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Abstract—A 2D finite element electromagnetic model that permits
the simulation of a cage induction machine, involving the effects of
eddy currents and coupling the field equation with the stator field-
circuit equation, has been presented in this paper. Transformation
matrix has been derived to incorporate specialized stator winding
scheme called the bridge configured winding (BCW) in the coupled
field circuit equation. The bridge configured winding scheme is capable
of producing controllable transverse force by deliberately imparting
asymmetric flux distribution in the machine air-gap. Steady state
stator currents have been calculated using the time-stepping scheme
with the rotor motion at constant speed allowing the FE model to take
into account the harmonics due to the eccentricity (static) of the rotor.
This work has furnished us with the 2D magnetic flux distribution in
the whole finite element domain as well as sets out an electromagnetic
model to study the electromechanical interaction between the eccentric
rotor motion and the electromagnetic field. The results, in terms
of variation of terminal currents (phase and bridge) and unbalanced
magnetic pull (UMP) due to rotor eccentricity as well as asymmetric
field (deliberately imparted by exciting the bridge), obtained from the
simulation have been compared with analytical formulations as well as
already published experimental results.
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1. INTRODUCTION

With progressive enhancement in the capability of computers, finite
element method (FEM) has been extensively used as a research tool to
analyze the electromagnetic field distribution in induction machines.
Detail algebraic representations of the basic procedures involved in
2D electromagnetic field analysis have been presented by Salon et
al. [1], in general for electromagnetic devices, such as, printer actuator,
axisymmetric plunger, induction motor and later by Savov et al. [2]
for cage induction motor. The stator end windings and the end-
regions of the rotor cage are modeled by means of resistance and
inductances, which are obtained from empirical formulae and from
the 3D electromagnetic analysis in the end regions of the motor.
Finite element method has been used for space discretization and
the step-by-step or Crank-Nicolson method has been used for time
discretization. The final discretized equation of the coupled field circuit
equation is a system of nonlinear equation and solved at each step by
the Newton-Raphson method. Similar methods have been proposed
by Wang and Xie [3] and Ho et al. [4]. In this paper, the coupled
field-circuit equations form the basis for electromagnetic finite element
analysis. A finite-element variable time-stepping algorithm for solving
the electromagnetic diffusion equation has been proposed by Ovando-
Mart́ınez et al. [5].

In the present, analysis coupled-field circuit equations have been
developed for a particular three-phase induction machine equipped
with a specialized stator winding scheme known as bridge configured
winding which has parallel paths integrated into its winding structure
in the sense that each of the phases is split into a “Wheatstone-
bridge” arrangement. Currents passing diametrically through a phase
in the vertical direction account for the main torque-producing
components of stator field. Currents passing diametrically through
the phase in the horizontal direction account for transverse forces.
The parallel paths can be switched to open-circuit or closed-circuit
without affecting the torque-producing function of the machine and
all of the stator conductors contribute to torque-production. This
particular winding scheme has been called bridge configured winding
scheme (BCW) [6]. The bridge configured winding scheme has been
implemented in empowering electrical rotating machines with the
capacity to produce controllable transverse force in addition to their
normal torque producing capacity. Usually two discrete sets of stator
windings are deployed in the motor allowing the use of a standard
supply to generate torque and the transverse force as described by
Salazar and Stephen [7], Chiba et al. [8, 9], and Laiho et al. [10].
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The primary set carries the motor currents while the secondary
or supplementary set carries levitation currents. Normally the
supplementary winding is distributed to the stator slots in the wedge
area and occupies about 10% of the total cross-sectional area of a
single slot, which otherwise would have been occupied by the primary
windings. However, in case of BCW a single set of winding is used
to produce torque as well as transverse force. The details of bridge
configured windings are given by Khoo [6].

The basic principle behind the specialized winding schemes is
that a relatively small asymmetry of magnetic flux distribution,
in the air gap of electrical rotating machines, creates a large net
transverse force. This asymmetry may arise due to various reasons,
such as, non-symmetrical stator windings, saturation phenomena,
eccentric rotor, etc.. As a consequence, the rotor tends to get attracted
towards the stator in the direction of the highest magnetic flux or
shortest air-gap. This phenomenon is called unbalanced magnetic pull
(UMP) [11]. Induction machines, which usually have very small air
gaps, are especially vulnerable to slight variations in the dimensions
of the stator and rotor. In other words, the magnetic field within
electrical machines causes an interaction between the electrical and
the mechanical dynamics of the system.

In the specialized winding schemes, the asymmetry of the flux
distribution is deliberately imparted in the machine so that an
additional field exists which is of a pole-pair difference with respect to
the torque-producing component of the main field [12]. For instance,
if p is the number of fundamental pole pairs, then the additional field
should create a (p± 1) pole pair to produce a net transverse force.

This paper presents a 2D FE model developed in MATLABTM

environment that can simulate a 4-pole 3-phase cage induction machine
with BCW (Figures 2 and 3). The developed model is capable to
calculate unbalanced magnetic pull due to rotor eccentricity (static)
as well as asymmetric field imparted by exciting the bridge. The
simulation is performed by time stepping scheme with the rotor
motion at constant speed involving eddy current and rotor eccentricity
(parallel-static). A similar approach for a conventional cage induction
machine is carried out by Pham et al. [13] and the simulated results
with the experimental data were compared. Linear and isotopic
magnetic material is considered. To make this linear assumption well
founded, a comparatively small value of supply voltage is applied.

This paper has been divided into seven sections. Section 1
introduces the work that has been presented. Section 2 summarizes
the discretized (in space) and coupled field circuit equations for a cage
induction machine that forms the basis of 2D electromagnetic field
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analysis. In Section 3, a specialized transformation is presented that
connects the coupled field circuit equations with the bridge configured
winding scheme. Time discretization, movement modeling and force
calculation are briefly presented in Sections 4, 5 & 6, respectively.
Finally, the results obtained, in terms of variation of terminal currents
(phase and bridge) and unbalanced magnetic pull (UMP) due rotor
eccentricity as well as asymmetric field (deliberately imparted by
exciting the bridge), are presented in Section 7.

2. COUPLING OF ELECTROMAGNETIC FIELD
EQUATION WITH THE FIELD-CIRCUIT EQUATION
OF THE STATOR FOR A CAGE INDUCTION MACHINE
EQUIPPED WITH SPECIAL WINDING SCHEME

The coupling of electromagnetic field equation with the field-circuit
equation of the stator for a cage induction machine equipped with
special winding scheme is presented in the following subsections:

2.1. Electromagnetic Field Equation for a Cage Induction
Machine

The Ampere’s law relating magnetic field strength ~H and vector
current density ~J for low frequency problems can be presented as,

∇× ~H = ~J (1)

In electromagnetics, the constitutive relationship between magnetic
field strength ~H and magnetic flux density ~B can be represented as,

~H = ν ~B (2)

where ν is the magnetic reluctivity (reciprocal of magnetic
permeability, µ) and is a constant for linear and isotopic magnetic
material.

In the 2D finite element formulation of electromagnetic field
problems, magnetic vector potential ~A is commonly used. In order to
satisfy the non-divergence of the magnetic field, the magnetic vector
potential is defined as,

~B =
(
∇× ~A

)
(3)

Accordingly, ∇· (∇× ~A) = 0 is satisfied for any ~A. However, to define
the magnetic vector potential uniquely, the Coulomb gauge is usually
used, given by

∇ · ~A = 0 (4)
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Using Equations (2) and (3) in Equation (1), the magnetic diffusion
equation can be obtained as

∇× ν
(
∇× ~A

)
= ~J (5)

The present work is restricted to 2D field analysis, where ~J and ~A are
z-directed (parallel to the axial length of the machine) and independent
of z, given by

~J = J (x, y, t) k (6)
~A = A (x, y, t) k (7)

Here, x and y are Cartesian coordinates, k is the unit vector parallel
to the z-axis and t is the time. Since, vectors ~J and ~A have only one
component, they can be treated as scalars and Equation (5) can be
represented in component form (in z-direction) as,

(
∂

∂x

(
ν

∂A

∂x

)
+

∂

∂y

(
ν

∂A

∂y

))
= −J (8)

The expansion of current density J [in Equation (8)] in terms of
quantities relevant to the external circuit depends on the type of
conductors in the FE domain. In case of a cage induction machine,
current density J consists of three components: one due to the applied
source, another due to the induced electric field produced by time-
varying magnetic field, and the third due to relative motion-induced
between the stator field and the rotor. However, the component due
to relative motion can be avoided by modeling the rotor mesh in a
moving frame of reference while the stator (with some fraction of the
air gap) in a static frame of reference. Thus, Equation (8) becomes,

(
∂

∂x

(
ν

∂A

∂x

)
+

∂

∂y

(
ν

∂A

∂y

))
= −

(
Js − σ

∂A

∂t

)
(9)

The term Js is associated with the component of current density due to
applied source in the stator winding. Generally, the conductors of the
stator winding are assumed to be filamentary and skin effect in them
is neglected. The current density associated with all the points of the
cross-section of a given stator coil is considered constant, whereupon
the condition σ = 0 is imposed.

Let us consider a coil side +c of a given coil c of the stator winding
as shown in Figure 1. Assuming that the number of filamentary
conductors pass through coil side +c is N+c. Here, N+c is the number
of distinct, electrically isolated current paths, with each path carrying
is+c amperes of current. Mathematically, the current density Js for this



352 Konwar et al.

Figure 1. Representation of a coil with coil sides.

coil side +c can be represented as,

Js =
N+c

δ+cS+c
is+c (10)

where S+c is the cross-sectional area of the coil side +c and δ+c

(0 < δ < 1) is the corresponding filling factor.
In general, for any coil side cs, the current density can be

represented as

Js =
Ncs

δcsScs
iscs (11)

Introducing co-efficient αcs(x, y), where αcs(x, y) = Ncs
δcsScs

when the
point (x, y) belongs to any coil side region (cs) and αcs(x, y) = 0
otherwise. Thus, Equation (10) becomes

Js = αcsi
s
cs (12)

Using Equation (12) in Equation (9), we get
(

∂

∂x

(
ν

∂A

∂x

)
+

∂

∂y

(
ν

∂A

∂y

))
= −

(
αcsi

s
cs − σ

∂A

∂t

)
(13)

For space discretization of Equation (13), a finite element formulation
of Galerkin’s method is used. For this purpose, the whole 2D cross-
section (S) is discretized into a number of elements (Se), e =
1, 2, 3, . . . , m and n node.
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Table 1. Elemental form of matrices [S], [Cr] and [Ps
ncs] (where k is

the number of nodes in each element).

[Se]k×k =
1∫
−1

1∫
−1

ν [B]T
(
[J]−T

)
[J]−1 [B] |J| dξdη

This applies to all

the elements in the finite

element domain.

[Cre]k×k =
1∫
−1

1∫
−1

σ {N} bNc |J| dξdη

ξ, λ: natural coordinates

This applies to the elements

only with conductivity σ

(i.e., rotor bar region, r)

else [Cre] = 0

[Pse
cs]k×1 =

1∫
−1

1∫
−1

αcs {N} |J| dξdη

This applies to the elements

belonging to the thin

conductor region

(i.e., stator slot region)

else [Pse
cs] = 0

The method of Galerkin applied to Equation (13) yields the
following global system of equations

[S]n×n {A}n×1 + [Cr]
d

dt
{A}n×1 = [Ps

cs]n×ncs {iscs}ncs×1 (14)

where {A}n×1 = [A1 A2 . . . An]T , {iscs}ncs×1 is associated with
filamentary coil side currents, ncs is the total number of coil sides in
the stator region and the matrices [S], [Cr] and [Ps

cs] have the following
elemental form as presented in Table 1.

For an k-noded element, we have

{
Ake

}
=





A1

A2
...

Ak





k×1

, nodal values ofA (15)

bNc = bN1 N2 N3 . . . Nkc = {N}T , shape functions (16)

[J]2×2 =




∂N1

∂ξ
. . .

∂Nk

∂ξ

∂N1

∂η
. . .

∂Nk

∂η




2×k




x1 y1
...

...
...

...
...

...
xk yk




k×2

(17)
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[B]2×k =




∂N1

∂ξ
. . .

∂Nk

∂ξ

∂N1

∂η
. . .

∂Nk

∂η




(2×k)

(18)

The vector of coil side currents can be transformed in terms of terminal
currents, which of course depends upon the type of stator winding used.
In general, the transformation can be written as

{iscs}ncs×1 = [T]ncs×nter {ister}nter×1 (19)

where, {ister}nter×1 is associated with the terminal currents, ter stands
for terminal and nter stands for number of terminals currents. For
instance, the number of terminal currents for a conventional 3-phase
cage induction machine is three, i.e., nter = 3.

The transformation matrix [T]ncs×nter in Equation (19) relates
the coil side currents with the terminal currents in the stator.
Transformations can be obtained for different given winding schemes.
Therefore, in general, the electromagnetic field equation for a cage
induction machine, equipped with any given stator winding scheme,
can be represented as

[S]n×n{A}n×1+[Cr]
d

dt
{A}n×1 =[Ps

cs]n×ncs[T]ncs×nter{ister}nter×1 (20)

2.2. Field-circuit Equation for the Stator

When the FE discretized electromagnetic field equation is given by
Equation (20), the corresponding stator field-circuit equation can be
represented as

[Qs]nter×n

d {A}n×1

dt
+ [Rs] {ister}nter×1 + [Ls

end]
d

dt
{ister}nter×1

= {us
ter}nter×1 (21)

where, [Qs]nter×n = l([Ps
cs]n×ncs[T]ncs×nter)T , [Rs] and [Ls

end] are
the diagonal matrices representing total resistance and end winding
inductance associated with each of the terminal currents. In the above
formulation, the rotor circuit is not explicitly coupled because, for a
cage induction machine, the rotor bars are not externally fed and they
are connected and short-circuited [14]. However, the effects of eddy
currents in the rotor bars is included in the above formulation and this
is represented by the term “[Cr] d

dt{A}n×1” in Equation (20).
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3. BRIDGE CONFIGURED WINDING SCHEME

The bridge configured winding (BCW), first introduced by Khoo [6],
overcomes the drawback associated with dual set of stator secondary
windings [8] by utilizing the main torque producing winding to suppress
the UMP due to eccentricity. Thus, for the same performance the
machine with the bridge configured windings will be smaller in size
and weight than those with dual set of stator windings. The principal
feature of the BCW is that the currents responsible for torque
production are divided into two parallel paths in each phase as shown
in Figure 2. However, it is mandatory that an appropriate isolation
between the levitation supply and the mains must be enforced for
the bridge connection to work [12]. Otherwise, both supplies will be
shorted. When the bridge connection has more than one levitation
supply, not only must each levitation supply be isolated from the
mains, they must also be isolated from each other.

Figures 2 and 3 depict a 3-phase 4-pole induction motor having
coils wound on a 36-tooth stator with double layer winding. Each
phase has 12 full coils. a1, a2, a3, . . . , a6 and aa1, aa2, aa3, . . . , aa6

represent the twelve full coils of phase A. Each full coil has two coil
sides. For an example +a1 and −a1 are two coil sides of full coil
a1. Similarly, +a2, +a3, . . . , +a6 and −a2, −a3, . . . , −a6 are two coil
sides of full coils a2, a3, . . . , a6 respectively. ‘+’ sign means currents in
that coil side is going down and ‘−’ sign means currents in that coil side
is coming up. The three full coils a1, a2, and a3 together form a coil
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Figure 2. Stator connection of a 3-phase induction machine
based on the bridge configured winding scheme [15], with simplified
instantaneous current distribution in phase A.
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Figure 3. Stator of an induction machine with bridge configured
winding. Red, blue and yellow colors show the three different
phases [15].

group. Each phase has four coil groups. Coils “a1, a2, a3, . . . , a6” are
wound and aligned at the same axis of symmetry, thereby producing
the same magnetic effect as having a single coil with twice the number
of turns. Likewise, coils “aa1, aa2, aa3, . . . , aa6” are wound at the
diametrically opposite tooth with respect to coils “a1, a2, a3, . . . , a6”
to form a bridge and hence, the name bridge configured winding. Coils
in phases “B” and “C” are connected in a similar manner and each
bridge is linked to the other at one point forming an overall 3-phase
star connection. The feature which makes the bridge winding different
from the other active methods for reducing UMP is its provision for
passive control. Passive control of UMP can be accomplished by short
circuiting the additional pairs of terminals or “closing the bridge”.
No current will flow across the bridge if the rotor is concentric and
the stator MMF is symmetric (flux field is uniformly distributed), i.e.,
bridge currents are zero. Any unbalance of field due to eccentricity
will induce an EMF tending to drive currents in the closed circuit
such that an MMF comes to exist opposing the rate of change of this
field. The currents flowing across the bridge are known as equalizing
currents. Therefore, from the electrical dynamics alone we can measure
the equalizing currents for an eccentric rotor. In other words, these
equalizing currents are the measures of eccentricity of a particular
machine at its operating conditions. More properties of the bridge
configured winding can be found in Khoo [6] and Khoo et al. [12].
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3.1. Coupling of Electromagnetic Field Equation with the
Field-circuit Equation of the Stator for Bridge Configured
Winding Cage Induction Machine

The general form of electromagnetic field equation and its correspond-
ing stator field-circuit equation for a cage induction machine is pre-
sented in Section 2. The transformation matrix that relates the coil
side currents to the terminal currents, ultimately depends upon the
type of stator winding. In the present case, the stator circuit con-
sists of 72 coil side currents and 6 terminal currents (3 terminals for
phase currents and another 3 for levitation purpose). Therefore, the
field Equation (20) and the stator field-circuit Equation (21) for the
present bridge configured scheme (shown in Figures 2 and 3) can be
represented as

[S]n×n{A}n×1+[Cr]
d

dt
{A}n×1 =[Ps

cs]n×72[T]72×6

{
isph+lev

}
6×1

(22)

[Qs]6×n

d {A}n×1

dt
+[Rs]

{
isph+lev

}
6×1

+[Ls
end]

d

dt

{
isph+lev

}
6×1

=
{
us

ph+lev

}
6×1

(23)

where, [Qs]6×n = l([Ps
cs]n×72[T]72×6)T , [Rs] and [Ls

end] are the
diagonal matrices representing total resistance and end winding
inductance associated with each of the 6 terminal currents of the

Figure 4. Transformation from coil side currents to terminal currents.
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stator winding, {isph+lev} = [iAph iAlev iBph iBlev iCph iClev]T and
{us

ph+lev} = [uAph uAlev uBph uBlev uCph uClev]T . The transformation
matrix [T]72×6 in Equation (22) relates the 72 coil side currents with
the 6-terminal currents. This transformation can be obtained in three
steps (Figure 4) as presented in the following subsections:

3.1.1. Transformation of the Coil Side Currents to the Full-coil
Currents in the Stator (Step-I)

Every full coil current corresponds to two coil side currents. In
Figure 2, a1 represents one full coil. This transformation imposes a
constraint that current going down in slot −a1 is equal in magnitude
to the current coming up in slot +a1 but opposite in sign. This
transformation can be written by inspection and can be expressed as:

{iscs}72×1 = [Ts1]72×36 · {isfull coil}36×1 (24)

where {isfull coil} is the vector of full coil currents. For the
machine considered {isfull coil} will have 36 entries. We can write the
transformation for this as




i+a1

i−a1

i+a2

i−a2

...





=




1 0 . . . . . .
−1 0 . . . . . .
0 1 . . . . . .
0 −1 . . . . . .
...

... . . . . . .








ia1

ia2

...



 (25)

where i+a1 , i−a1 , i+a2 and i−a2 are the coil side currents of coil sides
+a1, −a1, +a2 and −a2 respectively and ia1 , ia2 are the full coil
currents of full coils a1 and a2 respectively [refer Figures 2 and 3].

3.1.2. Transformation of the Full Coil Currents to the Coil Group
Currents in the Stator (Step-II)

Let us consider the phase A (as shown in Figure 2). The three full
coils a1, a2 and a3 together form one “coil group” and since they are
connected in series, they have the same branch current iA. Therefore,
we have 




ia1

ia2

ia3

ia4

ia5

ia6





=




1 0
1 0
1 0
0 1
0 1
0 1




{
iA
iD

}

phaseA

(26)
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Similarly we can have transformations for other coil groups. Finally
the transformation that transforms the full coil currents {isfull coil}(36×1)

to the coil group currents {iscoil group}(12×1) is:

{isfull coil}(36×1) = [Ts2](36×12)

{
iscoil group

}
(12×1)

(27)

3.1.3. Transformation of the Coil Group Currents to the Terminal
Currents (Step-III)

Assuming the same resistance in each branch, the transformation
matrix that transforms the group currents (or branch currents) to the
phase currents and levitation currents for phase A is calculated as
follows: 




iIA
iIIA
iIIIA
iIVA





phaseA

=




1/2 1/2
1/2 −1/2
1/2 −1/2
1/2 1/2




{
iAph

iAlev

}
(28)

where iIA, iIIA, iIIIA and iIVA are the currents in four branches of the
bridge for phase A.

Similar transformations shown in Equation (28) can be obtained
for phases B and C. It is also assumed here that the EMFs due
to changing magnetic field are identical for each branch of the
bridge. Finally the transformation that transforms the coil group
currents {iscoil group}(12×1) to six terminal currents (two for each phase)
{isph+lev}6×1 is:

{
iscoil group

}
(12×1)

= [Ts3](12×6)

{
isph+lev

}
6×1

(29)

Combining the three steps (Equations (24), (27) and (29)) the final
expression for {iscs} can be derived as

{iscs}72×1 = [Ts1]72×36 · {isfull coil}36×1

= [Ts1]72×36 [Ts2]36×12

{
iscoil group

}
12×1

= [Ts1]72×36 [Ts2]36×12 [Ts3]12×6

{
isph+lev

}
6×1

= [Ts]72×6
.
{
isph+lev

}
6×1

(30)

4. SOLUTION OF THE COUPLED FINITE ELEMENT
EQUATIONS BY CRANK-NICOLSON TIME
DISCRETIZATION METHOD

To solve the system of ordinary differential equations given by
Equation (22) and Equation (23), time-discretization schemes Crank-
Nicolson method is used. It is a second-order finite difference
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method, implicit in time and is unconditionally stable. After
applying Crank–Nicolson time discretization to Equation (22) and
Equation (23), respectively. The final expression in matrix form can
be written as[(

[S]t+∆t + 2
∆t [Cr]

)
− [Ps]

2
∆t [Qs]

(
[Rs] + 2

∆t [Ls
end]

)
]
{X}t+∆t

= −
[(

[S]t − 2
∆t [Cr]

) − [Ps]
− 2

∆t [Qs]
(
[Rs]− 2

∆t [Ls
end]

)
]
{X}t+{F}t+∆t+{F}t (31)

where, {F} = { {0}n×1

{us
ph+lev}6×1

}(n+6)×1, {X} = { {A}n×1

{isph+lev}6×1
}(n+6)×1

and [Ps] = [Ps
cs]n×72[T]72×6. In this system of equations, there are no

more time derivatives. Furthermore, all the terms on the right hand
side are known either as source terms or from the field solution at the
previous time step.

4.1. Boundary Condition

The magnetic vector potential A is zero on the outer boundary and
inner boundary, which means that the magnetic flux density has
no normal components on the boundary. The insertion of boundary
condition is performed when the global matrices are fully assembled.

5. ACCOMMODATION OF MOVEMENT MODELING
USING AIR-GAP STITCHING METHOD

In the present analysis, air-gap stitching method is used for modeling
the rotor movement. In this method, the rotor and stator are modeled
using completely separate FEA models — each including some fraction
of the air gap. The two subsystem models are combined by stitching
the outer diameter of the rotor and the inner diameter of the stator
in the air gap. Quadrilateral quadratic finite elements are used to
model the stator and rotor while second-order triangular elements have
been incorporated for air-gap stitching (shown in Figure 5). During
the simulation, at least some of the airgap has to be re-meshed to
account for the rotor movement. This means that the element matrices
for (some of) the airgap must be derived at every time step during
the simulation even if the magnetic saturation is not considered. At
the very least, one whole radial layer of airgap elements will have
to derived afresh. A strong advantage of this method is that it can
cope with the case of eccentric rotor and stator provided that the
eccentricity is smaller than the thickness of the stitched band. This
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Figure 5. Finite element mesh with key-elements.

type of movement modeling has been adopted in various publications,
such as Pham et al. [13] and later by Kalita [15].

6. CALCULATION OF UMP ACTING ON THE ROTOR

At first, the components of magnetic flux density ~B are calculated from
the magnetic vector potential ~A using Equation (3), i.e., for a given
element e with k nodes we get,

−→
Be = ∇×−→Ae = +

∂Ae

∂y
î− ∂Ae

∂x
j (32)

So, the magnetic flux density along x-direction and y-direction are
respectively

Be
x = +

∂Ae

∂y

Be
y = −∂Ae

∂x





(33)

where,
{ ∂Ae

∂x
∂Ae

∂y

}
= [J]−1 ·

[
∂N1
∂ξ . . . ∂Nk

∂ξ
∂N1
∂η . . . ∂Nk

∂η

]




A1

A2
...

Ak





, and [J] is the

Jacobian matrix given by Equation (17).
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Figure 6. Components of magnetic flux density.

From the Cartesian components of ~B, its normal component Bn

and tangential component Bt can be obtained as follows (Figure 6):
Bn = Bx cos θ + By sin θ

Bt = −Bx sin θ + By cos θ

}
(34)

Using the normal and tangential components of magnetic flux density,
the normal and tangential components of the Maxwell’s stress in the
air gap can be obtained as

σn =
B2

n −B2
t

2µ0

τt =
2BnBt

2µ0





(35)

If a circle of radius r is taken as the integration path (Figure 6).
The forces can be represented as (l is the axial length of the machine)

Fx = l

2π∫

0

(σnn cos θ − τtt sin θ) rdθ (36)

Fy = l

2π∫

0

(σnn sin θ + τtt cos θ) rdθ (37)

7. RESULTS OBTAINED

Taking a 3-phase squirrel cage induction machine as example (Figures 2
and 3), finite element modeling has been done with the bridge
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configured winding scheme. Some important parameters of the
machine under consideration are shown in Table 2.

In the present work, a 2D finite element code has been developed in
MATLABTM environment that can simulate and solve the differential
equations of a bridge configured squirrel-cage induction machine.
The code comprises of a pre-processor where the model is built; a
solver where excitations (phase and bridge voltages) are applied and
responses are computed; and a postprocessor for producing graphical
output.

The simulation has been performed by the time stepping scheme
with the rotor motion at constant speed allowing the FE model
to take into account the harmonics due to the eccentric (static)
rotor motion. Besides, the simulation is performed applying 3-phase
sinusoidal voltages at the stator terminals and bridge terminals (both
separately and simultaneously) at different conditions of slip (2% slip
and locked rotor), bridge-configuration and eccentricity of the rotor.
Some important results have been observed from the FE code as
presented in the following sub-sections.

Table 2. Important parameters of the machine under consideration
(Kalita [15]).

Parameters Value/Type

Number of poles 4

Number of phase 3

Number of stator slots 36

Outer diameter of the stator [mm] 152

Inner diameter of the stator [mm] 90

Number of rotor slots 32

Outer diameter of the rotor [mm] 89.2

Air gap radial thickness [mm] 0.4

Length of the rotor [mm] 123

Rotor winding Squirrel cage un-skewed

Stator winding (6/9 pitch coil) Bridge configured double layer

Resistance per phase [Ohm] 0.6633
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7.1. Flux Distribution due to Torque-producing Field and
Levitation Field

The main objective of BCW in an electrical machine is to produce
controllable transverse force. For a net transverse force to be
accomplished in the machine, it is mandatory that the component
of levitation flux must be a pole-pair different (p± 1) to that of
the torque-producing component of flux. This leads to the following
conclusions (with reference to the connection shown in Figures 2 and 3):

• Excitation of the phase terminals with bridge terminals open
should result in a 4-pole flux distribution as shown in Figure 7
(with concentric rotor).

• Keeping the phase terminal open and exciting the bridges
should produce a combination of 2-pole {2× (p− 1)} and 6-pole
{2× (p + 1)} flux distribution as presented in Figures 7 and 8.
Here, p is the number of fundamental pole pairs, in the present
case p = 2, i.e., four fundamental poles.

7.2. Bridge Currents or Levitation Currents

If the rotor happens to be concentric and if the stator is
electromagnetically symmetric, there will be no equalizing currents
even if the equalizing links are short circuited.

Figure 7. 4-pole flux distribu-
tion due to main field excitation
only.

Figure 8. Combination of 2-pole
2× (p− 1) and 6-pole 2× (p + 1)
flux distribution due to levitation
field excitation only.
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Figure 9 shows the variation of phase voltages, phase currents and
levitation currents for a concentric rotor with short-circuited bridge,
2% slip, and 20 V at 25 Hz supply voltage. Under this condition,
the levitation currents are found to be zero as predicted. The phase
currents obtained from the FE-code are in good agreement with the
experimental results presented by Kalita [15] for the same specification
of the machine.

The rotor of the machine is shifted from the center by a known
percentage of air-gap thickness along x-direction (or y-direction) to
incorporate rotor eccentricity. However, the eccentricity obtained in
this way is static and parallel.

In case of an eccentric rotor, obviously, there will be no net
equalizing currents flowing when the equalizing links are not short
circuited. Once the equalizing links have been short circuited, any
unbalance of field (due to rotor eccentricity) present will induce an
EMF tending to drive currents in the closed circuit. The dominant
frequency components of the induced equalizing or levitation currents
are given by Equation (38) (Nandi et al. [16])

flev = fsup ± frot (38)

Figure 9. Variation of voltages and currents (concentric rotor, bridge
short-circuited, slip 2%, and supply voltage 20 V at 25Hz).
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Figure 10. Variation of voltages and currents (eccentric rotor 20%,
slip 0.02, supply voltage 20V at 25Hz, Bridge A short-circuited with
other bridges left open).

where, frot = {(1− s) × fsup

p }, fsup = supply frequency, p =
fundamental pole pair, frot = rotational frequency of the machine and
s = slip.

Figure 10 shows the variation of phase voltages, phase currents and
levitation current (phase A) for an eccentric (20% static) rotor with
bridge A short-circuited (and other bridges left open), 2% slip, and 20 V
at 25 Hz supply voltage. The corresponding frequency components of
voltage and current for phase A are presented in Figure 11.

Figure 13 shows the variation of phase voltages, phase currents
and levitation current (phase A) for an eccentric (20% static) rotor
with Bridge A supplied with 2V at 20 Hz (and other bridges left
open), 2% slip, and 20 V at 25Hz supply voltage. The corresponding
frequency components of voltage and current for phase A are presented
in Figure 14.

Figure 16 shows the variation of phase voltages, phase currents and
levitation current (phase A) for an eccentric (20% static) rotor with
Bridge A supplied with 2V at 20 Hz (and other bridges left open),
locked rotor, and 20 V at 25 Hz supply voltage. The corresponding
frequency components of voltage and current for phase A are presented
in Figure 17.
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Figure 11. Single sided amplitude spectrum of voltage and current
(eccentric rotor 20%, slip 0.02, supply voltage 20V at 25 Hz, Bridge A
short-circuited with other bridges left open).

Figure 12. Components of UMP acting on the rotor (eccentric rotor
20%, slip 0.02, supply voltage 20 V at 25 Hz, Bridge A short-circuited
with other bridges left open).
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Figure 13. Variation of voltages and currents (eccentric rotor 20%,
slip 0.02, supply voltage 20V at 25Hz, Bridge A supplied with 2V at
20Hz with other bridge left open).

It may be noted that the frequency components of voltage and
current depicted in Figures 11, 14 and 17 are in good accordance with
the analytical formulation presented in Equation (38).

7.3. Transverse Force Generated due to the Interaction
between Main Field and Levitation Field

The bridge configured winding scheme has the capability to produce
passive control to reduce UMP along with its provision for active
control. In either of these cases, the dominant frequency components
of transverse force are at (±fsup + flev) generated by interaction
between {2× (p− 1)} pole and (2× p) pole fields and at (±fsup − flev)
generated by interaction between {2× (p + 1)} pole and (2× p) pole
fields [17].

Figures 12, 15, and 18 represent the frequency components of
UMP obtained from the simulation of the FE-code under different
operating conditions. It is observed that the frequency components of
UMP obtained from the simulation are in good agreement with the
analytical formulation presented by Kalita and Laiho [17].
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Figure 14. Single sided amplitude spectrum of voltage and current
(eccentric rotor 20%, slip 0.02, supply voltage 20V at 25 Hz, Bridge A
supplied with 2V at 20 Hz with other bridge left open).

Figure 15. Components of UMP acting on the rotor (eccentric rotor
20%, slip 0.02, supply voltage 20 V at 25 Hz, Bridge A supplied with
sinusoidal voltage of 2 V at 20 Hz with other bridges left open).
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Figure 16. Variation of voltages and currents (eccentric rotor 20%,
locked rotor slip = 1, supply voltage 20 V at 25 Hz, Bridge A supplied
with 2 V at 20Hz with other bridge left open).

Figure 17. Single sided amplitude spectrum of voltage and current
(eccentric rotor 20%, locked rotor slip = 1, supply voltage 20V at
25Hz, Bridge A supplied with 2V at 20Hz with other bridge left open).
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Figure 18. Components of UMP acting on the rotor (eccentric rotor
20%, locked rotor slip = 1, supply voltage 20V at 25 Hz, Bridge A
supplied with sinusoidal voltage of 2 V at 20 Hz with other bridges left
open).

8. CONCLUSION

A general method for 2D finite element analysis of a cage induction
machine equipped with specialized winding is presented. This method
involves a transformation matrix that relates the coil side filamentary
currents to the terminal currents of the stator winding and can be easily
derived for any given stator winding. Besides, the detail derivation of
this transformation matrix with reference to a BCW is performed.

The results obtained from the FE-code developed for a BCW
cage induction machine have been presented. Basically, the effect
of equalizing currents (applied to the bridge) on the magnetic field
coupled with rotor eccentricity (static) is shown and hence the
signature of the forces developed is presented. The simulated results,
in terms of variation of phase currents and frequency components of
UMP due rotor eccentricity as well as asymmetric field, are found to
be in good agreement when compared with analytical formulations as
well as experimental results.
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