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Abstract—Space spectral domain approach (SSDA) is a full-wave
analysis method that combines the advantages of the spectral domain
analysis (SDA) with that of the one dimensional method of lines
(MOL). This approach is very efficient to solve 3D MIC/MMIC circuits
with higher convergence, higher accuracy and minimized computation
time. However, arbitrary shaped structures involving non-homogenous
metallization distribution in the resonator patch could hardly be solved
using this method. In this paper, the analysis of the space spectral
domain approach (SSDA) is developed using non-equidistant MOL
discretization as well as modified current basis functions to reduce
the computation time window and to sense also accurately the fine
metallization details of arbitrary shaped resonators. The modified
SSDA approach is applied to solve ten arbitrary shaped resonators
with a reduction of computation time less than 10%. Design curves
are also presented for these shapes and good agreement is achieved
between numerical and experimental results.

1. INTRODUCTION

Microwave resonators can take different forms and shapes from metallic
cavities to planar structures. In the last few decades, the use of planar
resonator structures are increasing popularly due to their compatibility
with other common fabrication techniques in the semiconductor
industry such as integrated circuits [1, 2].

MOL is an efficient method for calculating the dispersion
characteristics of planar waveguide structures such as planar microstrip
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resonators. So far, the MOL has been applied only to rectangular
shaped circuit structures [3–6], which are easy to discretize. However,
for the two dimensional scheme of the MOL, it is difficult to satisfy
all boundary conditions simultaneously for the arbitrary shaped
structures. Also, the MOL requires large number of discretization lines
to handle structures with fine details [6]. This requires computer-time-
intensive algorithm, and leads to lower accuracy and efficiency.

In 1998, MOL was modified by generalized transmission line
equations (GTL) for calculating the scattering parameters of 2-D
structures that can be divided into cascaded subsections in the
propagation direction [7–11]. It is also used for reducing the
dielectric and magnetic losses to improve the Q-factor of 2-D resonator
structures [12, 13]. But the applications of the method are still limited
to structures of rectangular metallization distribution.

The space spectral domain approach (SSDA) is a numerical
technique developed to characterize, arbitrarily shaped, spatial three
dimensional (3-D) discontinuities in MIC/MMIC circuits [14–16]. This
method combines the advantages of the spectral domain analysis
(SDA) with that of one dimensional method of lines (MOL). The new
approach is numerically very efficient and can be applied to planar
transmission lines on isolating as well semiconducting substrates with
and without open boundaries. The advantages of this approach are
that the discretization in the plane of the resonator patch is performed
along one direction only, (e.g., z direction) and the boundary conditions
for each discretized line can be easily satisfied along the other direction,
(e.g., x direction) using current basis functions.

In this paper, the analysis of the space spectral domain approach
(SSDA) is developed by using non-equidistant discretization in the
z direction to reduce the computation time window and using also
new basis functions along the x direction to satisfy the boundary
conditions. It is found that this modified SSDA approach has resulted
in a reduction of the computational time by a factor less than 10%
when compared to that of the conventional approach.

Design curves for ten different arbitrary shaped resonators with
fine details are presented. The numerical results are compared with
the experimental data of [17], and it is found that good agreement
between both data is achieved.

2. THEORY

2.1. Basic Equations of (SSDA)

Considering an arbitrarily shaped resonator discretized in z-direction
as shown in Fig. 1(a), the electromagnetic fields at each line are
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expressed by [3]:

~E = −∇× ψh~ez − jωµψe~ez +
1

jωε
∇ (∇ · ψe)~ez (1)

~H = −∇× ψe~ez − jωεψh~ez +
1

jωµ
∇

(
∇ · ψh

)
~ez (2)

where:
1

jωε
∇ (∇ · ψe)~ez =

1
jωε

[
∂ψe

∂z∂x
x̂ +

∂2ψe

∂z2
ẑ

]
(3)

substituting Eq. (3) in Eq. (1) leads to:

Ex =
−∂ψh

∂y
+

1
jωε

∂ψe

∂x∂z
(4)

jEz =
1

ωε0εr

[
k2

0εrψ
e +

∂2ψe

∂z

]
(5)

(b)(a)

Figure 1. Arbitrarily shaped resonator discretized in z-direction.
(a) Equidistant discretization. (b) Non-equidistant discretization.
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Applying the same concept for the magnetic field, one gets:

1
jωµ

∇
(
∇ · ψh

)
~ez = ∇

(
∂ψh

∂z

)
=

1
jωµ

[
∂ψh

∂x∂z
x̂ +

∂2ψh

∂z2
ẑ

]
(6)

Hx =
∂ψe

∂y
+

1
jωµ

∂ψh

∂x∂z
(7)

jHz =
1

ωµ0

[
k2

0εrψ
h +

∂2ψh

∂z2

]
(8)

2.2. Discretization

Consider the structure of the arbitrarily shaped microstrip resonators
of Fig. 1(a). The first step of the analysis is to slice the resonator
structure in the x-y plane along each discretized z line for the two
scalar potentials ψe and ψh separately. This corresponds to a one-
dimensional discretization along the z direction.

For arbitrarily shaped resonators with fine details, it is useful
to modify the traditional (SSDA) by applying non-equidistant
discretization technique as seen in Fig. 1(b). In this figure, most of
the discretization lines are concentrated around the irregularities of
the metallization sections to reduce the computation time as described
in [18, 19]. In this case, the different operators can be expressed as
follows:

D̄e
z = rhDzre, D̄h

z = −reD
t
zrh (9)

P e
z = −Dt

zDz, Pz = −DzD
t
z (10)

where re and rh are defined in [18] and [19].
Equations (9)–(10) represent a system of coupled equations

matrices, to convert this system to an uncoupled one; a transformation
by a metric T is applied in the form:

T etP e
z T = λe

z, T htP h
z T h = λh

z , λz = δ2 (11)

where T e and T h are the matrices of the eigenvectors, and λz is the
matrix of eigen value.

2.3. Spectral Domain Transformation

For each of these slices, a set of continuous basis functions is then
introduced which satisfy the boundary conditions along the x-direction.
This step replaces the discretization in the x direction known in
the two dimensional MOL. Subsequently, a Fourier transformation is
performed to replace the x coordinate in the Helmholtz equation with
the spectral term α. The two remaining spatial variables y and z, are
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then reduced to only the y variable by applying the transformation
procedure known from the one dimensional MOL in the z direction.

The variation of the fields in x-direction is expressed by the
spectral factor [20] αn where:

αn =
nπ

a
(12)

ψe(x, y, z) = ψe(y, z) sinαnx (13)

ψh(x, y, z) = ψh(y, z) cos αnx (14)

Now, the variation of the electric and magnetic potentials in x direction
is expressed as the sum of ‘sin’ and ‘cos’ functions respectively.
Substituting Eqs. (13)–(14) in Eqs. (4), (5), (7) and (8) leads to:

Ex =
(

αn

jωε0εr

∂ψe(y, z)
∂z

− ∂ψh

∂y

)
cosαnx (15)

jEZ =
1

ωε0εr

(
∂2ψe(y, z)

∂z2
+ εrk

2
0ψ

e(y, z)
)

sinαnx (16)

jHZ =
1

ωµ0

(
∂2ψh(y, z)

∂z2
+ εrk

2
0ψ

h(y, z)
)

cosαnx (17)

Hx =
(−αn

jωµ0

∂ψh(y, z)
∂z

+
∂ψe(y, z)

∂y

)
sinαnx (18)

Taking the Fourier transform of Eqs. (15)–(18), one gets the electric
field in the form:

ẽx(n, y, z) =
αn

jωε0εr

∂ψe(y, z)
∂z

− ∂ψh(y, z)
∂y

(19)

jẽz(n, y, z) =
1

ωε0εr

(
∂2ψe2

∂z2
+ εrk

2
0ψ

e

)
(20)

and the magnetic field in the form:

jh̄z(n, y, z) =
1

ωµ0

(
∂2ψh

∂z2
+ εrk

2
0ψ

h

)
(21)

h̄x(n, y, z) =
−αn

jωµ0

∂ψh

∂z
+

∂ψe

∂y
(22)

2.4. Discretizing the Wave Equation

Using the Helmholtz equation

∂2ψe,h

∂x2
+

∂2ψe,h

∂y2
+

∂2ψe,h

∂z2
= −k2ψe,h (23)
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and substituting the variation in x direction by the spectral term α in
Eqs. (13)–(14), one obtains:

∂2ψe,h

∂y2
+

∂2ψe,h

∂z2
− (

α2
n − εrk

2
0

)
ψe,h = 0 (24)

Applying the non-equidistant discretization technique in the z-
direction to get:

∂2ψe,h

∂y2
− PZ

h2
z

ψe,h − (
α2

n − εrk
2
0

)
ψe,h = 0 (25)

2.5. Wave Equation Transformation

Equation (25) represents a system of ordinary coupled differential
equations. A transformation to the principle axis is applied to convert
this system of equations to un-coupled ones [3–6], hence,

ψ = T φ̄ where: T t
hPzTe = δ2 (26)

∂2ϕ̄e,h

∂y2
−

(
δ2

h2
z

+ α2
n − εrk

2
0

)
ϕ̄e,h = 0 (27)

or:
∂2ϕ̄e,h

∂y2
− k2

i ϕ̄
e,h = 0 where k2

i =
(

δ2

h2
z

+ α2
n − εrk

2
0

)

Eq. (27) has a general solution in the form:
φ̄ = Aicosh kyiy + Bisinh kyiy (28)

For any two layers I, II (as seen in Figs. 2(a)):(
~φ e,h

∂ϕe,h

∂y

)

y2

=
(

cosh kyi(y2 − y1) sinh kyi(y2 − y1)
kyi sinh kyi(y2 − y1) cosh kyi(y2 − y1)

)(
~φ e,h

∂ϕe,h

∂y

)

y1

(29)

which can be written in the form:


φ̄e
i+1

∂φ̄h
i+1

∂y

∂φ̄e
i+1

∂y

φ̄h
i+1




=




cosh kye
i t 0 sinh kye

i t
kye

i
0

0 cosh kye
i t 0 kyi sinh kye

i t
kyi sinh kye

i t 0 cosh kyh
i t 0

0 sinh kye
i t

kye
i

0 cosh kyh
i t







φ̄e
i

∂φ̄h
i

∂y

∂φ̄e
i

∂y

φ̄h
i




(30)
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2.6. Discretizing and Transforming the Field Equations

Applying the z-direction discretization to Eq. (18):

ẽx(n, y, z) =
αn

jωε0εrhz
D̄Zψe − ∂ψh

∂y
(31)

and then transforming Eq. (31) using Eq. (26) one gets:

˜̄Ex(n, y, z) =
αnδ

jωε0εrhz
φ̄e − ∂φ̄h

∂y
(32)

Applying the same procedures to the other field components leads to:



˜̄Ex

j ˜̄Ez

j ˜̄Hz
˜̄Hx


 =




αnδ
jωε0εrhz

−I 0 0
k2
0εrh2

z−δ2

ωε0εrµ0h2
z

0 0 0

0 0 0 k2
0εrh2

z−δ2

ωµ0rh2
z

0 0 I δtαn
jωµ0hz







ϕ̄e

∂ϕ̄h

∂y
∂ϕ̄e

∂y

ϕ̄h




(33)

2.7. Field Matching

Transforming the field from the any lower interface ‘i’ to the upper
interface ‘i + 1’ seen in Fig. 2(b) leads to:



˜̄Ex

j ˜̄Ez

j ˜̄Hz
˜̄Hx




I+1

= ΠL1
i=1RiQiR

−1

i




˜̄Ex

j ˜̄Ez

j ˜̄Hz
˜̄Hx




I

(34)

where Eq. (34) represents the recurrence equations for any two
subsequent layers.

Transforming from the lower interface ‘L’ to the lower resonator
interface ‘- - -’ as observed from Fig. 2(a):[

˜̄E−
˜̄H−

]
=

[
yI
1 yI

2

yI
3 yI

4

][
˜̄EL
˜̄HL

]
(35)

where : y1 = y4 =
[

cosh kyit 0
0 cosh kyit

]
(36)

y2 =




hzδ2α2sin γt−γ2ω2ε0εrh3
zµ0sinh γt

γωε0εrhz(εrk2
0h2

z−δ2)
δα

jωε0εrhz

sinh γt
γ

jδα
ωε0εrhz

sinh γt
γ

εrk2
0h2

z−δ2

ωε0εrh2
z

sinh γt
γ


 (37)

y3 =




εrk2
0h2

z−δ2

ωµ0rh2
z

sinh kyt
ky

εrk2
0h2

z−δ2

ωε0εrh2
z

sinh kyt
ky

jδα
ωµ0rhz

sinh kyt
ky

k2
yωh2z2µ0ε0εr−δ2α2

ωµ0(εrk2
0h2

z−δ2)ky

sinh kyt
ky


 (38)
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Figure 2. Field transformation on multiple dielectric layers.

Transforming from the upper interface ‘U ’ to the upper resonator
interface ‘+++’ as observed from Fig. 2(a):

[
˜̄E+
˜̄H+

]
=

[
yII
1 −yII

2

−yII
3 yII

4

][
˜̄EU
˜̄HU

]
(39)

Applying the boundary conditions at the lower interface ‘L’ and upper
interface ‘U ’ leads to:[

˜̄Z1
˜̄Z2

˜̄Z3
˜̄Z4

][
− ¯̃Jx
¯̃Jz

]
=

[
˜̄Ex

j ˜̄Ez

]
(40)

2.8. Backward Transformation

Transforming Eq. (40) back to the original domain leads to:
[

T ht

T et

] [
˜̄Z1

˜̄Z2
˜̄Z3

˜̄Z4

][
T h

T e

] [ −J̃x

J̃z

]
=

[
Ẽx

jẼz

]
(41)

2.9. Boundary Conditions

Applying the boundary conditions at the lines through the
metallization to get:

[
Z̃1(f, α) Z̃2(f, α)
Z̃3(f, α) Z̃4(f, α)

]r [ −J̃x

J̃z

]
=

[
0
0

]
(42)
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and through the dielectric lines
[

Z̃1(f, α) Z̃2(f, α)
Z̃3(f, α) Z̃4(f, α)

]o [ −J̃x

J̃z

]
=

[
Ẽx

jẼz

]
(43)

2.10. Moment Method

Assume that the current ‘J ’ is defined with a known function with
unknown coefficients in the form [3]

J̃ke

z = bke

i

njz∑

i=1

J̃zi(α) (44)

J̃kh

x = akh

j

nJx∑

j=1

J̃xj(α) (45)

where ‘i’ is the number of the basis functions and ‘k’ the line
number. The functions JzF and JxF are chosen to satisfy the boundary
conditions at the strip and at the edges of the strip lines.

Jke

zi
(x) =





bke

i cos
[

iπ(x−s)
W

]
√

1− [
2
W (x− s)− 1

]2
i = 0, 2, 4, 6, . . .

bke

i sin
[

iπ(x−s)
W

]
√

1− [
2
W (x− s)− 1

]2
i = 1, 3, 5, . . .





(46)

Jkh

xj
(x) =





akh

j
cos

[
jπ(x−s)

W

]
√

1− [
2
W (x− s)− 1

]2
j = 1, 3, 5, . . .

akh

j
sin

[
jπ(x−s)

W

]
√

1− [
2
W (x− s)− 1

]2
j = 0, 2, 4, 6, . . .





(47)
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To solve Eqs. (42)–(43) the current functions must be transformed by
the Fourier transform to obtain [3]:

J̃zi(α) =





π

4
Wej(s+(W/2))α(−1)

1
2

[
J0

(
αW

2
+

iπ

2

)
+ J0

(
αW

2
− iπ

2

)]

i = 0, 2, 4, 6, . . .
π

4
Wej(s+(W/2))α(−1)

(i−1)
2

[
J0

(
αW

2
+

iπ

2

)
+ J0

(
αW

2
− iπ

2

)]

i = 1, 3, 5, . . .





(48)

J̃xj (α) =





π

4
wej(s+(W/2))α(−1)

j
2

[
J0

(
αW

2
+

jπ

2

)
− J0

(
αW

2
− jπ

2

)]

j = 0, 2, 4, 6, . . .

π

4
wej(s+(W/2))α(−1)

(j+1)
2

[
J0

(
αW

2
+

jπ

2

)
− J0

(
αW

2
− jπ

2

)]

j = 1, 3, 5, . . .





(49)

where ‘J0’ is the zero order Bessel function. Eq. (42) becomes:
[

Z̃1(f, α)J̃xj(α) Z̃2(f, α)J̃zi(α)

Z̃3(f, α)J̃xj(α) Z̃4(f, α)J̃zi(α)

]r [
akh

j

bke

i

]
=

[
0
0

]
(50)

Now, Galerkin technique is applied to solve Eq. (50). Using basis
functions J̃xj (α) for the first part of Eq. (49) and J̃zi(α) for the second
part of the equation to get:



N∑
n=1

J̃xj (α)Z̃1(f, α)J̃xj (α)
N∑

n=1
J̃zi(α)Z̃2(f, α)J̃zi(α)

N∑
n=1

J̃xj
(α)Z̃3(f, α)J̃xj (α)

N∑
n=1

J̃zi(α)Z̃4(f, α)J̃zi(α)




r[
akh

j

bke

i

]
=

[
0
0

]
(51)

which can be written in the form:
[

z1(f) z2(f)
z3(f) z4(f)

]r
[

akh

j

bke

i

]
=

[
0
0

]
(52)
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Equation (52) is a determinant equation which is satisfied at the
resonance frequency of the structure. The second step is obtaining the
unknown current coefficient aj and bi from which the current can be
calculated using Eqs. (46)–(47) from which the other field components
can be calculated.

5.0 5.5 6.0 6.5 7.0
5.5

6.0

6.5

7.0

7.5

8.0

b

a

WZ

Z

x

SSDA

 MOL[6]

F
r

(G
H

z)

z (mm)W

Figure 3. Effect of changing Wz

on the resonance frequency of the
rectangular resonator εr = 3.82,
d = 0.66mm, a = 10 mm, s =
2mm, Wx = 3 mm, Jx = 3, Jz =
1.
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Figure 4. Effect of changing
Wz and Wx on the resonance
frequency of the rectangular res-
onator εr = 3.82, d = 0.66mm,
a = 10mm, s = 2 mm, Wx =
3mm, Jx = 3, Jz = 1.

3 4 5 6 7 8 9 10 11

5.0

5.5

6.0

6.5

7.0

7.5

8.0

F
r
(G

H
z)

εr

Figure 5. Effect of changing
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Jz = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
7.0

7.2

7.4

7.6

7.8

8.0

F
r

(G
H

z)

d (mm)

Figure 6. Effect of changing the
substrate depth “d” on the res-
onance frequency of the rectan-
gular resonator εr = 3.82, a =
10mm, s = 2 mm, Wz = 5 mm,
Wx = 3 mm, Jx = 3, Jz = 1.
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number of discretization lines Nz
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d = 0.66mm, a = 10 mm, s =
2mm, Wz = 5mm, Wx = 3 mm,
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the number of spectral terms n
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rectangular resonator εr = 3.82,
d = 0.66mm, a = 10 mm, s =
2mm, Wz = 5 mm, Wx = 3 mm,
Jx = 3, Jz = 1.

3. NUMERICAL RESULTS

To check the validity of the method and the accuracy of the program,
the program is applied first on a rectangular microstrip resonator for
resonance frequency calculations. The results were compared with
those in [6] and [14] where good agreement is found as seen in Fig. 3. It
is also observed in this figure that the resonance frequency Fr increases
as WZ decreases. Fig. 4 shows that, the resonator width WX is slightly
affecting the resonance frequency of this resonator. Figs. 5–6 show
the effect of the substrate parameters on the resonance frequency of
the resonator, and it is seen from those figures that the resonance
frequency decreases with the increase of dielectric permittivity εr and
the decrease of dielectric depth “d”. This is expected because the
increase of the dielectric permittivity εr or the decrease of the dielectric
depth d makes the field more confined in the substrate material.

From Figs. 7–9, it is seen that the main factors affecting the
accuracy of the results are

1. Number of discretization lines Nz
2. Number of the spectral terms α(n)
3. Number of the basis functions of the current JX , JZ

• Number of discretization lines

As seen in Fig. 7, the results converges to the right solution as the
number of the discretization lines increases. For the rectangular
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Figure 9. Effect of changing the number of the basis functions Jz and
Jx on the resonance frequency of the rectangular resonator εr = 3.82,
d = 0.66mm, a = 10 mm, s = 2mm, Wz = 5 mm, Wx = 3 mm.

resonator under study, it is found that 20 × 20 lines are needed to
reach the converged results using the conventional 2-D (MOL), and
using the conventional (SSDA), it is found that 20 lines are sufficient
to reach the converged results. While, when using non-equidistant
discretization for the modified (SSDA) the number of lines needed
to pass through the metallization part of the resonator are only 10
lines for reaching the converged results and from the previous results,
it is found that using the modified (SSDA) algorithm, the number
of discretization lines decreases from 400 lines in the conventional
(MOL) to 14 lines only in this algorithm. This leads accordingly to
a large decrease in the computation time reaching less than 10%. As
an example, the conventional MOL, SSDA and the modified SSDA
are applied to the rectangular shape resonator. It is found that the
CPU times of execution of the methods to reach the converged results
are: 300 : 50 : 10 ms respectively (using the same processor), which
is directly proportional to the number of discretization lines, and the
corresponding size of arrays.

• Number of the Spectral Terms α(n)

It is shown in Fig. 8 that the convergence of the resonant frequency
is reached as the number of the spectral terms α(n) increases. It is also
found that n = 60 is a sufficient number of the spectral terms to reach
the exact solution.

• Number of the basis functions of the current JX , JZ

It is seen in Fig. 9 that the appropriate number of the basis functions in
the x-component to reach the converged results are JX = 3. While, the
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change in the number of the basis functions in z-component JZ slightly
affect the numerical solution. Hence, the suitable number of the basis
functions can be assumed as JX = 3 and JZ = 1 for rectangular shape
resonator however highly complicated shapes may require larger values
of JX to obtain accurate results.

After checking the main factors affecting the accuracy of the
numerical results of the rectangular resonator, the algorithm is applied

R1 

R2 

Wz

R 

 

(4) (5)

(5)(6) (7) (8) (10)(9)

Wz

Figure 10. Ten different arbitrary shaped resonators (1) rectangular
resonator, (2) circular resonator, (3) arbitrary resonator, (4) arbitrary
circular resonator, (5) half rhombic resonator, (6) ring resonator,
(7) arbitrary ring resonator, (8) strip line resonator, (9) half circular
resonator, (10) rhombic resonator.
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Figure 11. Effect of changing Wz

on the resonance frequency of the
strip line resonator εr = 3.82, d =
0.66mm, a = 10 mm, s = 2mm,
Wx = 3 mm, Jx = 3, Jz = 1.
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Figure 12. Effect of changing
R on the resonance frequency of
the ring resonator εr = 3.82, d =
0.66 mm, a = 10 mm, s = 2 mm,
Jx = 3, Jz = 1.
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Figure 13. Effect of changing R
on the resonance frequency of the
half-ring resonator εr = 3.82, d =
0.66mm, a = 10 mm, s = 2mm,
Jx = 3, Jz = 1.
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Figure 14. Effect of changing
R2 on the resonance frequency
of the arbitrarily circular shaped
resonator R1 = 2.0mm, εr =
3.82, d = 0.66mm, a = 10mm,
s = 2mm, Jx = 3, Jz = 1.
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Figure 15. Effect of changing Wz

on the resonance frequency of the
arbitrarily shaped resonator εr =
3.82, d = 0.66mm, a = 10 mm,
s = 2 mm, Jx = 3, Jz = 1.
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Figure 16. Effect of changing
the radius R on the resonance
frequency of the ring resonator
εr = 3.82, d = 0.66mm, a =
10mm, s = 2 mm, Jx = 3, Jz = 1,
r1 = 0.5mm.

for the design and resonance frequency calculations of the other
shapes of Fig. 10. These structures are: circular resonator (2),
arbitrary resonator (3), arbitrary circular resonator (4) half rhombic
resonator (5), ring resonator (6), Arbitrary ring resonator (7) strip line
resonator (8) , half circular resonator (9) and rhombic resonator (10).
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Figure 17. Effect of changing
the radius R on the resonance
frequency of the arbitrary ring
resonator εr = 3.82, a = 10mm,
d = 0.66mm, s = 2mm, Jx = 3,
Jz = 1, r = 0.5mm.
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Figure 18. Effect of changing
Wz on the resonance frequency of
the rhombic resonator εr = 3.82,
d = 0.66mm, a = 10 mm, s =
2.5 mm, Wx = 3 mm, Jx = 3,
Jz = 1 = 1 mm.
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Figure 19. Effect of changing Wz on the resonance frequency of
the half-rhombic resonator εr = 3.82, d = 0.66mm, a = 10 mm,
s = 2.5mm, s = 2.5mm, Wx = 2.5mm, Jx = 3, Jz = 1.

For the design purposes, all resonators seen in Fig. 10 are adjusted
to have resonance frequencies equal to each other as possible [17].
All figures of resonators are chosen to have the same dielectric
materials and to have nearly the same dimensions along the z
direction. The dependence of the resonant frequency upon the most
effective dimension of these resonators is shown in Figs. 11–19. It
is also noticed from these figures that regardless to the shape of the
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resonator, the resonance frequency decreases as the effective dimension
of the resonator increases. Considering the resonator structures which
have non-uniform metallic distribution in the resonator patch like
arbitrary shaped resonator (3), ring resonator (6) and arbitrary ring
resonator (7), the current distribution functions are proposed in the

4 6 8 10 12 14 16 18 20 22
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

 rectangular

 strip

 arbitrary

 circular

 half -circular

 ring 

 arbitrary ring

 rohmbic

 half-rohmbic

arbirary rohmbic 

F
r

(G
H

z)

Wz (mm)

Figure 20. Design curves for different 10 arbitrary shaped resonators
using the same substrate material εr = 3.82, d = 0.66mm, a = 10 mm
and having nearly the same z dimensions.
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Figure 21. Design curves for the six different arbitrary shaped
resonators using different material with the same dielectric depth
d = 1.27mm.
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Figure 22. Fabrication of three arbitrary shaped resonators
having tiny details and having different dielectric metallization
distribution [17].

Figure 23. Resonance frequency measurements for the six arbitrary
shaped resonators [17].

form:

J̃ke

zi
=

nx∑

v=1

nJz∑

i=1

bke

i J̃zF (α) (53)

J̃kh

xj
=

nx∑

v=1

nJx∑

j=1

akh

j J̃xF (α) (54)

where nx is the number of metallization lines for each discretized line
along the z direction.

Figure 20 shows that, for a fixed WZ , the half ring resonator
has the highest resonance frequency of all studied resonator
structures. Fig. 21 represents the effect of changing the dielectric
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Table 1. Comparison between calculated and measurements
results [17] for six resonator shapes: Strip resonator (Wx = 6 mm,
Wz = 28.7mm), Rectangular resonator (Wz = 28.7mm), Circular
resonator (R = 17.15mm), Arbirary resonator (C = 31.75 mm, d =
27.56mm), Ring resonator (R = 12.74 mm, r1 = 6.74mm), Arbitrary
ring resonator (R = 14.71 mm, r = 5.1mm).

Strip Rectangular Circular
Arbitrary

shape
Ring

Arbitrary

ring

Calculated

fr

1.53

(GHz)

1.6

(GHz)

1.59

(GHz)

1.47

(GHz)

1.5

(GHz)

1.64

(GHz)

Measured

fr

1.52

(GHz)

1.59

(GHz)

1.57

(GHz)

1.48

(GHz)

1.49

(GHz)

1.62

(GHz)

material on the resonance frequency of six arbitrary shaped resonators
given in Fig. 10. Figs. 22, shows the fabrication of arbitrary shaped
resonator, ring resonator and arbitrary ring resonator [17] which have
tiny details in the resonator patch. Fig. 23 shows the results of
resonance frequency measurements for rectangular, circular, arbitrary,
ring, arbitrary ring and strip resonators respectively. It is observed
from Figs. 21, 23 and Table 1 that good agreement is found between
measured [17] and calculated results with Fr ranging from 1.47–
1.62GHz for the six different tested resonator structures which have
dielectric material of εr = 10.2 and d = 1.27mm.

4. CONCLUSION

In this paper, the analysis of the space spectral domain approach
(SSDA) is enhanced by non-equidistant (MOL) discretization and
the spectral domain analysis of the current distribution is developed.
The modifications of the (SSDA) enable the method to be applied
for arbitrary shaped structures that cannot be easily solved
using the conventional method of lines (MOL) or (SSDA). The
resonance frequencies of ten arbitrary shaped resonators with different
metallization distribution are obtained using this modified method.
Good agreement is found between numerical and experimental results.
The dependence of these resonance frequencies upon the most effective
dimensions of these resonators is investigated. It is concluded that
using the modified (SSDA) with non equidistant decritization reduces
the computation time to less than 10% if compared with that of the
traditional MOL algorithm.
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