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Abstract—The aperture synthesis technology represents a promising
new approach to microwave radiometers for high-resolution observa-
tions of the Earth from geostationary orbit. However, the future ap-
plication of the new technology may be limited by its large number
of antennas, receivers, and correlators. In order to reduce significantly
the complexity of the on-board hardware requirements, a novel method
based on the recently developed theory of compressive sensing (CS) is
proposed in this paper. Due to the fact that the brightness temperature
distributions of the Earth have a sparse representation in some proper
transform domain — for example, in terms of spatial finite-differences
or their wavelet coefficients, we use the CS approach to significantly
undersample the visibility function. Thus the number of antennas, re-
ceivers, and correlators can be further reduced than those based on
the traditional methods that obey the Shannon/Nyquist sampling the-
orem. The reconstruction is performed by minimizing the `1 norm of
a transformed image. The effectiveness of the proposed approach is
validated by numerical simulations using the image corresponding to
AMSU-A over the Pacific.

1. INTRODUCTION

Microwave radiometers are powerful sensors for high-resolution
observations of the Earth at relatively low frequencies [1, 2]. The
low microwave frequency range offers high penetration ability through
clouds and into the top layer of the Earth surface. However, it has the
specific disadvantage of poor spatial resolution which is attained with
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moderately sized antennas. For imaging from space at low microwave
frequencies, large antenna apertures of up to 10 m or more can be
normally required which means serious problems for any practical
mechanically or electronically steered antennas [3].

Interferometric aperture synthesis, initially developed for radio
astronomy [4], can be an effective alternative to real aperture
radiometers for the Earth observation. It has been implemented
and successfully demonstrated with ESTAR and SMOS sensors [5, 6].
Synthetic aperture radiometers measure the correlation between pairs
of nondirective antennas. Each complex correlation is a sample of the
“visibility” function which, in the ideal case, is the spatial Fourier
transform of the brightness temperature distribution [5]. Thus the
choice of the antenna array shape is of great importance because it
determines the sampling strategy in the frequency domain. Several
kinds of antenna configuration such as T-, U-, Y-, and triangular
shaped arrays have been used for synthetic aperture radiometers. For
the T- and U-shaped arrays, the visibility samples lie in a rectangular
grid in the frequency domain (u, v). And for the Y- and triangular-
shaped arrays, the visibility samples lie in a hexagonal grid. All
the aforementioned arrays give uniform distributed samples in the
frequency domain and the brightness temperature reconstruction is
based on the rectangular fast Fourier transform (FFT). However,
there are many redundant baselines for the aforementioned arrays.
The future application of this new technology is limited by its large
number of antennas, receivers, and correlators. In order to reduce the
complexity of the on-board hardware requirements, the circular and
rotating array configurations with minimum redundancy have been
proposed [7, 8]. However, their disadvantages lie primarily in more
complicated image reconstruction. As the samples measured by these
arrays are distributed in the nonuniform grid, the FFT-based method
could not be directly used. A common way for image reconstruction
is the gridding method [9]. The nonuniformly sampled data are
first interpolated to a uniform Cartesian grid, and then, the inverse
Fourier transform is efficiently computed using FFT to reconstruct the
image. However, this approach is liable to introduce inaccuracies and
is sensitive to the distribution of the samples.

In [10], an iterative method that combines the Conjugate Gradient
(CG) algorithm with NUFFT operations was applied to reconstruct the
image from the nonuniform visibility samples. The results demonstrate
that the proposed algorithm has the advantage of better reconstruction
accuracy than the traditional gridding method. However, only the
imaging accuracy was discussed in [10]. The design of mean distance
between adjacent samples was still according to Shannon/Nyquist
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sampling theorem.
In order to reduce further the complexity of the antenna array

and receiver channels, we apply the compressive sensing theory to the
synthetic aperture imaging radiometers (SAIRs) design. The recently
introduced theory of compressive sensing/compressed sensing (CS)
states that a signal having a sparse representation can be recovered
exactly from a small set of linear, non-adaptive measurements [11–
14]. It has been explored for a wide range of applications, such as:
medical imaging [15–18], radar imaging [19–26], sub-Nyquist sampling
systems [27, 28], channel coding [29, 30], single-pixel cameras [31], and
etc.. CS imaging techniques for radio astronomy application have been
proposed in [32] and [33].

Due to the fact that CS can be used for sensing and compressing
data simultaneously, the antenna array of the SAIRs can be compressed
by using the CS approach in some conditions. In this paper, we first
design a circular array with fewer antennas (and receivers) than the
traditional ones. Then we apply the CS approach to reconstruct
the brightness temperature image. To our knowledge, the image
reconstruction of the SAIRs has not been considered from the point
of view of CS theory before. CS gives a new perspective on inverse
problems with random measurements. Randomness is a powerful tool
for using CS successfully. The randomness in the visibility distribution
of the circular array complies exactly with the CS requirements.
Thus the brightness temperature images can be reconstructed with
higher accuracy from only fewer visibilities compared with the results
obtained by traditional methods.

The rest of this paper is organized as follows. In Section 2, we
briefly review the concepts of CS and introduce CS approach to SAIRs.
Simulation results are given in Section 3. And Section 4 presents the
conclusions.

2. COMPRESSIVE SENSING FOR SAIRS

2.1. Principles of CS

This section gives briefly the theoretical fundamentals of CS, as
introduced in [13]. The area of CS was initiated in 2006 by two
ground breaking papers by Candès, Romberg, and Tao [11], and by
Donoho [12]. The key idea of CS is to reconstruct a sparse signal from
very few non-adaptive, linear measurements by convex optimization.

Consider a finite signal x ∈ RN and a limited number of
observations of x in the form of M linear measurements, we can
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represent this process mathematically as

y = Φx, (1)

where Φ is an M ×N matrix, and y ∈ RM . The matrix Φ represents a
dimensionality reduction, where M is typically much smaller than N ,
i.e., the system of equations in (1) is highly underdetermined.

If x is sparse (or has a sparse expansion in a proper basis), it is
quite intuitive to recover x from knowledge of y by solving the `0 norm
(the number of its non-zero components) minimization problem which,
however, needs the combinatorial search that is NP-hard [34].

One approach for translating this problem into something more
tractable is to replace `0 norm with its convex relaxation `1 norm. It
has been shown in the context of CS theory that it is very likely to
recover x exactly from the `1-minimization problem provided that x
is sparse and that the sensing matrix Φ obeys the restricted isometry
property (RIP) [11]. The RIP is related to the incoherence of the sets
of columns of the sensing matrix, i.e., for K-sparse signals all subsets
of K columns taken from Φ are in fact nearly orthogonal [13].

If the RIP holds, then the following linear program gives an
accurate reconstruction of x:

min
x∈RN

‖x‖`1
, subject to y = Φx, (2)

where ‖x‖`1 =
∑ |xi| represents the `1 norm of x, and xi is the ith

component of x.
For many natural signals which are not sparse and, however, often

have concise representations in a convenient basis, i.e., x = Ψα, where
α is a sparse vector, and then (2) can be reformulated as:

min
x∈RN

‖α‖`1
, subject to y = ΦΨα, (3)

where α = Ψ−1x.
A related condition for (3), known as incoherence, requires that

the rows of Φ cannot be represented by the columns of Ψ and vice
versa [13]. Designing the matrix Φ such that the resulting sensing
matrix Θ = ΦΨ has the RIP is a fundamental problem in CS. In fact,
one can show that the RIP can be achieved with high probability by
simply selecting Φ as random matrices, such as Gaussian iid matrices,
Bernoulli matrices, or random partial Fourier matrices [13], which are
largely incoherent with any fixed basis Ψ. For the random partial
Fourier matrices, the RIP holds with overwhelming probability if
K ≤ C ·M/ log N [13]. However, the RIP or the incoherence condition
is likely to be some conservative for many cases. Even though some
signals do not satisfy the condition of RIP, the reconstruction may still
be accurate [35].
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The computation of (2) or (3) is a convex optimization problem,
and can be solved efficiently using linear programming methods.
This is the foundation for the Basis Pursuit (BP) techniques [12].
In the case when there are noisy measurements, Basis Pursuit De-
Noising (BPDN) techniques can be used to reconstruct the original
signals [36]. Further, convex optimization methods are effective at
solving problems in which the signal is not very sparse or heavy
observational noise is present. While convex optimization techniques
are powerful methods for computing sparse representations, there are
also a variety of Greedy methods for solving such problems [37, 38].
Compared with convex optimization methods, Greedy pursuits and
related methods (such as iterative thresholding) can be rather fast
but need more measurements. However, recent research has clarified
that Greedy methods succeed empirically and theoretically in many
situations where convex relaxation works. Some Greedy methods can
actually have performance guarantees that match those obtained for
convex optimization approaches [39]. In this paper, we focus on the
convex optimization methods with the application to SAIRs.

2.2. Compressive Sensing Approach Applied to SAIRs

The interferometric radiometers measure the correlation between pairs
of spatially separated antennas. Each complex correlation is a sample
of the visibility function. According to [40], the visibility samples for
any two antennas labeled k and l, is given by

V (uk, l, vk, l) =
∫∫

ξ2+η2<1

T ′k, l (ξ, η) e−j2π(uk, lξ+vk, lη)dξdη, (4)

where T ′k, l (ξ, η) is the modified brightness temperature:

T ′k, l (ξ, η) =
T (ξ, η)√
1− ξ2 − η2

·Fk (ξ, η) F ∗
l (ξ, η)√

ΩkΩl
r̃

(
−uk, lξ + vk, lη

f0

)
, (5)

where T (ξ, η) is the brightness temperature, (ξ, η) = (sin θ cosϕ, sin θ
sinϕ) the direction cosines with respect to (x, y) axes as shown in
Figure 1, and (uk, l, vk, l) = (xk − xl, yk − yl)/λ the spacing between
the two antennas in wavelengths. The 1/

√
1− ξ2 − η2 in (5) is the

obliquity factor, Fk, l(ξ, η) is the normalized antenna patterns, Ωk, l

represents the antenna equivalent solid angles, and r̃(·) denotes the
fringe-washing function [41].

In short, image reconstruction consists mainly of solving for
T ′(ξ, η) in an equation of the type V(u, v)=F [T ′(ξ, η)], where F [·]
represents the Fourier transform. The selection of image reconstruction
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method is based on the distribution of V (u, v) which is determined by
the configuration of antenna array. As discussed in Section 1, for U-,
T-, Y-, and triangular-shaped arrays, the image reconstruction is
based on the use of FFT. And for circular-shaped arrays, the visibility
samples lie naturally in random locations, and the gridding methods
are commonly used. In this paper, we reconstruct the image based on
the CS theory, with the properties of reducing further the number of
antennas, receivers, and correlators, and improving the image accuracy
in the same time. The visibility function should be formulated as
a vector due to the fact that the visibilities lie naturally in random
locations for the circular arrays. Thus we rewrite (4) in the following
matrix form:

vec (V ) = G · vec
(
T ′

)
, (6)

where

G =




e−j2π(u0,0ξ0+v0,0η0) e−j2π(u0,0ξ0+v0,0η1)

e−j2π(u0,1ξ0+v0,1η0) e−j2π(u0,1ξ0+v0,1η1)

...
...

e−j2π(uK−1,L−1ξ0+vK−1,L−1η0) e−j2π(uK−1,L−1ξ0+vK−1,L−1η1)

· · · e−j2π(u0,0ξ0+v0,0ηM−1)

· · · e−j2π(u0,1ξ0+v0,1ηM−1)

...
...

· · · e−j2π(uK−1,L−1ξ0+vK−1,L−1ηM−1)

e−j2π(u0,0ξ1+v0,0η0) e−j2π(u0,0ξ1+v0,0η1)

e−j2π(u0,1ξ1+v0,1η0) e−j2π(u0,1ξ1+v0,1η1)

e−j2π(uK−1,L−1ξ1+vK−1,L−1η0) e−j2π(uK−1,L−1ξ1+vK−1,L−1η1)

· · · e−j2π(u0,0ξN−1+v0,0ηM−1)

· · · e−j2π(u0,0ξN−1+v0,0ηM−1)

· · · e−j2π(u0,1ξN−1+v0,1ηM−1)

...
...

· · · e−j2π(uK−1,L−1ξN−1+vK−1,L−1ηM−1)


 ,

and vec (·) represents vectorization. Here we assume that the image
size is M ×N , and visibilities size is K × L.

Clearly, in the case of circular array configuration, the sensing
matrix G arises from a random selection of Fourier samples. As
mentioned above, we know that the random partial Fourier matrices
are highly incoherent with any fixed basis.

The brightness temperature images are generally not sparse
in the spatial domain. Thus the sparsifying transforms, such as



Progress In Electromagnetics Research, Vol. 135, 2013 589

the discrete cosine transform (DCT), wavelet transform, and finite-
differences transform, are needed to map the images to some sparse
forms. When finite-differencing is used as a sparsifying transform, the
objective in (3) becomes the well-known problem of Total-Variation
(TV) minimization [36].

The TV minimization is widely used in several applications such
as image denoising, deblurring, and MRI image recovery [42], mainly
due to its desirable properties such as convexity, ability to preserve
edges, as well as invariance to image shifts and rotations. The TV
norm can be interpreted as the `1 norm of the gradient. And (3) can
be reformulated as

min
T ′

∑

i,j

∣∣∣
(∇T ′

)
i,j

∣∣∣, subject to vec (V ) = G · vec
(
T ′

)
, (7)

where (∇T ′)i,j is given by

(∇T ′
)
i,j

=
[

(D1T
′) [i, j]

(D2T
′) [i, j]

]
,

and (D1T
′) [i, j] = T ′ [i + 1, j] − T ′ [i, j], (D2T

′) [i, j] = T ′ [i, j + 1] −
T ′ [i, j].

There are many state-of-the-art optimization methods designed
to solve (2), (3) or (7) [43–47]. In this paper, we use an algorithm
called NESTA to solve the convex optimization problem of (7).
NESTA is developed by Stephen Becker, etc., for solving large-scale
problems based on Nesterov’s work [48–50]. It is a fast and robust
first-order method that solves minimum `1 problems and a large
number of extensions including TV minimization with the accelerated
convergence rate of O(1/k2).

Figure 1. Geometry of the
synthetic aperture radiometers
and related terms.

Figure 2. Original brightness
temperature image of the Pacific.
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3. SIMULATIONS AND RESULTS

In this section, we evaluate the performance of CS approach for
SAIRs using the Earth brightness temperature distribution viewed
from geostationary orbit. The size of the image is 256 × 256 pixels,
which allows a maximum spatial resolution of 48 km at boresight. The
image corresponds to AMSU-A 50.3-GHz channel over the Pacific [51]
as shown in Figure 2. Its mean brightness temperature is 226K, and
its standard deviation is 16K. The dynamic range of the brightness
temperature is from 0 to 320 K.

According to the traditional imaging methods, the unambiguous
field of view is determined by the smallest spacing of the sampled
grid. Then for the 17.5◦ Earth diameter (as viewed from geostationary
orbit) field of view, the mean distance between adjacent uv points is
about 3.5 wavelengths. Therefore, in [10] a 120-element circular array
with radius of 70 wavelengths was used for the simulation. In this
paper, we also set the radius of the array to be 70 wavelengths, and
however, the number of array elements to be varied from 120 to 70 with
step of minus 10. And the arrays configuration is optimized by the
simulated annealing algorithm. This algorithm maximized the mean
distance between uv points as a means to acquire the least redundant
uv spacing. The baseline redundancy of the optimized result is reduced
to zero, and relatively even sampling in spatial frequency domain is
achieved. Figure 3 shows the optimized result of a 120-element circular
array.

The modified visibilities are computed from the aforementioned
original temperature distribution according to the corresponding
arrays configuration. As mentioned in Section 2, the NESTA algorithm
will be used to reconstruct the images. And the results of the NUFFT-
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Figure 3. Configuration of a 120-element circular array.
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based iterative methods with quadratic penalty and hyperbolic
penalty, respectively, are also given for comparisons, which have
been demonstrated with higher accuracies than the traditional linear
interpolation and gridding methods [10]. The NUFFT-based iterative
methods that combine the CG algorithm with NUFFT operations have
been used in MRI [52], modern tomographic systems [53], and synthetic
aperture imaging radiometers [10].

We notice that the NUFFT-based iterative method with
hyperbolic penalty can also be used for signal recovery based on the CS
theory. The NUFFT-based iterative method with hyperbolic penalty
can be expressed as:

min
T ′

{
F

(
T ′

)
=

1
2

∥∥vec (V )−G · vec
(
T ′

)∥∥
`2
+λ

∥∥ϕ
{∇[

vec
(
T ′

)]}∥∥
`1

}
, (8)

where T ′ is the modified brightness temperature as defined in (5), and
the hyperbolic penalty function is given by

ϕ (x) = δ

[√
1 + (x/δ)2 − 1

]
, (9)

where δ is the parameter to tune how much edge-preserving we need.
The hyperbolic functions with δ = 0.2 and δ = 1 are shown in

Figure 4, in which the `1 norm is also demonstrated for comparison.
It can be seen from Figure 4 that the hyperbolic penalty function is `2

like for small variables (i.e., for x in (9)) and `1 like for large ones which
has also been called the “hybrid norm”. The hybrid norm is useful in
some cases where the tiny residuals have an effect as large as big ones,
such as for the geophysical applications [54]. Clearly, the hyperbolic
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Figure 4. Hyperbolic function and the `1 norm, where the real line
represents `1 norm, and “- - -” and “− · −” lines represent Hyperbolic
functions with δ = 0.2 and δ = 1, respectively.



592 Li et al.

(a) (b) (c)

(d) (e) (f)

Figure 5. Reconstructed brightness temperature image by the
NUFFT-based iterative method with quadratic penalty. The number
of array elements is varied from 120 to 70, related to (a) to (f).

(a) (b) (c)

(d) (e) (f)

Figure 6. Reconstructed brightness temperature image by the
NUFFT-based iterative method with hyperbolic penalty. The number
of array elements is varied from 120 to 70, related to (a) to (f).
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(d) (e) (f)

(a) (b) (c)

Figure 7. Reconstructed brightness temperature image by the
NESTA method. The number of array elements is varied from 120
to 70, related to (a) to (f).

penalty can be used for sparse signal recovery in the framework of CS
due to its `1 norm similarity.

The reconstructed images are shown in Figures 5 to 7 by using
the NUFFT-based iterative methods with quadratic penalty and
hyperbolic penalty, and the NESTA method, respectively. The
parameter δ of the hyperbolic penalty is set to be 0.2. The number of
the array elements varies from 120 to 70 related to the corresponding
images from (a) to (f). Clearly, the image results of the NUFFT-based
method with hyperbolic penalty and the NESTA method are both more
accurate than the results of the method with quadratic penalty due to
the fact that the first two methods utilize the properties of `1 norm
(or hybrid norm) minimization. When the number of array elements
is reduced to 70, the errors of the three methods are all high.

In order to evaluate quantitatively the accuracies of the three
methods, we define the relative root-mean square error (RMSE) as
follows

RMSE =

√
∑
i

[
_

T
′
(ξi, ηi)− T ′ (ξi, ηi)

]2

√∑
i

[T ′ (ξi, ηi)]
2

, (10)
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Figure 8. RMSEs of the NUFFT-based methods with quadratic
penalty and hyperbolic penalty, and the NESTA method, versus
different number of array elements.

where
_

T
′
(ξ, η) is the reconstructed image and T ′(ξ, η) is the original

one.
The RMSEs of the aforementioned three methods are demon-

strated in Figure 8. Clearly, the RMSEs of the NUFFT-based method
with hyperbolic penalty and the NESTA method are both much lower
than the NUFFT-based method with quadratic penalty when the num-
ber of array elements is equal to or larger than 80. And the differences
between the NUFFT-based method with hyperbolic penalty and the
NESTA method are very small.

4. CONCLUSIONS

In this paper, we have proposed a new framework for synthetic aperture
imaging radiometers by using the theory of CS. The randomness
in the visibility distribution of the circular array complies exactly
with the CS requirements. In the framework of CS, the visibility
function can be significantly undersampled. Thus the number of
antennas, receivers, and correlators of the SAIRs can be further
reduced than those based on the traditional methods that obey the
Shannon/Nyquist sampling theorem. Numerical simulations of the
image corresponding to AMSU-A over the Pacific have demonstrated
that a more accurate reconstruction of the brightness temperature
distribution can be achieved based on the CS theory than the results
obtained by the traditional methods.

Further works to improve the efficiency and real-time implemen-
tation of the CS method are underway.
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