be suitable for all complex targets, so we should search
other bases in which the specific complex targets can be sparsely
expressed;

(4) We just use the improved Logistic-Map signal as the subpulse right
now. In the future, we need to search other chaotic signals which
may be more suitable for the sparse optimization reconstruction,
that is to say, the sensing matrix constructed according to the
signal should be much easier to satisfy the RIP.
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