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Abstract—This paper presents an evaluation of measurement
uncertainty for complex-valued quantities in microwave applications,
mainly focusing on the non-linear transformation of measurement
uncertainty from rectangular coordinate to polar coordinate. Based
on the law of propagation of uncertainty in matrix form, general
expressions of the covariance matrix for the magnitude and phase
uncertainties in polar coordinate have been derived, and several
different application scenarios have been analyzed and evaluated with
numerical simulations. This is followed by some recommendations on
the coordinate transformations in practical microwave measurements.

1. INTRODUCTION

Measurements of complex-valued quantities are often experienced in
microwave applications, such as Scattering parameter (S -parameter)
and equivalent source reflection coefficient [1–4]. Analysis and
evaluation of the uncertainty in a measurement is very important as
it can itemize those known sources of errors and also quantify their
combined influence on the best estimates [5–9]. In Singapore, National
Metrology Centre (NMC) of the Agency for Science, Technology
and Research (A*STAR) serves as the custodian of the national
standards. We are responsible for the establishment, maintenance and
dissemination of the microwave related national standards and also
provide the necessary calibration services to the industry. This requires
us to analyze and evaluate the measurement uncertainty properly.
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For the often experienced complex-valued microwave quantities,
the associated measurement uncertainties have been strongly recom-
mended to be evaluated in rectangular coordinate [10], following the
internationally recommended guidelines [5]. More efforts on the evalua-
tions of measurement uncertainty for complex-valued quantities can be
found in [11–14]. From these studies, it is found that when using sam-
ple statistics to evaluate the uncertainty of a complex-valued quantity,
polar coordinate is suggested to be avoided. However, the magnitude
and phase representations in polar coordinate are sometimes preferred
and more “natural” [13] for many microwave component measurements
like amplifier, attenuator, coupler. This is because the representation
in polar coordinate bears a direct relationship to some physical phe-
nomena affecting the measurement process. For example in microwave
applications, phase is directly related to the electrical path length of a
signal, while magnitude is directly related to the amplified/attenuated
level of a transmitted signal [10]. Therefore, it is often required to
evaluate the measurement uncertainties of the magnitude and phase
representations in polar coordinate.

From the literature, transformation of the uncertainty evaluated
in rectangular coordinate to polar coordinate is suggested to be
a good solution [10]. However the transformation has not yet
been fully explored for realistic measurement scenarios. The
transformation is non-linear and is not always reliable for the practical
implementations [11]. In most of works [10–14], covariance matrix
which groups together information about the standard uncertainties
and correlation between the real and imaginary components has been
used to describe the complex-valued quantities. With the covariance
matrix, the uncertainty evaluated in the rectangular coordinate could
be transformed into the desired polar coordinate using the law of
propagation of uncertainty in matrix form [10, 13, 14].

We have carried out some preliminary works in [3] for the non-
linear coordinate transformation based on the measurement data with
relatively small size (6 samples following our internal calibration
procedure for industry). It is noted that the estimated correlation
coefficient in covariance matrix is rarely meaningful based on such
relatively small sample sizes (other examples are 5 to 6 samples
in [1, 10]), and is inherently unreliable for practical measurements.
Hence, the proposed method in [3] has limited applications without
detailed knowledge of its dependence on the correlation coefficient in
the covariance matrix.

Therefore, in this paper we further investigate the uncertainty
propagation/transformation from rectangular coordinate to polar
coordinate. The influence from the correlation between the real and
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imaginary components is studied. Numerical simulations with pre-
assigned properties are carried out, and geometric representations of
the simulated complex-valued quantities are used for understanding
the principles of the uncertainty transformation. In the following,
the theoretical background and problem formulation of this study
are presented in Section 2. Section 3 reports the analysis and
discussions for different application scenarios. This is followed by
some recommendations for practical microwave measurements. Finally,
conclusion of this study is given in Section 4.

2. THEORETICAL BACKGROUND AND PROBLEM
FORMULATION

In this paper, a complex-valued quantity S is represented by its real
and imaginary components R and I as,

S = R + jI (1)
It is noted that the measurand S is often assumed to be bivariate
normal distributed on the origin of a complex plane for repeated
measurements [10, 12]. Works in [10] strongly recommended the
measurement uncertainty of a complex-valued quantity should be
analyzed first in terms of its real and imaginary components, and then
transformed into the desired polar representation for the magnitude
and phase.

Following the guidelines in [5], the standard uncertainties u(R)
and u(I) for the real and imaginary components R and I can be
estimated accordingly. The covariance matrix V (S) for S can therefore
be obtained as

V (S) =

[
u2(R) ru(R)u(I)

ru(R)u(I) u2(I)

]
(2)

where r is the sample correlation coefficient between R and I.
In this study, for the non-linear transformation from rectangular

coordinate to polar coordinate, Jacobian matrix is used. For the
magnitude |S| with

|S| =
√

R2 + I2. (3)
We can derive the followings,

∂|S|
∂R

=
R√

R2 + I2
,

∂|S|
∂I

=
I√

R2 + I2
. (4)

Its Jacobian matrix J|S| for the coordinate transformation is

J|S| =
[
∂|S|
∂R

∂|S|
∂I

]
. (5)
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Following the law of propagation of uncertainty in matrix form,
the covariance matrix V (|S|) for the magnitude |S| can be obtained
through [10, 13, 14],

V (|S|) = J|S|V (S)JT
|S|. (6)

That is,

V (|S|) =
u2(R)R2 + u2(I)I2

R2 + I2
+ r

2u(R)u(I)RI

R2 + I2
. (7)

Similarly, the covariance matrix V (φ) for the phase φ can be
obtained as,

φ = tan−1

(
I

R

)
, (8)

V (φ) =
u2(R)I2 + u2(I)R2

(R2 + I2)2
− r

2u(R)u(I)RI

(R2 + I2)2
. (9)

From (7) and (9), it is observed that the covariance matrices V (|S|)
and V (φ) rely on the sample correlation coefficient r between R
and I. However, the coefficient r is inherently unreliable due to
the small sample size in practical measurements [10]. Therefore,
detailed investigations of the influence from the variation of correlation
coefficient r on the evaluated measurement uncertainties in polar
coordinate are important and then carried out in this study.

3. CASE STUDIES AND ANALYSIS

3.1. For the Case: u(R) = u(I) = u, and r = 0

This is the simplest case of uncertainty evaluations for a complex-
valued quantity. When u(R) = u(I) = u and r = 0, V (|S|) and V (φ)
in (7) and (9) can be simplified as,

V (|S|) = u2, V (φ) =
u2

R2 + I2
. (10)

The standard uncertainty of the magnitude |S| and the phase φ
can be then obtained as,

u(|S|) = u, u(φ) =
u

|S| . (11)

It is noted the phase uncertainty u(φ) is in the unit of radian. The
simplified forms in (11) are consistent with those reported in [11].
Study in [11] also reveals that the phase uncertainty u(φ) for a
complex-valued quantity is open to different suggestions such as
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u(φ) = tan−1(u/|S|) in [13] and u(φ) = sin−1(u/|S|) in [15]. Both
the equations in [13, 15] are actually derived from slightly different
geometrical considerations. When u/|S| is small (e.g., the reflection
coefficient of a highly reflecting RF component which has a small
uncertainty u but with a magnitude |S| very close to unity), they are
virtually equal.

Before embarking on the physical interpretations of the derived
standard uncertainties in polar coordinate, geometric representation
for the uncertainty of a complex-valued quantity (S = R + jI) is
investigated as a region in the complex plane around its best estimate
(S̄ = R̄ + jĪ). To predict the uncertainty region with a 95% level
of confidence from repeated measurements, a circle centred at (R̄, Ī)
with its radius of U can provide an uncertainty region with the desired
coverage probability where

U = k2dū. (12)

R̄, Ī, and ū are the estimated mean values of the real and imaginary
components and their standard uncertainty. k2d is the two-dimensional
coverage factor for the 95% coverage probability and is around
2.45 [10, 11].

Numerical simulations are then performed in this study using
the R-programming language which is a free software designed for
statistical computing [16]. Bivariate normal distribution is used to
simulate a complex-valued measurand S from an experiment with
R = 0.02666, I = −0.05508, u = 0.01572, and r = 0. These assigned

Figure 1. Simulated 10000 repeated measurements with both
theoretical and calculated circular uncertainty regions (95% level of
confidence) with R = 0.02666, I = −0.05508, u = 0.01572, and r = 0.
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values are from the realistic measurements during calibrations in NMC.
Simulated results with 10000 repeated measurements are plotted in
Fig. 1 together with both the theoretical and calculated uncertainty
regions at 95% level of confidence.

From Fig. 1, it can be found that the calculated uncertainty
region matches well with the theoretical one. That is for practical
measurements, a circle centred at (R̄, Ī) with a radius of U = k2dū can
well estimate the uncertainty region with a 95% coverage probability if
the standard uncertainties for both the real and imaginary components
approach the same and there is no correlation (r = 0) between R and
I.

A geometry representation of the circular uncertainty region
is shown in Fig. 2 for understanding the principles of uncertainty
coordinate transformation. From Fig. 2, the uncertainty estimations
for the magnitude |S| and the phase φ when u(R) = u(I) = u and r = 0
using (11) can be easily interpreted. For the uncertainty of magnitude
|S|, [|S̄| − k2dū, |S̄| + k2dū] can provide an uncertainty region with a
95% level of confidence. For the uncertainty of phase φ, there is little
practical difference among the above-mentioned three methodologies
if ū/|S̄| ¿ 1, and either of them can be used to estimate the phase
uncertainty properly. However in practical situations, uncertainties of
the real and imaginary components are generally not equal and even
correlated. Therefore, further investigations of more complex cases are
required and then performed in the followings. Moreover, it is noted
that when the uncertainty region lies close to the origin of the complex
plane (i.e., centre (R̄, Ī) is near to the origin (0, 0)), the uncertainty
region is distorted and the coverage probability is difficult to predict
as described in [11].

3.2. For the Case: u(R) 6= u(I), and r = 0

This is the case when there is no correlation (i.e., r = 0) between
the real and imaginary components, and their standard uncertainties
u(R) and u(I) are not equal. Same as in Section 3.1, the standard
uncertainties of the magnitude |S| and the phase φ can be obtained
from (7) and (9) as,

u(|S|) =

√
u2(R)R2 + u2(I)I2

|S| (13)

u(φ) =

√
u2(R)I2 + u2(I)R2

|S|2 . (14)

Different from the circular uncertainty region described in
Section 3.1, an elliptical uncertainty region is produced when
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Figure 2. Geometry of circular
uncertainty region for coordinate
transformation.

Figure 3. Geometry of uncer-
tainty regions for a circular one
that is approximate to an ellipti-
cal one.

u(R) 6= u(I). It is therefore not easy to correlate the derived
standard uncertainties in (13) and (14) to the geometry uncertainty
representation.

Hence, an alternative way is then used in this study to investigate
the reliabilities of (13) and (14). The evaluated uncertainties are
compared to some reference values with known coverage probability.
To utilize the observations in Section 3.1, a circular uncertainty region
with a standard uncertainty u′ which is approximate to the elliptical
uncertainty region as shown in Fig. 3 is used as a reference. The
standard uncertainty u′ could be equal to umax or urms , where umax is
the maximum standard uncertainty of u(R) and u(I) and defined as

umax = max(u(R), u(I)). (15)

urms is the rms (root-mean-square) standard uncertainty of u(R) and
u(I) which is described in [11] as,

urms =

√
u2(R) + u2(I)

2
. (16)

Simulations for 10000 repetitions of measurements using the bivariate
normal distribution function with R = 0.02666, I = −0.05508, u(R) =
0.02572, u(I) = 0.01572, and r = 0, are performed. The estimated
uncertainties and the coverage probability using the different methods
are summarized in Table 1.

From Table 1, it is found that the estimated uncertainties for
u′ = umax or urms are larger than the values using our methods in (13)
and (14). This is because partial circular uncertainty regions are
empty when u′ = umax or urms as shown in Fig. 4, which makes
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the uncertainty overestimated in polar coordinate. Moreover, it is
also found that the uncertainty evaluated by the max circular region
(u′ = umax) is the maximum of three with a coverage probability 98%
(larger than 95% requirement). That is, its evaluated uncertainty could
be treated as an upper boundary with high confidence.

To further investigate our method in this study, we compare
the estimated magnitude uncertainty using (13) to the value by
applying statistics to the magnitude |S| directly (The method is
not recommended for a complex-valued quantity as the calculation
of the uncertainty in this way underestimates the “true” underlying
uncertainty [10]). The direct evaluation of the magnitude uncertainty
leads to a value of 0.0176, while our result of 0.0181 in Table 1 which
is larger than the direct evaluation looks reasonable.

Table 1. Results of the estimated standard uncertainties of the
magnitude |S| and the phase φ and their coverage probability P%.

Method u(|S|) u(φ) P%
u′ = umax ∼0.0256 ∼1.021 ∼98.0
u′ = urms ∼0.0213 ∼0.849 ∼94.3
Ours uours ∼0.0181 ∼0.392 -

Figure 4. Simulated 10000
repeated measurements with
the different uncertainty regions
(R = 0.02666, I = −0.05508,
u(R) = 0.02572, u(I) = 0.01572,
and r = 0).

Figure 5. Simulated 10000
repeated measurements with the
different uncertainty regions (R =
0.02666, I = −0.05508, u(R) =
0.02572, u(I) = 0.01572, and r =
0.6).
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3.3. For the Case: u(R) 6= u(I), and r 6= 0

This is the general case for the coordinate transformation with a
bounded quantity r ∈ [−1, 1]. The eigenvalues of the covariance
matrix (2) do not hold a simple relationship to the standard
uncertainties u(R) and u(I) of the real and imaginary components.
For most of the practical measurements, the estimated r is inherently
unreliable due to the relatively small sample size. Therefore, it is
difficult to realize the coordinate transformations with (7) and (9),
where linear relationships between V (|S|) (or V (φ)) and r are observed.

Hence, u(|S|) and u(φ) at the boundary conditions (r = ±1) as
shown in (17) to (20) can be considered to determine the uncertainty
ranges for the magnitude |S| and the phase φ.

u(|S|)r=1 =
|u(R)R + u(I)I|

|S| (17)

u(|S|)r=−1 =
|u(R)R− u(I)I|

|S| (18)

u(φ)r=1 =
|u(R)I − u(I)R|

|S|2 (19)

u(φ)r=−1 =
|u(R)I + u(I)R|

|S|2 (20)

From our study in [3], it is observed that when r = ±1, upper
and lower boundaries for u(|S|) and u(φ) are formed. Therefore,
to provide a confident uncertainty region, u(|S|) and u(φ) can be
evaluated through,

u(|S|) = max(u(|S|)r=1, u(|S|)r=−1) (21)
u(φ) = max(u(φ)r=1, u(φ)r=−1). (22)

Simulations for 10000 repetitions of measurements using the
bivariate normal distribution function with R = 0.02666, I =
−0.05508, u(R) = 0.02572, and u(I) = 0.01572, are performed by
varying r in the range of [−1, 1] at a step of 0.1. An example of the
simulated results at r = 0.6 is shown in Fig. 5 for reference. Same as in
Section 3.2, comparisons of the estimated uncertainty results using (21)
and (22) are performed against the evaluated results from the circular
uncertainty regions with the standard uncertainty u′ = umax or urms

in (15) and (16), and also the results by the direct evaluation of the
magnitude |S| although it is not recommended. The estimated results
are summarized and plotted in Fig. 6 to Fig. 8 respectively.

The evaluated standard uncertainties for the magnitude |S| using
the above-mentioned different methods are shown in Fig. 6. From



430 Meng and Shan

Fig. 6, it is found that the results by the direct evaluation of magnitude
|S| are decreasing when the sample correlation coefficient r increases,
while the uncertainties estimated by other three methods are almost
kept constant regardless of r. As the sample correlation coefficient r is
inherently unreliable for practical measurements due to the relatively
small sample size, the directly evaluated uncertainty for the magnitude
|S| is therefore less reliable as it is the correlation coefficient r

Figure 6. Evaluated uncertainty for the magnitude |S| using different
methods when R = 0.02666, I = −0.05508, u(R) = 0.02572, u(I) =
0.01572, and r ∈ [−1, 1].

Figure 7. Evaluated uncertainty for the phase φ using different
methods when R = 0.02666, I = −0.05508, u(R) = 0.02572, u(I) =
0.01572, and r ∈ [−1, 1].
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Figure 8. Evaluated coverage probability using a circular uncertainty
region with the standard uncertainty u′ = umax or urms when R =
0.02666, I = −0.05508, u(R) = 0.02572, u(I) = 0.01572, and
r ∈ [−1, 1].

dependent.
Further investigations are then performed among the other three

methods (uncertainty evaluation using the max circular region (15),
uncertainty evaluation using the rms circular region (16), and our
method using (21) and (22). The evaluated uncertainties for phase
φ using the three methods are shown in Fig. 7. Together with Fig. 6,
it is found that, the uncertainty evaluation using the max circular
region can be treated as an upper boundary for both the magnitude
|S| and the phase φ, especially its coverage probability is at least 96%
regardless of r as observed in Fig. 8.

However, it is hard to reach a conclusion on the performances of
uncertainty evaluations using the rms circular region and our method
using (21) and (22). For the evaluation using the rms circular region,
it should be noted that when the real and imaginary components are
highly correlated, its coverage probability will degrease gradually to
around 91.5% as shown in Fig. 8. It is also interesting to note that,
the coverage probability for the uncertainty evaluation using the rms
circular region is almost constant and around 94% when |r| < 0.4.
Moreover, our method is more sensitive to the values of the real
and imaginary components as observed in (17) to (20). Therefore,
proper selection of the above methods for uncertainty evaluation is
required and important in the practical microwave measurements. If
there is limited information about the measurand, its uncertainty is
recommended to be evaluated using the max circular region.
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4. CONCLUSIONS

This paper reports an evaluation of measurement uncertainty for
complex-valued quantities in microwave applications. The law of
propagation of uncertainty in matrix form has been used to derive the
general expressions of covariance matrix for the magnitude and phase
uncertainties in polar coordinate.

Through the investigations of different application scenarios with
numerical simulations, we found that the uncertainty evaluation
using the max circular region can be treated as an upper boundary
for both the magnitude and phase uncertainties regardless of the
correlation between the real and imaginary components. Moreover,
for the evaluations of measurement uncertainty in practical microwave
measurements, proper method should be selected basing on the known
property of the complex-valued quantities.
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