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Abstract—In this paper, a multi-sphere particle method is built-
up in order to estimate the solution of the Poisson’s equation with
Neumann boundary conditions describing the neuronal human brain
activity. The partial differential equations governing the relationships
between neural current sources and the data produced by neuroimaging
technique, are able to compute the scalp potential and magnetic field
distributions generated by the neural activity. A numerical approach
is proposed with current dipoles as current sources and going on in the
computation by avoiding the mesh construction. The current dipoles
are into an homogeneous spherical domain modeling the head and the
computational approach is extended to multilayered configuration with
different conductivities. A good agreement of the numerical results is
shown and, for the first time compared with the analytical ones.

1. INTRODUCTION

Bio-magnetic fields are caused by electric currents in conducting body
tissues like the brain. Neural current sources in the brain produce
external magnetic fields and scalp surface potentials that can be
recorded in the neighborhood of the human head. The potentials
recorded across many electrodes on the scalp form an evoked potential
map containing important information about the brain generators;
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these potentials can be measured using brain imaging techniques.
Magnetoencephalography (MEG) is a non-invasive brain imaging
technique for monitoring brain function. With MEG it is possible
to study neurophysiologic processes underlying mental acts in healthy
and awake humans in a totally non-invasive way. MEG has already
proven itself a useful tool in studies of human neurophysiology and
information processing [1, 2]. In searching the unknown sources, by
means of the analysis of the measured data, an inverse problem has
to be solved. In order to handle this task, the forward problem has
to be firstly approached (i.e., how to evaluate the magnetic field and
the electric potential arising from a known source). Since it is involved
more and more times, the computational efforts have to be reduced as
much as possible. To this aim, appropriate models have to be chosen
both for the biological conductor and from the computational point
of view. In this paper, the forward problem has been investigated
by considering the quasi-static approximation equations governing the
relationships among neural current sources and the data produced by
means of neuroimaging technique [3]. The electric potential is obtained
by solving Poisson’s equation with proper boundary conditions, and the
magnetic induction is obtained by means of the Biot-Savart law. The
head models determining these solutions, generally assume the head
as a piecewise homogeneous conductor. The usually adopted single
spherical shell is too unrealistic as a model for the head, due to the large
difference between the conductivities of brain and skull. The typical
multilayered model includes three layers for the brain, skull, and scalp.
For the case where the head is assumed to comprise a set of nested
isotropic concentric spheres, each of constant conductivity, the analytic
solutions exist [4]. Therefore, the numerical approach proposed in
this paper refers to the multilayered model. In scientific literature, it
has been argued that brain generators can be reasonably described by
current dipoles within the brain [5–12]. It is a widely used concept
in neuromagnetism and it is considered as a good approximation for
a small source viewed from a remote field point. Therefore, current
dipoles approximating localized sources are taken into account as the
start points to validate the computational model.

Several grid based numerical approaches [13–18] have been
proposed in technical literature, but they may become computationally
inefficient for complex domain related to the human head and brain.
The meshless methods have recently known a great success in the
simulation of a wide variety of problems as a valid computational
alternative to grid ones [19–23]. They share common features such
as the avoidance of the use of grids, but are different in functions
approximation and computational processes. In the past decades,
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many numerical methods, have been successfully developed to solve
partial differential equations (PDEs) all depending on a suitable
generation of a mesh: this is usually a difficult task for problems
involving complicated and irregular geometries. The meshless methods
are increasing their influence in physical applications with the aim
to eliminate the generation of meshes and by constructing the
approximation only in terms of particles. Therefore, a set of particles
are used instead of meshing the domain of the problem [24, 25]. In
this paper, the Poisson’s equation with suitable boundary conditions
for multilayered homogeneous, isotropic spherical domain is studied
by using the Smoothed Particle Hydrodynamics (SPH) method [19–
23, 26–32]. The authors have reformulated the SPH for the Poisson’s
equation, by modelling the electric field behaviour in a conducting
medium, in order to satisfy the second order of consistency. The
stationary hypothesis has been adopted by following a consolidated
approach in technical literature [1–16, 24, 25]. Validation of the
proposed approach has been performed with different simulation
results and, for the first time, by comparing multilayered models with
different conductivities with the analytical ones, for a typical case
study. The paper is organized as follows. In Section 2, the forward
problem is briefly described. In Section 3, the mathematical model
and the numerical approach are reported. In Section 4, simulation
results are discussed and compared with the analytic ones referring to
multilayered models.

2. FUNDAMENTALS OF THE FORWARD PROBLEM

Solving the forward model represents the first step towards the
reconstruction of the spatial-temporal activity of the neural sources.
Neural current sources in the brain can be separated into two
components, the primary currents term representing the impressed
neural currents, and the secondary currents that are a result of the
macroscopic electric field. The primary currents are considered to
be the sources of interest in neuroimaging technique, such as MEG,
since they represent the areas of neural activity associated with a
given sensorial, motor or cognitive processes. The recent development
of dedicated measurement systems (i.e., the SQUID [33, 34]), offers
the potentialities for MEG to produce accurate estimates of the
location and temporal evolution of these underlying primary sources.
Localization of the cortical regions responsible for this activity, is of
importance in the correct diagnosis and treatment of several brain
pathologies. In the context of the localization of neural sources, the
forward problem is to determine the electric field E and the magnetic
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field B that result from primary current sources J i. The forward
problem begins with known distributions of the conductivity σ and
the brain’s total electrical current sources with magnetic permeability
assumed to be equal to µ0 everywhere in the conductor domain Ω, by
using the following assumptions:

E = −∇Φ
∇×B = µ0J

∇ ·B = 0

J = J i + JΩ

(1)

where Φ is the electric potential, J the total current density, and
JΩ = σE the volumetric current. In order to obtain E and J , the
electric potential must be computed and ∇ · J = 0 holds. The scalar
electric potential is obtained by solving the following boundary value
problem by considering that no current can flow out of the skull:{

∇ · J i(p) = ∇ · (σ(p)∇Φ(p)) p ∈ Ω
n · (σ(p)∇Φ(p)) = 0 p ∈ ∂Ω (2)

n as the unit vector normal to the domain contour. The magnetic field
is obtained by the well-known following integral:

B(p) =
µ

4π

∫

Ω

J(q)× p− q

‖p− q‖3 dΩ (3)

In the forward problem, the current source is typically approximated
by a current dipole J i(p) = Qδ(p − p0) [9–11] located at position p0

with moment Q. A current dipole with a moment Q is a concentration
of the impressed current to a single point where δ is the Dirac delta.

The scalar potential Φ(p) is expressed as the sum of two terms,
Φ(p) = φF (p) + φ(p), where φF (p) is the electric potential generated
by a dipole source in an infinite homogeneous medium which is known
as:

φF (p) =
1

4πσ

p− p0

‖p− p0‖3 q (4)

The single spherical shell is too unrealistic as a model for the head due
to the large difference between the conductivities of brain and skull.
The typical multi-sphere model includes three layers for the brain,
skull, and scalp; some also include a cerebrospinal fluid layer. For
the case where the head is assumed to comprise a set of concentric
spheres, each of constant conductivity, analytic solutions exist for
MEG. By considering a set of contiguous M regions, each of constant
conductivity σk, k = 1, . . . ,M , a closed form potential expression for
a dipole within a homogeneous sphere is available in [4], where the
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Figure 1. Multi-sphere head model.

conductivities σ1, σ2, . . . , σM are arranged from the innermost sphere
to the outer most (Fig. 1). A dipole is located within the innermost
layer at p0 and the observed potential on the M -th layer sphere surface
at q is obtained as follows:

Φ(p0, q, Q) =
Q

4πσMq2

∞∑

n=1

2n + 1
n

(
p0

q

)n−1

×fn

(
n cosαPn(cos γ) + cosβ sinαP 1

n(cos γ)
)

(5)
where α is the angle between dipole location and dipole moment Q, γ
is the angle between the p0 and q, β is the angle between the planes
defined by p0 and Q and by p0 and q, Pn and P 1

n are the Legendre and
associated Legendre polynomials respectively, and:

fn =
n

nm22 + (1 + n)m21
(6)

The coefficients m21 and m22 are found by:[
m11 m12

m21 m22

]
=

1
(2n + 1)M−1

×
M−1∏

k=1


 n + (n+1)σk

σk+1
(n + 1)

(
σk

σk+1
− 1

)(
rq

rk

)2n+1

n
(

σk
σk+1

− 1
)(

rk
rq

)2n+1
(n + 1) + nσk

σk+1


 (7)

3. NUMERICAL FORMULATION

The volume domain Ω is modelled by different concentric layers Ωi

with different constant conductivities σi, the boundary ∂Ωi between
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the domains Ωi and Ωi+1 is considered to be regular. By considering
the above assumptions, the Equation (2) can be rewritten as follows:





σ(p)∇2φ(p) = 0 p ∈ Ω
φi(p) = φi+1(p) p ∈ ∂Ωi

n · (σi(p)∇φ(p))− n · (σi+1(p)∇φ(p))
= n · (σi+1(p)− σi(p))∇φF (p)) p ∈ ∂Ωi

(8)

In solving this boundary value problem the SPH meshless kernel
method has been considered. Namely, the domain Ω is described by
introducing a number of particles arbitrarily distributed to cover the
problem domain, and by approximating the function φp in a point
p ∈ Ω with a kernel function Wqp = W (p − q, h) [21] involving all
nearest neighboring particles (NNP) q of particle p:

φh
p =

∑

q∈Ω

φqWqpVqδqp (9)

where Vq is the measure of the support domain surrounding the particle
q. The problem is discretized and the unknowns are computed solving
the following linear system:





∑
q∈Ω

Kpqφq = 0 p ∈ Ω
∑
q∈Ω

Zpqφq = 0 p ∈ ∂Ωi

∑
q∈Ω

Hpqφq = n ·(σi+1 − σi)∇φF (p) p ∈ ∂Ωi

(10)

The matrix Kpq is obtained as:

Kpq = SpGqpVqδqp (11)

where:
Sp =(0, 0, 0, 0, σp, σp, σp, 0, 0, 0),

Gqp = F−1
p (Wqp, ∂rWqp, ∂rrWqp, ∂rsWqp)T (12)

r = x, y, z, (r, s) ∈ {2 — combinations from {x, y, z}} , ∂r = ∂
∂qr

,

∂rr = ∂2

∂qr∂qr
, ∂rs = ∂2

∂qr∂qs
and

Fp =




∑
q∈Ω

WqpVqδqp

∑
q∈Ω

∂rWqpVqδqp

∑
q∈Ω

∂rrWqpVqδqp

∑
q∈Ω

∂rsWqpVqδqp




(
1, (qr − pr),

(qr − pr)2

2!
, (qr − pr)(qs − ps)

)

(13)
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Zpq is a sparse matrix whose values for each row are zero except for
two entries equal to 1 and −1, respectively and the Hpq is the following
matrix:

Hpq = (σi − σi+1)NpGqpVqδqp (14)

by assuming:
Np = (0, nxp , nyp , nzp , 0, 0, 0, 0, 0, 0) (15)

Therefore, the volume current JΩ(p) is computed for all p ∈ Ω as
follows:

JΩ(p) ∼= −(0, σP , σP , σP , 0, 0, 0, 0, 0, 0)
∑

q∈Ω

GqpΦqVqδqp (16)

The magnetic field is subsequently obtained as follows:

B(p) ∼= µ

4π

∑

q∈Ω

JΩ(q)× (p− q)
‖p− q‖3 Vq (17)

4. NUMERICAL RESULTS

In this section, numerical simulations are reported and compared with
the analytical results. A set of contiguous M = 2, 3 regions have been
considered and a comparison between the computed results and the
analytical solutions is performed.

In Fig. 2, the analytic and the simulated electric potential are
considered by taking into account two concentric spheres centred in
(0, 0, 0) with radius r1 = 0.08m, r2 = 0.1m, and layers conductivities
σ1 = 0.2 (Ωm)−1, σ2 = 0.01 (Ωm)−1, respectively. The dipole is in

(a) (b)

Figure 2. (a) Analytic electric potential [V]. (b) Simulated electric
potential [V] on the external sphere surface.
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(0, 0, 0.05) with moment J ∗ (1, 0, 0) where J = 4.5 ∗ 10−12 A/m2. A
random particles distribution has been chosen. A good agreement has
been reached.

In Fig. 3, the analytic and the simulated electric potential are
considered by taking into account three concentric spheres centred
in (0, 0, 0) with radius r1 = 0.07m, r2 = 0.08m, r3 = 0.1m. The
conductivities are set to σ1 = 0.2 (Ωm)−1, σ2 = 0.01 (Ωm)−1 and
σ3 = 0.001 (Ωm)−1 respectively and the dipole is in (0, 0, 0.05) with
moment J ∗ (1, 0, 0) where J = 4.5 ∗ 10−12 A/m2. The results are, also
in this case, referred to a random particles distribution, as sketched in
Fig. 4. As it can be observed in Fig. 3, a satisfactory agreement has
been also obtained in this case.

(a) (b)

Figure 3. (a) Analytic electric potential [V]. (b) Simulated electric
potential [V] on the external sphere surface.

Figure 4. Random particles distribution for the three layers spherical
model.
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5. CONCLUSIONS

In this paper, a multi-sphere particle numerical method is proposed
to estimate the neuronal human brain activity. The Poisson’s
equation with Neumann conditions, governing the relationships
between neural current sources and the data produced by means
of the neuroimaging technique, is taken into account to compute
the scalp potential and magnetic field distributions generated by the
brain generators. The localized current sources are simulated as
current dipoles into a spherical domain modeling the head. The
meshless computational approach is extended to multilayered model
with different conductivities arranged from the innermost layer to the
outer most. A satisfactory agreement of the simulated electric potential
is shown compared with the analytical ones.
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