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Abstract—In this paper, we present a novel fast method to solve
Poisson’s equation in an arbitrary two dimensional region with
Neumann boundary condition, which are frequently encountered in
solving electrostatic boundary problems. The basic idea is to solve the
original Poisson’s equation by a two-step procedure. In the first stage,
we expand the electric field of interest by a set of tree basis functions
and solve it with a fast tree solver in O(N) operations. The field such
obtained, however, fails to expand the exact field because the tree basis
is not curl-free. Despite of this, we can retrieve the correct electric field
by purging the divergence-free field. Next, for the second stage, we find
the potential distribution rapidly with a same fast solution of O(N)
complexity. As a result, the proposed method dramatically reduces
solution time compared with traditional FEM methods. In addition,
it is the first time that the loop-tree decomposition technique has
been introduced to develop fast Poisson solvers. Numerical examples
including electrostatic simulations are presented to demonstrate the
efficiency of the proposed method.

1. INTRODUCTION

There are a variety of physical situations and engineering problems
described by elliptic partial differential equations (PDEs) such as
Poisson’s equation:

∇2u(r) = f(r). (1)

Examples of this equation are encountered in low-frequency dielectric
or conductivity problems [1, 2]. This equation is often solved in
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micro and nanoelectronic device physics: it is also found in electronic
transport and electrochemistry in terms of the Poisson-Boltzmann
equation [3, 4]. Moreover, in electrostatics, Eq. (1) is a crucial analysis
tool for electrical engineers. Hence, finding a robust and efficient
solution has attracted considerable interests.

Over the past few decades, several kinds of fast methods for
solving Poisson’s equation have been proposed. One popular fast
Poisson solver is based on Fourier analysis and accelerated by FFT [2].
However, this method has generally been limited to regular geometries,
such as rectangular regions, 2D polar and spherical geometries [5], and
spherical shells [6].

Multigrid methods are generally accepted as among the fastest
numerical methods [7–9]. These methods take advantage of fine mesh
and coarse mesh. Multigrid methods can be used in irregular domains
and also be extended to other partial differential equations. Moreover,
it has been proven effective for a number of applications including
graphics application [10]. But it is difficult to implement multigrid
methods in a robust fashion because they demand a hierarchy of
grids of different density, which are not convenient in many real world
problems.

The fast multipole method (FMM) [11–13] has been developed
to solve Poisson problems with O(N log N) complexity. This method
is applied to integral equation derived via the Green’s function
rather than differential equation methods where Poisson’s equation
is discritized directly. It also can be incorporated in a domain
decomposition method using local spectral approximation to acquire a
direct adaptive Poisson solver [14]. FMM solvers are particularly well
suited for problems with large region of homogeneity.

In this paper, we will solve Poisson’s equation with Neumann
boundary condition, which is often encountered in electrostatic
problems, through a newly proposed fast method. Instead of
discretizing Poisson’s equation directly, we solve it in two sequential
steps: a) We first find the electric field of interest by a set of tree basis
functions whose coefficients can be solved with a fast method in O(N)
operations (we call this fast method as fast tree solver in this paper);
This field, however, cannot represent the desire field uniquely since
the tree basis is not completely curl-free; Then we use a systematic
divergence free field removal procedure to retrieve the exact electric
field. b) In the second step, we obtain the electric potential φ from
−∇φ = E, which can be solved for by a fast tree solver of O(N)
complexity. Consequently, the proposed method dramatically reduces
solution time comparing with traditional FEM with iterative method
and almost linear complexity has been observed in our numerical tests.
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In contrast with the traditional finite element method (FEM), the
proposed method solves the electric field in the first step, and then finds
the electric potential in the second step. Furthermore, it introduces the
loop-tree decomposition technique — which has been applied widely in
integral equations within the computational electromagnetics (CEM)
community for decades — to solve Poisson’s equation arising from
electrostatic problems for the first time.

The differences of the proposed method with aforementioned
fast methods are twofold. First, the proposed method is based on
differential equations while FMM based methods are using boundary
integral equations. Second, compared with multigrid methods, the
proposed method does not need the multilevel mesh.

The remainder of the paper is organized as follows. In Section 2,
we outline the problem arising from electrostatics that we seek to
solve. In Section 3, details of the proposed method will be described,
in which two sequential steps of this method will be presented by
two subsections. Next, in Section 4, we demonstrate and validate
the efficiency by applying several numerical examples. Finally, the
conclusions are drawn in Section 5.

2. ELECTROSTATIC BOUNDARY VALUE PROBLEM

A typical electrostatic boundary value problem (BVP) is stated in
terms of its governing equation over a domain Ω:

∇×E(r) = 0
∇ ·D(r) = ρ(r),

(2)

where E(r), D(r) denote the electric field and the electric flux density
vector, respectively, and ρ(r) is the electric charge density. In the
following, D(r) is denoted by electric flux for short. The region Ω is a
two dimensional bounded and simple connected domain with boundary
Γ as shown in Fig. 1.

Given the assumption of linear, isotropic media, D is linked to E
through the constitutive relation

D(r) = εr(r)ε0E(r), (3)
where ε0 is the permittivity of free space, while the relative permittivity
εr(r) is position dependent generally.

We can introduce the electrostatic scalar potential, φ, so that the
electric field can be computed from

E = −∇φ, (4)
which is due to the irrotational nature of the electric field under static
conditions.
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Figure 1. Schema of the electrostatic problem.

Use of (4) in the second of the equations in (2) yields Poisson’s
equation for the electrostatic potential,

∇ · εr(r)∇φ(r) = −ρ(r)
ε0

. (5)

To ensure the uniqueness of the solution, appropriate boundary
conditions must be imposed on all boundaries in solution region. More
specifically, on the boundaries of interested domain, the tangential
component of the electric field must be specified on one portion
of the boundary, while the normal component of electric flux must
be specified on the remaining portion. In fact, these two kinds of
conditions correspond to Dirichlet boundary condition and Neumann
boundary condition, respectively. For the sake of convenience, we only
focus on those problems with Neumann boundary condition. Moreover,
we further assume that the media is linear, isotropic and homogeneous
throughout. Hence, the boundary value problem is described by:

∇2φ(r) = −ρ(r)
εrε0

r ∈ Ω

n̂ · ∇φ(r) = −ρs(r)
εrε0

r ∈ Γ,

(6)

where ρs(r) is two dimensional surface charge density, and n̂ is the
norm pointing to the solving region.

It should be noted the above Poisson problem of (6) is a special
case where Neumann boundary condition is imposed in the entire
region. In this case, the uniqueness is guaranteed apart from an
additive constant. This implies we need to impose a reference potential
to the particular problem of interested, which will be address in our
numerical test in Section 4.
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3. SOLUTION METHOD

In order to solve the Poisson problem of (6), one can discretize Eq. (6)
directly and then solve it by the traditional finite element method.
With FEM, the electric potential is obtained first while the interested
electric field then can be computed from Eq. (4).

In contrast, our proposed method finds the electric field E first.
This can be done by utilizing loop-tree decomposition that stems
from CEM applications. In the CEM community, the low frequency
problem has attracted intense interest for the last decade. When the
frequency is low, the current J naturally decomposes into a solenoidal
(divergence-free) part and an irrotational (curl-free) part. Moreover,
these two parts are not balanced for low frequency. Hence, there is
a severe numerical problem when solving integral equations in which
RWG basis is normally used. One remarkable remedy for this low
frequency breakdown is the well known loop-tree decomposition [15–
19]. The RWG basis set is decomposed into the loop basis, which has
zero divergence, and the tree basis, which has non-zero divergence.

The well-known Helmholtz decomposition [20] states that any
sufficiently smooth, rapidly decaying vector field in three dimensions
can be resolved into the sum of an irrotational (curl-free) vector field
and a solenoidal (divergence-free) vector field. By this theory, an
electric field arising from dynamic electromagnetic problems definitely
can be decomposed into two orthogonal parts: curl-free one and
divergence-free one†. If one expands this electric field in the RWG
space and resolves it into tree basis part and loop basis part (here
and throughout we also call them tree space and loop space), the loop
basis will approximately represent the divergence-free part whereas
the tree basis will not expand the curl-free part uniquely. This is
because the tree basis itself is not curl-free. Moreover, the tree basis
is not unique since one can construct different of tree structures from
a RWG space. From this point of view, the loop-tree decomposition is
a quasi-Helmholtz decomposition.

An electric field resulting from electrostatic problems, on the
other hand, is curl-free. Although the tree basis alone cannot expand
this electric field uniquely, the electric field such obtained is related
to charge density because its complement, the loop space one, does
not bring in any charge density due to its divergence-free nature.
Therefore, we can solve Poisson’s equation with the tree basis alone
first. By so doing, we can take advantage of a fast method that exploits
the topological information and is of O(N) complexity. Having found
the tree space part of electric field, we purge the solution of divergence
† Orthogonality here is defined in the inner product space where 〈A,B〉 =

∫
A ·Bdr
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free field to retrieve the desired electric field. Details of this solution
procedure will be delineated.

3.1. Solution of the Tree Space Part of Electric Field

Borrowing the idea of loop-tree decomposition, we can use a tree basis
to expand the tree space part of electric field as

Et =
Nt∑

i=1

tiTi(r), (7)

where Ti is the i-th tree basis whose coefficient is ti, and Nt is the total
number of tree basis functions. It is equal to the number of patches
minus one for a triangular mesh. We then use the pulse basis to expand
the charge density ρ, namely

ρ(r) =
Np∑

i=1

ciPi(r), (8)

where Np stands for the patch number. The pulse function is defined
as

Pi(r) =
{

1, if (r) ∈ i-th patch,

0, otherwise.
(9)

From loop-tree decomposition, it is obvious that the irrotational
(non-divergence free) part of electric field, which corresponds to the
charge density, is only associated with the tree space part. Hence, we
can substitute Eqs. (7) and (8) into the first of Eq. (6) and test it
with the same set of pulse functions as in the Galerkin’s method. This
procedure leads to

K̄ · It = Vρ (10)

where
[
K̄

]
ij

=
∫

Pi(r)∇ ·Tj(r) dr, (11)

[Vρ]i =
∫

Pi(r)ρ(r)/(ε0εr) dr = ci/(ε0εr). (12)

It should be emphasized that, in order to satisfy the boundary
condition, one can introduce the known surface charge density into
the matrix system, and then subtract the corresponding coefficients
from the right hand side of Eq. (10).

The matrix equation system of (10) can be solved in O(N)
operations with a fast tree solver described in [17, 21]. We will outline
this fast method as below.
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Figure 2. Schematic of a general tree.

3.1.1. Fast Tree Solver

The basic idea of fast tree solver is as follows. In the first place, a tree
is found to span the domain where Poisson’s equation is solved. This
tree corresponds to a set of RWG basis functions complementary to the
loop basis. Fig. 2 shows a typical tree structure. Each node of the tree
represents the center of a patch, which is related to the triangle patch
of the RWG basis. Each line between two nodes can be associated with
the current that flows between two patches. Furthermore, the patch
unknown associated with a tip of the dendritic branch is only related
to one current unknown. Therefore, starting from the branch tips,
the unknowns can be solved for recursively until a junction is reached.
Noticing that a junction node cannot be connected more than three
neighboring nodes for the case of RWG functions, we can solve for
the unknowns of junctions when the unknowns on two associated open
branches have been solved. Hence, all unknowns can be solved for in
O(N) operations.

3.2. Divergence-free Field Removal

It is well known that the tree basis is not curl-free and non-unique. This
property makes representing the desired electric field by Et inaccurate.
Alternatively, it implies that some solenoidal components contaminate
it.

Since E is curl-free, the correct electric field, E, can be obtained
by projecting Et onto the curl-free space. To this end, one has to find
a set of completely curl-free basis functions. Few research work has
devoted to it [22]. Thus, it is formidable to find a completely curl-free
basis in the RWG space.

Another way to circumvent this obstacle is to remove the
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complementary solenoidal (divergence-free) part that is orthogonal to
the curl-free space. This is practical because the divergence-free part,
unlike its curl-free counterpart, could be expanded by the loop basis
that is living on the space spanned by RWG functions. Since the loop
basis has divergence-free property, it can then expand the divergence-
free space. Therefore, we can first project Et onto the divergence free
space using a set of loop basis function. Once the projection has been
done, the pure curl-free part of Et can be obtained by subtracting the
divergence-free components.

Mathematically, Et can be expressed by

Et(r) =
N∑

i=1

aifi(r) +
Nl∑

i=1

liLi(r), (13)

where the first term on the right side is pure curl-free part of Et, while
the second one is the divergence-free part. Moreover, fi refers to RWG
basis functions whose total number is N , and Li denotes the loop basis
functions with total number of Nl.

By using the loop basis to test the above equation, Eq. (13) leads
to a matrix system

Ḡl · Il = Vd (14)

where [
Ḡl

]
ij

=
∫

Li(r) · Lj(r) dr, (15)

is the Gram matrix of the loop basis, and

[Vd]i =
∫

Li(r) ·Et(r) dr, (16)

is the projection value of Dt onto the loop space. In this equation, we
use the relation ∫

Li(r) ·
N∑

i=1

aifi(r) dr = 0, (17)

because the fact that loop basis is orthogonal to the curl free space.
The Gram matrix of loop bases, Ḡl, is highly sparse. Moreover, it

is a symmetric, positive definite and diagonally dominant. Therefore,
common iterators, such as CG, Bi-CGSTAB [23] and GMRES [24, 25],
work efficiently for solving Eq. (14).

Consequently, the electric field desired can be retrieved by

E = Et −
Nl∑

i=1

liLi. (18)
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3.3. Solution of Potential

Generally, finding the electric field E indicates that the pertinent
Poisson’s equation has been solved. In some applications, however, the
electric potential is the ultimate concern. In this section, we describe
a rapid solution of the electric potential as follows.

Finding the potential amounts to solving Eq. (4) with the electric
field, E, that is obtained from previous parts. It is interesting that
the solution of Eq. (4) can be achieved by using the same fast tree
solver because the del operator (∇) is the transpose of the divergence
operator (∇·). Hence, we expand the potential φ in terms of pulse
functions, that is,

φ(r) =
Np∑

i=1

νiPi(r). (19)

With a similar method described in Section 3.1, testing this equation
using a set of tree basis functions, we obtain

K̄T · Iφ = Vφ (20)

where
[Vφ]i = −

∫
Ti(r) ·E(r)dr, (21)

and [Iφ]i = νi which is defined in (19). The element K̄T is originally
defined as [

K̄T
]
ij

= −
∫

Ti(r) · ∇Pj(r) dr,

which can be deduced using integration by parts as
[
K̄T

]
ij

=
∫

Pj(r)∇ ·Ti(r) dr =
[
K̄

]
ji

. (22)

Consequently, the resulting matrix is just a transpose of the matrix[
K̄

]
from Section 3.1. Hence, (20) can be solved with the fast tree

solver in O(N) operations.

4. NUMERICAL EXAMPLES

In this section, two numerical examples are shown to validate the
efficiency of the proposed method. All examples have been calculated
on a standard computer with 2.66GHz CPU, 4 GB memory and
Windows operating system.
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4.1. Simple Neumann Problem

In order to validate the correctness of this algorithm, we solve a simple
2-D Poisson’s equation as the first example. The Poisson’s equation in
this case is

∂2φ

∂x2
+

∂2φ

∂y2
= −π cos(πx)− π cos(πy) (23)

where (x, y) ∈ Ω = [0, 1]×[0, 1], with the following Neumann boundary
condition

n̂ ·
(
x̂

∂φ

∂x
+ ŷ

∂φ

∂y

)
= 0 (x, y) ∈ Γ. (24)

As mentioned in Section 2, the Neumann problems is uniquely
solvable but up to a constant; hence,we have to impose a reference
potential so that the uniqueness can be guaranteed. By setting the
potential as 2/π at the point (0, 0), the aforementioned problem has
an analytical solution

φ(x, y) = [cos(πx) + cos(πy)] /π. (25)

By utilizing the proposed method, potential distribution can
be found as shown in Fig. 3, where Fig. 3(a) shows the potential
distribution result while Fig. 3(b) gives the exact solution as a
reference. Furthermore, in Fig. 4, we compared the value from the
proposed approach with the analytic results. It is obvious that the
potential distribution from this new method agrees with analytical one
well.

(a) (b)Simulation potential distribution Exact potential distribution

Figure 3. Potential distribution: (a) Simulation result. (b) Exact
potential distribution.
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Figure 5. Potential distribution calculated by the proposed method
for line sources in an arbitrary domain.

4.2. Line Source Problem

As the second example, a Poisson problem involving two line charge
sources was simulated within a polygonal region. One line source was
at point (−0.475, −0.329) with a positive unit charge while the other
one was at point (0.494, −0.459) with a negative unit charge. The
resultant potential distribution is shown in Fig. 5. In this case, the
potential value of the up-left corner (−2.0, 1.0) was set to zero as a
reference potential. The result has been validated by FEM method.
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4.3. Computational Complexity Analysis

To analyze the computational complexity, we have computed the
problem of Section 4.1 with different mesh densities. The solution time
of this algorithm consists of three parts: the first fast tree solution time
for Eq. (10), the divergence free field removal time, and the second fast
tree solution time for Eq. (20). As for the fast tree solution time, Zhao
and Chew have proved that it is of O(N) complexity [17]. Hence, the
bottleneck comes from the procedure of divergence free field removal,
which amounts to the iterative solution time of Eq. (14). The CPU
time of this part therefore depends on iterative solver type and the
required accuracy level.

In divergence free field removal part, the Gram matrix of loop
basis has the form

[
Ḡl

]
ij

=
∫

Li(r) · Lj(r) dr. (26)

Similar to the stiffness matrix of FEM, this matrix is a symmetric,
positive definite one. For this kind of matrix systems, the number of
iterations is proportional to the square-root of the condition number.

Figure 6 shows the computational complexity comparison between
this fast Poisson solver and FEM. Both conjugated gradient (CG)
and GMRES are adopted with the same stopping criterion (0.01).
For GMRES, the restart parameter is 60. As can be seen from this
plot, the total solution time of our proposed new method is evidently
less than the one of traditional FEM, whichever CG or GMRES is
adopted. In our numerical experiment, the complexity of this new
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method approaches linear complexity. Moreover, GMRES methods
work better than CG method in our simulations.

5. CONCLUSIONS

We have proposed and developed a new two dimensional fast Poisson
solver for electrostatic problems with the Neumann boundary condition
based on the loop-tree decomposition technique. This method could
solve Poisson’s equation rapidly with the fast tree solver. Its
computational workload is evidently less than that of traditional FEM.
This method promises to be a novel fast Poisson solver that can solve
general Poisson’s equation for electrostatics as well as other related
fields. Extension of this work to Dirichlet and mix boundary condition
can be carried out in a straightforward manner.
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