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Abstract—This paper presents an implementation of the FDTD-
compatible Green’s function on a heterogeneous parallel processing
system. The developed implementation simultaneously utilizes
computational power of the central processing unit (CPU) and the
graphics processing unit (GPU) to the computational tasks best suited
for each architecture. Recently, closed-form expression for this discrete
Green’s function (DGF) was derived, which facilitates its applications
in the FDTD simulations of radiation and scattering problems.
Unfortunately, implementation of the new DGF formula in software
requires a multiple precision arithmetic and may cause long runtimes.
Therefore, an acceleration of the DGF computations on a CPU-GPU
heterogeneous parallel processing system was developed using the
multiple precision arithmetic and the OpenMP and CUDA parallel
programming interfaces. The method avoids drawbacks of the CPU-
and GPU-only accelerated implementations of the DGF, i.e., long
runtime on the CPU and significant overhead of the GPU initialization
respectively for long and short length of the DGF waveform. As a
result, the sevenfold speedup was obtained relative to the reference
DGF implementation on a multicore CPU thus applicability of the
DGF in FDTD simulations was significantly improved.

1. INTRODUCTION

The hybridization between the finite-difference time-domain (FDTD)
method and integral equation based numerical methods requires
consistency with the discrete electromagnetism theory [1–5] and the
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discrete Green’s function (DGF) that is compatible with the Yee’s
grid [6–12]. The DGF is directly derived from the FDTD update
equations thus the FDTD method and its integral discrete formulation
based on the DGF can be perfectly coupled [11]. Applications include
electromagnetic simulations on disjoint domains [13] and construction
of the boundary conditions, i.e., absorbing (ABC) [7, 8, 12] as well as
truncating the grid in the presence of reflecting external media [14].
Computational efficiency of the FDTD method can therefore be
improved due to elimination of free-space cells between objects and
perfectly matched layers at the grid boundaries. The DGF can also
be applied to the total-field/scattered-field formulation of the FDTD
method to reduce erroneous field leakage across the boundary [15].

Due to the above-mentioned advantages of the DGF application,
this function has been found to be an efficient tool facilitating the
design process of antennas [10–12]. The FDTD efficiency in such
simulations is mostly affected by the number of cells occupied by
the vacuum in the region between an antenna and an observation
point. In [10, 11], the DGF antenna simulations were demonstrated
based on wire-antenna examples showing the savings in runtime and
memory usage. In [12], the DGF approach to FDTD simulations was
demonstrated in the design process of the ultra-wideband cylindrical
antenna. This technique employs the DGF as the ABC placed close to
the antenna surface and as the radiated field propagator to observation
points at each FDTD iteration step. Antenna shape was optimized
in order to achieve the desired radiated field characteristics, i.e., the
required temporal pulse parameters at certain observation points. The
DGF was computed at the preprocessing stage and it was combined
with many different FDTD simulations in the optimization process of
the antenna.

Recently, Jeng [9] derived the new analytic closed-form expression
for the 3-D dyadic DGF in infinite free space based on the ordinary
z-transform along with the partial difference operators. Although the
new DGF expression has a very compact form, it involves binomial
coefficients that may cause long runtimes and accuracy problems
for large values of upper indices. In spite of that, the accelerated
implementations of the DGF were developed on a multicore central
processing unit (CPU) [16] and a graphics processing unit (GPU) [17]
in a multiple precision arithmetic. However, it was found that
the performance of the GPU-only implementation is deteriorated by
overhead of the GPU initialization for short DGF waveforms. On the
other hand, the CPU-only implementation requires longer computing
runtimes than the GPU-only implementation for long DGF waveforms.
It suggests that optimal approach to the DGF parallelization should
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simultaneously employ the CPU and the GPU to the lengths of the
DGF waveform best suited for each architecture.

Therefore, the objective of this paper is to demonstrate for the
first time a new technique for acceleration of the DGF computations
on the CPU-GPU heterogeneous parallel processing system. The
acceleration of simulations on modern computing architectures
represents an emerging trend in computational electromagnetics. In
particular, the GPU acceleration has recently become a hot topic
of investigations due to its low cost in comparison to the high-
performance computing on clusters. Several numerical methods
have already been implemented on GPUs, i.e., FDTD method [18–
23], finite-difference frequency-domain method [24, 25], finite element
method [26–29] and, method of moments [30–32]. Moreover,
efforts have been made towards the acceleration of computations
on heterogeneous parallel processing systems utilizing computational
power of the CPU and the GPU [27, 33]. However, up to now, the
acceleration of scientific computations requiring the multiple precision
arithmetic has not yet been presented on the CPU-GPU heterogeneous
parallel processing system to the best of the author’s knowledge.

This paper is organized as follows. The idea behind the DGF
formulation of the FDTD method is introduced in Section 2. In
Section 3, the DGF implementations are presented for: (i) the
multicore CPU, (ii) the GPU, and (iii) the hybrid CPU-GPU parallel
processing system. In Section 4, results of numerical benchmarks are
presented. Finally, the conclusions are given in Section 5.

2. THE 3-D DISCRETE GREEN’S FUNCTION
FORMULATION OF THE FDTD METHOD

Linear and invariant systems such as FDTD equations can be
represented by means of the convolution of the input sequence and
the response of the system to the Kronecker delta-pulse source [6]:
[

E |nijk
ηH |nijk

]
=

∑

n′i′j′k′

[
Gee |n−n′

i−i′j−j′k−k′ Geh |n−n′
i−i′j−j′k−k′

Ghe |n−n′
i−i′j−j′k−k′ Ghh |n−n′

i−i′j−j′k−k′

][
c∆tηJ |n′i′j′k′

c∆tM |n′i′j′k′

]
, (1)

where c denotes the speed of light, η the intrinsic impedance of free
space, n the time index, and ∆t the time-step size. Equation (1) is
referred to as the convolution formulation of the FDTD method [11].
If the length of the DGF waveforms is equal to the number of time
steps in the FDTD simulation, this formulation returns the same
results as the FDTD method (assuming infinite numerical precision
of computations).
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The analytic closed-form expression for the DGF in infinite free
space for the (i, j, k) Yee’s cell can be derived using the method of
Jeng [9]. Only the electric field Gee DGF component is presented here
for the sake of brevity:

Gee,xz |nijk =
n−2∑

m=αx+βx+γx

(
n + m

2m + 2

)
gxz |mijk, (2)

Gee,yz |nijk =
n−2∑

m=αy+βy+γy

(
n + m

2m + 2

)
gyz |mijk, (3)

Gee,zz |nijk = −sxsyszU |n−1 δ |ijk

+
n−2∑

m=max(αf,y+βf,y+γf,y−1,0)

(
n + m

2m + 2

)
fzz |m+1

ijk

+
n−2∑

m=αh,y+βh,y+γh,y

(
n + m

2m + 2

)
hzz |mijk, (4)

where:

gxz |mijk = −(−1)m+i+j+k
∑

α+β+γ=m
α>αx,β>βx,γ>γx

(
m

αβγ

)

×
(

2α + 1
α + i + 1

)(
2β

β + j

)(
2γ + 1
γ + k

)
s2α+2
x s2β+1

y s2γ+2
z , (5)

gyz |mijk = −(−1)m+i+j+k
∑

α+β+γ=m
α>αy,β>βy,γ>γy

(
m

αβγ

)

×
(

2α

α + i

)(
2β + 1

β + j + 1

)(
2γ + 1
γ + k

)
s2α+1
x s2β+2

y s2γ+2
z , (6)

fzz |mijk = −(−1)m+i+j+k
∑

α+β+γ=m
α>αf,z,β>βf,z,γ>γf,z

(
m

αβγ

)

×
(

2α

α + i

)(
2β

β + j

)(
2γ

γ + k

)
s2α+1
x s2β+1

y s2γ+1
z , (7)

hzz |mijk = −(−1)m+i+j+k
∑

α+β+γ=m
α>αh,z,β>βh,z,γ>γh,z

(
m

αβγ

)

×
(

2α

α + i

)(
2β

β + j

)(
2γ + 2

γ + k + 1

)
s2α+1
x s2β+1

y s2γ+3
z . (8)
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Other terms denote: αx = max(−i − 1, i), βx = |j|, γx =
max(−k, k − 1), αy = |i|, βy = max(j,−j − 1), γy = max(−k, k − 1),
αf,z = αh,z = |i|, βf,z = βh,z = |j|, γf,z = |k|, γh,z = max(|k| − 1, 0).
U |n and δ |ijk respectively denote step and Kronecker delta functions.
∆p is the discretization-step size along the p-direction (p = x, y, z) and
sp = c∆t/∆p the Courant number. Expressions for other components
of the Gee DGF can be obtained rotating x, y, z subscripts and
corresponding summation indices.

Equations (2)–(8) involve binomial coefficients, whose values
are large integer numbers for high upper indices, whereas powers
of Courant numbers may be very small real numbers. Numerical
problems occur if these DGF equations are implemented in a common
programming language with fixed-size precision arithmetic [9]. The
DGF expressions have to be therefore implemented using the multiple
precision arithmetic whose digits of precision are only limited by the
available memory in a computing system. Final results of the DGF
computations obtained using the multiple precision arithmetic are
cast to fixed-size floating-point precision which is typical for standard
computing architectures (32/64 bits).

3. PARALLEL IMPLEMENTATIONS OF THE
DISCRETE GREEN’S FUNCTION COMPUTATIONS

An application of the DGF requires generation of its time-domain
waveforms for a number of Yee’s cells. The developed CPU-GPU
implementation takes advantage of the CPU- and GPU-only codes
but avoids their above-mentioned drawbacks. The implementations
on CPU and GPU use respectively MPIR [34] and CUMP [35]
multiple precision arithmetic libraries. The OpenMP [36] and
CUDA [37] programming interfaces were employed for parallelization
of computations on respectively CPU and GPU architecture.

The MPIR is an open-source library forked from the GNU multiple
precision arithmetic library (GMP) [34]. This library was designed to
provide the fastest possible arithmetic on CPUs for all applications that
need higher precision than 64 bits. The speed of MPIR results from
using fullwords as a basic arithmetic type, sophisticated algorithms,
and optimized assembly code for many different CPUs. The advantage
for the MPIR increases with the operand sizes since this library uses
many asymptotically faster algorithms.

The CUMP is an open-source library optimized for execution
of the multiple precision computations on GeForce 400/500 GPU
architectures from Nvidia. The speed of CUMP results from using
fullwords as a basic arithmetic type and an application of the register
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Figure 1. Flowchart of the DGF implementation on CPU.
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blocking technique [35]. Unfortunately, the CUMP library employs
basic multiplication algorithm which requires O(n2) operations. In
spite of that, the GPU-only implementation of the DGF has already
provided the sixfold speedup over the CPU-only implementation [17].

All presented DGF implementations start execution from setting
the mantissa size of floating-point variables in the multiple precision
arithmetic libraries. The mantissa size has to be large enough to
guarantee convergence of the DGF computations. Afterwards, the
lookup tables of binomial coefficients and powers of Courant numbers
are generated. Sizes of these arrays depend on the upper limit of the
time index (nmax) of the computed DGF waveforms.

The CPU-only, GPU-only, and CPU-GPU implementations will
be described below only for the electric field Gee,xz DGF component
due to the sake of brevity.

3.1. Implementation on Multicore Central Processing Unit

Flowchart of the DGF implementation on a multicore CPU [16]
is presented in Fig. 1. The Gee,xz component of the DGF is a
summation of the gxz standing wave modes multiplied by temporal
coefficients [9]. It is efficient to compute values of the standing wave
modes once and store the result in the lookup table since these values
are employed many times in the Gee,xz waveform computations. Array
of the standing wave modes is generated for indices from the range
of the corresponding summation limits in (2). This step can be
efficiently parallelized since the computation of every single standing
wave mode represents an independent computational task. Afterwards,
summation in (2) can also be executed in parallel.

The summation in expression for the standing wave mode (5) is
executed in a loop, with the temporary result being a floating-point
variable with user-selectable mantissa precision. In every loop step,
integer result of multiplications of the binomial coefficients (from the
lookup table) is calculated and cast to the floating-point variable.
Afterwards, this variable is multiplied by powers of the Courant
numbers (from the lookup table), and the result is added to the
aforementioned temporary summation result in every loop step.

3.2. Implementation on Graphics Processing Unit

Flowchart of the DGF implementation on a GPU [17] is presented in
Fig. 2. Analogously to the CPU implementation, values of the gxz

standing wave modes are computed once and the result is stored as
the lookup table in a global memory on the GPU device. Although
overhead of data transfer between the global memory and the GPU
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Figure 2. Flowchart of the DGF implementation on GPU.



Progress In Electromagnetics Research, Vol. 135, 2013 305

is very high, it is still advantageous to employ this strategy rather
than execute redundant computations requiring the multiple precision
arithmetic. Access time to the global memory was identified as a
rate-limiting step in the multiple precision computations on GPU [35].
Therefore, an interleaved memory layout was employed in the CUMP
library to store arrays of multiple precision numbers. As a result, the
library can take advantage of the coalesced memory access on GPU.

In the developed implementation, each CUDA thread within a
kernel computes a single contribution to the summation in (5). A
limited set of (α, β, γ) indices corresponds to the mth mode of the
standing wave (5). Let us assume that (αx, βx, γx) are equal to zero
for the sake of brevity. Then, α index takes values from the range
(0, 1, 2, . . . , m). Corresponding values of β index are as follows:

α = 0 =⇒ β = 0, 1, . . . , m

α = 1 =⇒ β = 0, 1, . . . , m− 1
. . .

α = m =⇒ β = 0.

Therefore, the total number of threads required to represent the
set of (α, β, γ) indices is equal to:

1 + 2 + 3 + . . . + (m + 1) =
(m + 1)(m + 2)

2
=

(
m + 2

2

)
. (9)

Such a number of threads concurrently runs and computes the
contributions to the sum (5). The indices (α, β, γ) are computed for
each thread based on its global index. If (αx, βx, γx) are non-zero
numbers, then m is reduced and the described above procedure is
still applicable. Then, final values of the (α, β, γ) indices have to be
increased respectively by (αx, βx, γx).

Computational kernels employ device functions from the CUMP
library to execute multiple precision computations. The binomial
coefficients and the powers of the Courant numbers are multiplied and
a result is stored in an array of the contributions to the gxz. In the
next step, summation in (5) is executed using the parallel reduction
algorithm [38]. Afterwards, an output DGF waveform is computed
using the formula (2) and gxz values from the lookup table. In this case,
each thread concurrently computes final result for the corresponding
time index (n).

3.3. Implementation on Heterogeneous Parallel Processing
System

Flowchart of the CPU-GPU heterogeneous implementation is
presented in Fig. 3. After generation of the lookup tables, the
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Figure 3. Flowchart of the DGF implementation on heterogeneous
CPU-GPU parallel processing system.
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algorithm decides if it is advantageous to execute computations only on
the CPU. Such situation occurs for short enough DGF lengths whose
runtime on the CPU is lower than time of the GPU initialization. The
following condition is evaluated:

nmax − ni 6 nCPU + 1, (10)

where ni = αx + βx + γx and nCPU denotes the number of standing
wave modes solved only on CPU (value of this parameter depends on
CPU and GPU throughputs).

If the condition is fulfilled, the CPU-only code is further executed.
Otherwise, the parallel OpenMP section is opened with a single
thread (omp_tid=0) controlling execution of the code on GPU and
the rest of threads executing the DGF computations on CPU. Similar
parallelization strategy has already been reported in the literature
for the CPU-GPU heterogeneous processing system [39]. The load
is distributed between both architectures to provide the highest
acceleration of the DGF computations. The number of the gxz

modes required for computation of the Gee,xz component is equal to
nmax − ni − 1. Lower mCPU modes are computed on CPU whereas
the rest of modes (mGPU) is computed on GPU. The load distribution
ratio between CPU and GPU is defined as:

LDR =
mCPU

mCPU + mGPU
. (11)

Value of this parameter is fixed for the DGF computations that
are distributed between CPU and GPU. If the LDR is equal to 0 then
the code is executed only on the GPU. On the other hand, if the LDR
is equal to 1 then the code is only executed on the CPU.

In the CPU-GPU heterogeneous DGF implementation, values of
the gxz standing wave modes are computed once and the result is stored
in the CPU memory. The described-above algorithms of the CPU- and
GPU-only acceleration are employed in computations of the standing
wave modes. Then, results computed on GPU in the multiple precision
are sent to the host memory. Finally, summation in (2) is executed in
parallel on CPU in order to obtain Gee,xz DGF.

4. NUMERICAL RESULTS

The described above DGF implementations were integrated with the
FDTD solver. Numerical tests were executed in double floating-point
precision on the workstation equipped with Intel i7 CPU (4 cores)
and Nvidia GTX 680 GPU. The Courant numbers were taken as
sx = sy = sz = 0.99/

√
3 for the results presented here. For tests

evaluating runtimes, the field waveforms were computed in position
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(i, j, k) = (10, 20, 30) from the source. It allows to easily compare
speed of the developed method with other results already published in
literature [9, 16, 17].

Figure 4 shows runtimes for the DGF generation using the CPU-
and GPU-only implementations. Additional results for GTX 470
(belonging to the generation of GPUs that is older than GTX 680)
are shown for the sake of demonstrating how characteristics depend on
the computational power of the GPU. The electric field Gee,xz DGF
waveform was computed from n = 0 to the upper limit nmax shown on
the horizontal axis. As seen, GPU and CPU characteristics intersect for
the nmax being equal to 140 and 170 respectively for GTX 680 and GTX
470. Below the intersection point, the reference CPU code outperforms
developed GPU implementation. However, if the nmax value is above
the intersection point, the GPU implementation outperforms reference
CPU implementation. It demonstrates that the optimal approach to
the DGF parallelization should indeed employ the CPU and GPU for
the values of nmax best suited for each architecture.

Figure 5 shows the speedup of the CPU-GPU heterogeneous
implementation relative to the GPU implementation vs. the LDR
parameter value. As seen, optimal load distribution in the point
(i, j, k) = (10, 20, 30) is obtained for LDR ≈ 0.6. This LDR value
is higher than 0.5 because computational overhead grows when the
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Figure 4. Runtimes for generating the electric field Gee,xz DGF for
CPU- (i7) and GPU-only (GTX 470 and GTX 680) implementations
vs. nmax value. Mantissa size of floating point variables was set to
2048 bits.
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Figure 5. Speedup of the CPU-GPU heterogeneous implementation
over the GPU-only implementation vs. load distribution ratio between
CPU and GPU (LDR). The Gee,xz DGF waveforms were computed
from n = 0 to the upper limit nmax equal to 300, 500, 700, and
1200 samples. Mantissa size of floating point variables was set to 2048
bits (300, 500, 700 samples) and 3072 bits (1200 samples). The nCPU

parameter was set to 80 samples.

m index of the standing wave mode is increased. In the developed
method, the GPU computes standing wave modes associated with
higher computational overhead. For short DGF waveforms, time of
the GPU initialization is comparable to the total time of the DGF
computations. The overhead of the GPU initialization is not hidden



310 Stefanski

by computations in this case. Therefore, the best speedup of the CPU-
GPU heterogeneous implementation is observed for nmax = 300 due to
the worse performance of the reference GPU-only implementation.

Figure 6 shows runtimes for the DGF generation on the CPU-
GPU heterogeneous parallel processing system. The electric field
Gee DGF waveforms were computed from n = 0 to the upper limit
nmax shown on the horizontal axis. Mantissa size of floating point
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Figure 6. Runtimes for generating the electric field Gee DGF
from n = 0 to the upper limit nmax. Results for the CPU-
GPU heterogeneous implementation are compared with the CPU-only
implementation. Mantissa size of floating point variables was set
to 2048 and 3072 bits. Parameters of the CPU-GPU heterogeneous
implementation are as follows: LBR = 0.6 and nCPU = 80.
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Figure 7. Maximum relative error in the electric field Gee DGF for
the first 708 time-steps as a function of the cell position in the axial
(i, 0, 0) and diagonal (i, i, i) directions from the source. Mantissa size
of floating-point variables was set to 2048 bits.

variables was set to 2048 and 3072 bits. There is an upper limit of
the n time index, for which DGF computations are still convergent for
user-selectable mantissa precision. Therefore, characteristics terminate
at the maximum value of the n index assuring the convergence.
Increase of the runtime is observed if the precision of the floating-
point computations is increased. The results presented for the
CPU-GPU heterogeneous implementation include overheads of the
GPU initialization and data transfer between host and the GPU
device. In spite of that, the characteristics do not intersect as it
was for the GPU-only implementation [17]. Computation of 1200
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time samples of the Gee,xz DGF waveform lasts 151 sec (2048 bits of
mantissa size) whereas it requires more than 1062 sec for the CPU-only
implementation. It results in the sevenfold speedup over the CPU-
only implementation whereas the sixfold speedup was obtained for the
GPU-only implementation [17]. Computation of 600 time samples of
the Gee,xz DGF waveform lasts 7.8 sec (2048 bits of mantissa size)
whereas it required more than 105 sec for the seminal implementation
of the closed-form DGF expression [9]. It can be concluded that the
speedup factor of four orders of magnitude compared to the seminal
implementation was obtained. Of course, validity of such a comparison
is limited since both implementations were developed using different
software tools and were executed on different machines.

Figure 7 shows accuracy of the Gee DGF implementation on the
CPU-GPU heterogeneous parallel processing system. Evaluation of
the accuracy, in comparison to the standard FDTD method, required
execution of the reference simulations for sufficiently large domains
(grid size: 9203) terminated by ABCs. The relative error between
DGF waveforms generated using the developed technique (E |nijk) and
the reference FDTD simulation (Eref |nijk) was defined as:

Error = 20 log10


max

∣∣∣E |nijk −Eref |nijk
∣∣∣

max
∣∣∣Eref |nijk

∣∣∣


 (dB). (12)

As seen, the error increases if distance to the source is increased.
Error is slightly larger for axial direction than for diagonal direction in
the Yee’s grid. The error is below −90 dB for the first 708 time-steps
of the FDTD update procedure.

5. CONCLUSIONS

Implementation of the new analytic closed-form expression for the
3-D dyadic discrete Green’s function on the heterogeneous parallel
processing system is presented in this paper for the first time. Fast
and accurate computations of the discrete Green’s function require
the hardware acceleration and the multiple precision arithmetic.
The developed implementation simultaneously utilizes computational
power of the central processing unit and the graphics processing unit
to the computational tasks best suited for each architecture.

The sevenfold speedup was obtained relative to the reference
code executed on a multicore central processing unit. The developed
implementation will facilitate further applications of the discrete
Green’s function in the FDTD simulations of radiation and scattering
problems.
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