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Abstract—Improved quasi-static expressions are derived for the time-
harmonic electromagnetic (EM) field components excited by a vertical
electric dipole (VED) lying on the surface of a flat and homogeneous
lossy half-space. An analytical procedure is developed that allows to
evaluate the complete integral representations for the fields, once the
non-oscillating part of the integrand in the expression of the magnetic
vector potential is replaced with its quadratic approximation for small
values of the ratio between the wavenumbers in free-space and in
the conducting medium. The advantage of the proposed second-order
quasi-static approximations resides in the possibility of relaxing the
assumption of highly conducting half-space. This makes it possible
to overcome the limitations implied by the previously published
zeroth-order formulation, whose validity is restricted to extremely
low frequencies for poorly conducting media. Numerical results are
presented to illustrate the reduction of relative percent error arising
from using the improved quasi-static field expressions.

1. INTRODUCTION

The problem of evaluating the electromagnetic field produced by
an elementary dipole source located above a plane conducting half-
space has attracted the attention of many researchers beginning
with Sommerfeld [1–4]. Yet, to date the derivation of closed-form
expressions from the complete integral representations for the field
components has proven to be a prohibitive task, except for certain
special cases which, fortunately, cover many practical applications
(EM sounding to detect buried objects, radio propagation, therapeutic
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heating of tissues) [3–11]. Useful simple expressions have been obtained
for the case of the vertical electric dipole, under the assumptions that
both the source and field points are located on the surface of the
medium, and the operating frequency is low enough that k0ρ ¿ 1,
being k0 the free-space wavenumber and ρ the source-receiver distance.
Such quasi-static field approximations, the summary of which is given
by Bannister [8], are subject to the further condition that the half-space
is much more dense than air (|k1| À k0), and this is the reason why
they may be referred to as zeroth-order approximations [12, 13], whose
frequency range of validity strongly depends upon the electromagnetic
properties of the material half-space. Due to this feature, the zeroth-
order formulation fails at extremely low frequencies if the electrical
conductivity of the material half-space is very poor, like, for instance,
in the case of permafrost, igneous and metamorphic rocks [5, 6].

The scope of the present paper is two-fold. First, to develop
a rigorous analytical procedure that allows to derive second-order
quasi-static expressions for the field components produced by a VED
lying on the surface of a lossy medium, so to overcome the described
limitation implied by the previously published formulation. Second,
to quantify through numerical simulations the error that arises from
applying the zeroth-order quasi-static approximations in the case of
poorly conducting media. In Section 2 the non-oscillating part of
the integrand in the expression for the vertical component of the
magnetic vector potential is replaced with its quadratic approximation
for small values of k0/|k1|. Next, the field integrals are cast into forms
involving only known tabulated Sommerfeld Integrals. In Section 3, the
relative percent error resulting from applying the zeroth- and second-
order formulas instead of performing numerical evaluation of the field
integrals is computed as a function of frequency. The obtained results
demonstrate that, up to k0ρ = 0.36, second-order expressions exhibit a
good level of accuracy for all the values assumed for the electromagnetic
parameters of the half-space, while the zeroth-order approximations
begin to breakdown far before entering the non-quasi-static frequency
region if the conductivity of the half-space is sufficiently small. It is
seen that the zeroth-order formulation may produce, even in the quasi-
static frequency region, a relative percent error beyond 30%, while the
relative error arising from applying the improved expressions for the
fields does not exceed 7% up to k0ρ = 0.36.

2. THEORY

Consider a VED of moment pejωt lying on the surface of a flat,
homogeneous, isotropic and linear lossy medium. The EM parameters
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Figure 1. Sketch of a vertical electric dipole on a homogeneous lossy
medium.

of the medium are as depicted in Fig. 1, and a cylindrical co-
ordinate system (ρ, ϕ, z) is introduced. The frequency-domain integral
representations for the EM field components Eρ, Ez, and Hϕ generated
in the air region may be written as [14–18]

Eρ = −jω

k2
0

∂

∂ρ

∂A

∂z
, (1)
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0
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is the transverse Laplacian operator, and

A =
µ0 p

2π

∫ ∞

0
eu0z 1

u0 + τ2u1
J0(λρ)λdλ (5)

is the z-component of the magnetic vector potential, being J0(ξ) the
zeroth-order Bessel function, and

un =
(
λ2 − k2

n

)1/2
, (6)

kn =
(
ω2µnεn + jωµnσn

)1/2
, (7)

τ =
k0

k1
. (8)

The scope of this paper is to find explicit expressions for the
components Eρ, Ez, and Hϕ at z = 0− for the quasi-static case k0ρ¿1,
which are valid regardless of the order of magnitude of the half-space
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conductivity. A glance to (1)–(3) suggests that this problem reduces
to that of evaluating the derivatives

∂A

∂z

∣∣∣∣
z=0

,
∂A

∂ρ

∣∣∣∣
z=0

. (9)

To this goal, at first the identity
1
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(10)

and the well known result [19, p. 9, No. 24]
∫ ∞

0
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r
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ρ2 + z2, are used to cast (5) in the form
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Next, since |τ | is always less than unity, one can introduce the power
series expansion
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and write the z- and ρ-derivatives of A as
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Setting z = 0 and taking account of the relation[
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that holds since k0ρ ¿ 1, provides the expressions
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in the former of which the factor τ2, which was common to all the
terms in the square brackets, has been moved outside. Notice that in
the mathematical development that follows this factor will disappear
as a result of algebraic simplifications.

It should be also noted that, since the aim of the present study is
to derive second-order accurate expressions for the quasi-static fields,
the term on the order of τ4 in (18) is a higher-order contribution and
may be included in the remainder of the power series expansion. It
reads
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Then, use of (6) in conjunction with the Bessel differential equation [20]
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which makes it possible to express (17) and (19) as
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and where only the zeroth- and second-order terms in the square
brackets have been retained. Notice that casting (17) and (19) into
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the forms (22) and (23) is allowed to the extent that a derivative of
arbitrary order with respect to ρ can be moved outside the integral
sign, as follows∫ ∞

0
eu0zf(λ)

∂ lJν(λρ)
∂ρ l

dλ =
∂ l

∂ρ l

∫ ∞

0
eu0zf(λ)Jν(λρ)dλ, (27)

where f(λ) is the non-oscillating and non-exponential part of the
generic integrand. The property (27) holds in virtue of the continuous
dominated convergence theorem (CDCT) [21, Chap. 19], because the
function ∣∣∣∣eu0zf(λ)

∂ lJν(λρ)
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is integrable over [0,∞) for all ρ > 0 and for all l ≥ 0, as it
exponentially decays with increasing λ.

All of the integrals in (24)–(26) can be reduced to well-known
tabulated Sommerfeld Integrals. Under the assumption that u0

∼= λ,
which holds since k0 → 0, one can apply formulas [19, p. 18, No. 3]
and [19, p. 8, No. 16] respectively to (24) and (25) and obtain

S2,1 =
∫ ∞

0

1
u1

J1(λρ)dλ =
1− e−jk1ρ

jk1ρ
, (29)

S1,1 =
∫ ∞

0

1
u1

J0(λρ) dλ = K0

(
jk1ρ

2

)
I0

(
jk1ρ

2

)
, (30)

being I0(ξ) and K0(ξ) the zeroth-order modified Bessel functions
of the first and second kind. On the other hand, application
of [9, p. 11, No. 45] to (26) yields the expression

S2,0 = K0 (jk0ρ) , (31)
which, since k0ρ ¿ 1, can be simplified by introducing the asymptotic
form of K0 for small arguments [20, 9.6.11]. It is found that
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into (22) and (23) provides
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where the argument of the modified Bessel functions has been omitted
for notational simplicity. With the use of (36) and (37), we are now
able to perform the differentiations in (1)–(3) and obtain second-order
quasi-static expressions for the EM field components at the air-medium
interface. After some algebra, it is found that

Eρ0 =
jωµ0 p

2πρ
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K1I1 − τ2
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, (38)

Ez0 = − p

2πjωε0ρ3
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Hϕ0 =
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[
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e−jk1ρ + jk1ρ

)]
, (40)

where the subscript “0” denotes calculation at z = 0. The zeroth-order
quasi-static approximations for the fields given in [8] may be obtained
directly from (38), (39), and (40) by setting τ = 0.

3. RESULTS AND DISCUSSION

The zeroth- and second-order quasi-static approximations are applied
to the computation of the amplitudes of the EM field components
generated on the top surface of a medium with ε1 = 10 ε0 at distance
ρ = 90/π m from a unit-moment VED. Figs. 2–4 show the relative
percent error that results from comparing the obtained results with
those arising from the numerical evaluation of the field integrals,
plotted versus frequency. To highlight the difference in accuracy
between the two formulations when the ratio

k0

|k1| =

[
ε2r1

+
(

σ1

ωε0

)2
]− 1

4

(41)

is not negligible with respect to unity, poorly conducting media are
considered. Thus, the electrical conductivity σ1, taken as a parameter,
is assumed to be equal to 0.01, 0.1, and 1 mS/m. Common examples
of materials with conductivity on these orders of magnitude are
permafrost, igneous and metamorphic rocks [5, 6].

The numerical evaluation of the field integrals has been performed
through the rigorous quasi-analytical procedure described in [7, 22].
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The procedure consists of applying the Cauchy’s residue theorem to the
z- and the ρ-derivatives of (5) at z = 0, which are Hankel transforms
of the form

g(ρ) = c

∫ ∞

0
f(λ)Jν(λρ)λν+1dλ. (42)

Then, proceeding as discussed in [22] turns (42) into

g(ρ) = −jc
M∑

m=1

rmλν
mKν(λmρ), (43)

where the λm’s and rm’s are the coefficients of the rational
approximation

f(λ) ∼=
M∑

m=1

rm

λm

[
1

λ− jλm
− 1

λ + jλm

]
, (44)

to be determined using the least squares-based fitting algorithm
described in [23]. The method has been shown [7] to ensure at least 13
digits of precision, and this happens because the accuracy of the result
of the computation depends only on the quality of the fitting process.

Figure 2 depicts percent errors arising from the calculation of the
amplitude of Eρ, and zeroth-order curves are marked with points to
be distinguished from the second-order ones. It should be observed
that for σ1 = 0.01mS/m the error produced by the zeroth-order
approximation exceeds 30% almost everywhere in the 0 ≤ k0ρ ≤
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Figure 2. Relative errors of the zeroth-order (lines and points) and
second-order (lines) quasi-static approximations of Eρ as compared to
the exact results. Errors are plotted versus frequency with varying σ1.
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Figure 4. Relative errors of the zeroth-order (lines and points) and
second-order (lines) quasi-static approximations of Hϕ as compared to
the exact results. Errors are plotted versus frequency with varying σ1.

0.24 range, while the error occurring when applying the improved
formula (38) is always less than 7%.

The discrepancy between the relative errors produced by the two
formulations becomes smaller and smaller as conductivity increases,
and the two trends are about to overlap for σ1 = 1 mS/m. The
same can be argued from the analysis of Figs. 3 and 4, which show,
respectively, the relative percent error occurring when computing Ez

and Hϕ under the quasi-static field assumption. Improved formulas
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for these field components allow to keep the relative error in the
0 ≤ k0ρ ≤ 0.24 range below the threshold of 3%, while application
of the zeroth-order ones in the same range would lead to higher errors,
up to 15% for the Ez-field and 9% for the Hϕ-field.

It is also of interest to study the effect of varying the electrical
permittivity of the half-space on the relative percent errors that
result from applying the quasi-static approximations. This aspect is
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Figure 5. Relative errors of the zeroth-order (lines and points) and
second-order (lines) quasi-static approximations of Eρ as compared to
the exact results. Errors are plotted versus frequency with varying εr1 .
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pointed out in Figs. 5–7, which illustrate the behavior of the relative
errors against frequency, assuming ρ = 135/π m and σ1 = 1 mS/m,
and taking the relative permittivity εr1 as a parameter. Significant
conclusions can be drawn from the analysis of the plotted curves. First,
it is confirmed that using the second-order formulation in place of the
zeroth-order one permits to reduce the relative percent error. Second,
what emerges is that in the quasi-static frequency range the relative
error is only weakly affected by a permittivity change, and this is to
be attributed to the fact that the conduction currents are large enough
to predominate over the displacement currents. In fact, as long as σ1

is sufficiently larger than ωε1, k1 suffers only from a mild alteration
while varying ε1, and so do both the quasi-static approximations and
the errors produced by them, which depend on k1.

4. CONCLUSION

Second-order quasi-static approximations for the radial distributions
of the EM field components excited by a VED on the surface of a
material half-space have been derived in this paper. The expressions
are in terms of modified Bessel functions (Eρ-field) and exponential
functions (Ez- and Hϕ-field), and have been obtained through a
rigorous analytical procedure after replacing the non-oscillating part of
the integrand in the integral representation for the z-directed magnetic
vector potential with its quadratic approximation for small values of
k0/|k1|. Numerical results are presented to show the advantages of the
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proposed formulation over the zeroth-order one in terms of accuracy.
In the quasi-static frequency range and beyond, use of the derived
improved expressions makes it possible to reduce the maximum relative
error in the calculation of the fields from about 30% down to less than
7%. The effect of varying the electrical conductivity and permittivity
of the half-space on the accuracy of both the approximations is also
investigated. It is deduced that the variation of permittivity does not
significantly alter the accuracy of the quasi-static formulations, and
this is due to the fact that in the quasi-static frequency range the
conduction currents predominate over the displacement currents.
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