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Abstract—Permanent magnet (PM) array affects flux field distribu-
tion of electromagnetic linear machines significantly. A novel dual
Halbach array is proposed in this paper to enhance flux density in
air gap, and thus to improve output performance of linear machines.
Magnetic field in three-dimensional (3D) space of a tubular linear ma-
chine with dual Halbach array is formulated based on Laplace’s and
Poisson’s equations. Numerical result from finite element method is
employed to simulate and observe the flux distribution in the machine.
A research prototype and a testbed are developed, and experiments are
conducted to validate the analytical models. The study is useful for
analysis and design optimization of electromagnetic linear machines.

1. INTRODUCTION

Electromagnetic linear machine generates linear motions directly with-
out rotation-to-translation conversion mechanisms, which significantly
simplifies system structure and improves system efficiency. It has
wide applications in aeronautics [1, 2], transportation [3, 4], medical de-
vices [5, 6] and so on. High flux density in linear machines is extremely
important for high-force required applications. The employment of
permanent magnets (PMs) offers electromagnetic linear machines a
number of distinctive features [7] such as excellent servo characteris-
tics and high power density. Optimized PM array is one effective way
to improve flux density in linear machines. Axial and radial magneti-
zation arrays are the two most common arrangements of PMs. Magnet

Received 3 November 2012, Accepted 5 January 2013, Scheduled 19 January 2013
* Corresponding author: Liang Yan (Lyan1991@gmail.com).



284 Yan et al.

arrays with alternating magnetization directions are configured in [8]
to produce radially directed flux density across the air gap of PM mo-
tors. A double-sided slotted torus axial-flux PM motor is designed
for direct drive of electric vehicle in [9]. [10] is a good paper that
introduces analysis and design of linear machines systematically. It
provides a unified framework for several structure topologies. Halbach
array is a promising magnet pattern due to its self-shielding property
and sinusoidally distributed magnetic field in air space. It is widely
applied in linear motor systems. For example, in [11], Halbach-arrayed
PMs replace the north-south magnet array in MagPipe pipeline trans-
portation system, and increase the motor propulsion force per Ampere
significantly. In [12], PMs in Halbach array configuration are used for
levitation, propulsion, and guidance of urban transportation systems,
and achieve impressive performance.

In this study, a tubular linear machine with dual Halbach array
is proposed to further improve the magnetic flux density and thus the
force output. It can not only increase the radial component of flux
density which is important for axial force generation, but also decrease
the local force radial component which causes vibrations. Based on PM
arrangement, magnetic field distribution in the machine is formulated
with Laplace’s and Poisson’s equations analytically. Numerical
result from finite element method (FEM) is utilized to analyze and
observe flux variation in three-dimensional (3D) space of the machine.
Following that, a research prototype and a testbed are developed
for experimental purpose. Both numerical and experimental results
validate the analytical models. The obtained analytical model could
be used for analysis of output performance and control implementation
of electromagnetic linear machines with similar structures.

2. STRUCTURE AND WORKING PRINCIPLE

The schematic structure of the tubular linear machine with dual
Halbach array is illustrated in Fig. (1a). The mover is composed of
several winding phases mounted on the holder. Air core structure is
employed for linear relationship between force output and current input
that may facilitate motion control of the system. The stator consists of
PMs located at both internal and external sides of the windings. Back
irons are attached on the two layers of PMs to reduce flux leakage and
magnetic energy loss. Magnetization pattern and flux distribution of
the dual Halbach array are illustrated in Fig. (1b). The magnetization
of the internal and external arrays is not the same. Instead, it is
a coordination of two Halbach arrays, specifically, with the same
magnetization pattern for radially magnetized PMs and the opposite
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Figure 1. Tubular linear machine with dual Halbach array.
(a) Schematic machine structure. (b) Magnetization and flux.

magnetization pattern for axial ones. This special arrangement can
increase the radial component of magnetic flux density greatly in
the air gap, whereas reduces the axial flux density significantly. It
indicates that the dual Halbach array may offer us two advantages, i.e.,
the axial force can be improved much from the increased radial flux,
and the radial force disturbance and vibration can be weakened from
the decreased axial flux. The choice of movers (winding or magnets)
depends on the requirements of particular applications. In this study,
the winding is selected as the mover for the convenience of presentation.

3. GOVERNING EQUATIONS OF FLUX FIELD

Mathematical modeling of magnetic field is important for electromag-
netic machines, as it could be used to predict output performance, such
as flux linkage, field energy and force generation [13–15]. Generally,
there are two typical ways to formulate magnetic field of electromag-
netic machines, i.e., FEM [16] and magnetic equivalent circuits [17].
FEM is an efficient and accurate means to calculate magnetic field, tak-
ing full account of nonlinearity of iron material and induced currents
in electrically conducting parts [18–20]. However, it is time consuming
and cannot give much insight into design parameters [21]. Magnetic
equivalent circuit can mainly be classified into lumped equivalent cir-
cuit and mesh-based one. The lumped equivalent circuit is the simplest
approach to model the magnetic field, and allows to establish analyti-
cal relationships between design parameters and output performance.
However, the technique suffers from inherent inaccuracy especially in
presence of complex flux paths [22]. The mesh-based equivalent circuit
is developed to achieve higher accuracy through a division of geome-
try [23]. However, it still requires some computational effort, although
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less than FEM, especially for complex models [24]. To obtain accu-
rate knowledge of magnetic fields that directly relate motor geometry
and output performance, a more sophisticated analytical field model
that can compromise between accuracy and computation time is nec-
essary [25]. Therefore, an analytical field model characterized by series
expansions of the solution in terms of harmonic functions is established
in this section. It will be validated by both finite element method and
experiments. This approach could be applied to field modeling of other
electromagnetic machines with similar magnet arrangements, and the
derived parametric model is useful for analyzing the influence of pa-
rameters on output performance of electric machines.

3.1. Magnetic Characterization of Materials

In formulation of the magnetic field, the machine space under study is
divided into two regions based on magnetic characteristics. The air or
coil space that has a relative permeability of 1.0 is denoted as Region 1.
The PM volume filled with rare-earth magnetic material is denoted as
Region 2. The back irons assumed infinite permeability is utilized to
reduce magnetic energy loss, and enhance flux density. The magnetic
field property of Region 1 and 2 is characterized by the relationship
between field intensity, H (in A/m), and flux density, B (in Tesla), as

B1 = µ0H1, B2 = µ0µrH2 + µ0M, (1)

where µ0 is the permeability of free space with a value of 4π×10−7 H/m,
µr the relative permeability of permanent magnets, M = Brem/µ0 the
residual magnetization vector in A/m, and Brem the remanence.

3.2. Governing Equations

The governing equations of magnetic field, i.e., Laplace’s and Poisson’s
equations, are significant for the solution of magnetic field. It is known
that magnetic field is a solenoid field or source-free field, i.e.,

∇ ·Bi = 0, (2)

where i = 1, 2. It can be proved that for any vector, the divergence of
its curl is always equal to zero. Thus, we can have a magnetic vector
potential, Ai, so that

Bi = ∇×Ai. (3)

Because the curl of any function’s (f) gradient is always equal to zero,
we could have

∇×Ai = ∇× (Ai +∇f),
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which indicates that Ai may have multiple solutions. To uniquely
determine its value, Coulomb gauge, ∇ ·Ai = 0, applies as constraint.
Under Coulomb gauge, we could have

∇×Bi = −∇2Ai. (4)

3.2.1. Laplace’s Equation for Region 1

The combination of Maxwell’s equations and Eq. (1) gives

∇×B1 = ∇× µ0H1 = µ0J. (5)

Substituting Eq. (4) into (5) yields

∇2A1 = −µ0J,

where J (A/m2) is current density in the field. In this study, J = 0.
Therefore, the Laplace’s equation for Region 1 is obtained as

∇2A1 = 0. (6)

3.2.2. Poission’s Equation for Region 2

The combination of Maxwell’s equations and Eq. (1) gives

∇×B2 = µ0µrJ + µ0∇×M. (7)

Similarly, Eqs. (4) and (7) yield the Poisson equation for Region 2

∇2A2 = −µ0∇×M. (8)

4. GENERAL SOLUTIONS TO MAGNETIC FIELD

4.1. General Solution to Laplace Equation

The magnetic field distribution of tubular linear machine is axially
symmetric. Therefore, Ai has only one component, Ai,θ. The Laplace
equation in cylindrical coordinators can be simplified as

∂2Aθ

∂z2
+

∂

∂r

(
1
r

∂

∂r
(rAθ)

)
= 0. (9)

Since Aθ is only a function of r and θ, we assume that

Aθ = R (r) Z (z) . (10)

Substituting into Eq. (9) yields

1
R (r)

∂2R (r)
∂r2

+
1

R (r) r

∂R (r)
∂r

+
1

Z (z)
∂2Z (z)

∂z2
− 1

r2
= 0, (11)
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where r and z are independent variables, and the third term as
a function of z must be a constant. So the following formula is
established

1
Z (z)

∂2Z (z)
∂z2

= k2. (12)

Then Eq. (11) becomes

1
R (r)

∂2R (r)
∂r2

+
1

R (r) r

∂R (r)
∂r

+ k2 − 1
r2

= 0. (13)

Eq. (12) can then be rewritten as

∂2Z (z)
∂z2

− k2Z (z) = 0. (14)

Thus, Laplace equation, Eq. (9), is separated into two equations,
Eqs. (13) and (14). There are three possible solutions to Eqs. (13)
and (14) according to variation of k.

4.1.1. The First Solution

When k2 = 0, the following equations are obtained

Z (z) = E0 + F0z, r2 ∂2R(r)
∂r2 + r ∂R(r)

∂r −R (r) = 0. (15)

The solution to Eq. (15) is

Aθ = R (r) Z (z) =
(

C0r + D0
1
r

)
(E0 + F0z) . (16)

However, as Aθ should be a periodic function of z, Eq. (16) is not the
valid solution of Aθ.

4.1.2. The Second Solution

When k2 > 0, the following equation is obtained

Z (z) = E0e
kz + F0e

−kz,

r2 ∂2R (r)
∂r2

+ r
∂R (r)

∂r
+ R (r)

(
k2r2 − 1

)
= 0.

(17)

The solution to Eq. (15) is

Aθ = R (r) Z (z) = [C0J1 (kr) + D0Y1 (kr)]
(
E0e

kz + F0e
−kz

)
. (18)

Again, because Eq. (18) is not a periodic function of z, it is not the
solution of Laplace’s equation either.
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4.1.3. The Third Solution

When k2 < 0, the following equations are obtained

Z (z) = B0 cos (mz) + B1 sin (mz) ,

r2 ∂2R (r)
∂r2

+ r
∂R (r)

∂r
+ R (r)

(
k2r2 − 1

)
= 0.

(19)

The solution to Eq. (19) is

Aθ =





[C0I1 (mr) + D0K1 (mr)] cos (mz)
+
[E0I1 (mr) + F0K1 (mr)] sin (mz)



 , (20)

where m is a real number and defined with k = jm. In this case, Aθ is a
periodic function of z. It is probably the solution of Laplace’s equation.
To determine the coefficients in above equation, constraints are needed.
Because the axial component of flux density is antisymmetry on z = 0,
we have Bz|z=0 = 0. Substituting Eq. (20) into Eq. (3) gives

C0 = 0, D0 = 0.

Therefore, the general solution to Laplace’s equation is

Aθ = [anI1 (mr) + bnK1 (mr)] sin (mz) , (21)

where an = E0, bn = F0.

4.2. General Solution to Poisson Equation

The Poisson equation in cylindrical coordinators is

∂Aθ

∂z2
+

∂

∂r

(
1
r

∂

∂r
(rAθ)

)
= −µ0∇×M. (22)

The general solution to the corresponding homogeneous equation of
the Poisson equation is

Aθ =
∞∑

n=1,2,...

[anI1 (mnr) + bnK1 (mnr)] sin (mnz) . (23)

To get the solution of Poisson equation, the right side of the equation
needs to be substituted by harmonic expansion of magnetization
vector. As illustrated in Fig. (1b), the two Halbach arrays in the linear
machine are composed of radial and axial magnets. The magnetization
vector, M, has two components Mr and Mz in r and z directions
respectively. It is given in cylindrical coordinators as

M = Mrer + Mzez. (24)
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Mr is a non-continuous function with a period of 2τp, and it can be
represented with harmonic expansions as

Mr =
∞∑

n=1,2...

4 (Brem/µ0)
sin

[
(2n− 1) π

2 αp

]

(2n− 1)π
cos (mnz) , (25)

where αp = τr
τp

, τp is the pole pitch, τr is width of radial magnets, n is
a positive integer, and

mn = (2n− 1)π/τp. (26)

Therefore, the general solution of Poisson equation is obtained

A2θ =
∞∑

n=1,2,...

{[a2nI1 (mnr) + b2nK1 (mnr)] sin (mnz) + S (r, z)}, (27)

where S(r, z) = R(r)Z(z) is a particular solution of Poisson equation.
Substituting S(r, z) into Poisson equation gives

1
R(r)

∂2R(r)
∂r2 + 1

R(r)r
∂R(r)

∂r + 1
Z(z)

∂2Z(z)
∂z2 − 1

r2 = 1
R(r)Z(z)Pn sin (mnz) , (28)

where Pn = 4
τp

Brem sin
[
(2n− 1) π

2 αp

]
. Let 1

Z(z)
∂2Z(z)

∂z2 = −mn
2. It is

simplified as

Z(z)=sin(mnz), r2 ∂2R (r)
∂r2

+r
∂R (r)

∂r
−R (r)

(
mn

2r2+1
)
=r2Pn. (29)

Therefore, the particular solution to Poisson equation is

S (r, z) = R (r) Z (z) =
πL1 (mnr)

2mn
2

Pn sin (mnz) , (30)

where L1 is the modified Struve functions [26] and appears as special
solutions of inhomogeneous Bessel equations. As a result, the general
solutions to Laplace and Poisson equations are

A1θ =
∞∑

n=1,2,...

[a1nI1 (mnr) + b1nK1 (mnr)] sin (mnz) ,

A2θ =
∞∑

n=1,2,...

{[
a2nI1 (mnr) + b2nK1 (mnr)

]
sin (mnz)

+
1
2

πL1 (mnr)
mn

2
Pn sin (mnz)

}
.

(31)
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4.3. Solutions to Flux Density Distribution

From Eqs. (3) and (31), the general solution of flux density is obtained

Br1 =
∞∑

n=1,2,...

−mn [a1nI1 (mnr) + b1nK1 (mnr)] cos (mnz) ,

Bp
r2 =

∞∑

n=1,2,...

−mn

{[
ap

2nI1 (mnr) + bp
2nK1 (mnr)

]
cos (mnz)

+
1
2

πL1 (mnr)
mn

2
Pn cos (mnz)

}
,

Bz1 =
∞∑

n=1,2,...

mn [a1nI0 (mnr)− b1nK0 (mnr)] sin (mnz) ,

Bp
z2 =

∞∑

n=1,2,...

mn

{[
ap

2nI0 (mnr)− bp
2nK0 (mnr)

]
sin (mnz)

+
1
2

πL0 (mnr)
mn

2
Pn sin (mnz)

}
.

(32)

Br1 and Bz1 represents the radial and axial magnetic field in the
winding region, while Bp

r2 and Bp
z2 are in magnet regions. The upper

script, p = 1, 2, represents external and internal PMs respectively.

4.4. Boundary Conditions

Boundary conditions are necessary to determine the specific solutions
of magnetic field. In this study, boundary conditions are employed to
calculate the coefficients in magnetic flux density, such as ain, bin. The
magnetic field follows certain rules along the boundary of two different
media. For example, the flux density component perpendicular to the
boundary is continuous in two neighboring media, and the tangential
component of magnetic intensity is discontinuous by the amount of
surface current at the boundary. In this study, surface current is
zero. Therefore, the tangential component of magnetic intensity is
continuous. The boundary conditions are

B1
2z|r=Rs =µ0M

1
z , B2

2z|r=Rr=µ0M
2
z , B1r|r=Rb

=B1
2r|r=Rb

,

H1z|r=Rb
=H1

2z|r=Rb
, B1r|r=Ra=B2

2r|r=Ra, H1z|r=Ra=H2
2z|r=Ra .

(33)

From the boundary conditions, the coefficients in magnetic flux density
can be obtained.
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5. NUMERICAL SIMULATION AND EXPERIMENTS

In this section, a research prototype of the linear machine with dual
Halbach array and an experimental apparatus have been developed.
The experimental works are conducted on the flux field distribution to
validate the derived analytical models. Furthermore, the mathematical
field model is compared with numerical results from FEM. Although
FEM is time-consuming, its precision is relatively high without
significant influence from manufacturing and model simplification.
Therefore, it is used to validate the magnetic analytical model and
observe the flux variation in machine space. The design parameters
and material characteristics used in the numerical computation are
consistent with those in experiments. The finite element solutions are
obtained by applying a master-slave boundary at the axial boundaries
z = 0, z = τp and imposing symmetry boundary at z = 0. The highest
order of harmonics considered in the analytical solutions is 15.

5.1. Prototype and Experimental Apparatus

A tubular linear machine with dual Halbach array is developed for
experimental investigation on the magnetic field as shown in Fig. 2.
The windings are mounted on the mover that in turn is fixed on the
two guiders. The guiders can slide back and forth on the linear bearing.
The bearings are installed on the covers of the stator in which the PM
array is mounted. The structure of the research prototype are shown
in Fig. 3 and design parameters are given in Table 1. The maximum
linear stroke is 36 mm. PMs in the machine are sintered NdFeB35
with Brem = 1.2T and µr = 1.0997. The radially magnetized PMs are
replaced with segments of diametrically magnetized sector PMs for the
convenience of manufacturing and cost reduction.

Cover Stator Cover

Guider

Linear
bearing

Winding Mover

Stator MoverLinear bearing

(a) (b)

PM array

Figure 2. Linear machines with dual Halbach array. (a) 3D exploded
view. (b) Research prototype.
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Figure 3. Structure of the research prototype.

Table 1. Design parameters of research prototype.

Maximum
radius Ro

30mm Outer rad of ext PM Rs 17mm

Machine
length L

89mm Inner rad of ext PM Rb 14mm

Width of
radial PM τr

9mm Outer rad of int PM Ra 9mm

Pole pitch
τp

18mm Inner rad of int PM Rr 5mm

Number of
poles n

4 Number of winding turns 100

Outer air
gap go

0.2mm Inner air gap gi 0.2mm

An experimental apparatus is developed for magnetic field
measurement in 3D space as illustrated in Fig. 4. The research
prototype is mounted on a platform of the apparatus. A gauss probe
is installed on the end-effect of a three-axis translational stage. Under
the PC controller, the probe can pinpoint to any position inside the
linear machine and measure the flux density. The measured data can
be either displayed on the Gauss meter or transferred to PC.

5.2. Validation of Analytical Model

In this section, the analytical model of the magnetic field in the linear
machine is validated. For winding region, the mathematical model of
the flux distribution is compared with both FEM and experimental
results. For magnet region, the model is compared with FEM results,
as the probe cannot measure the flux field at this region. The
numerical model is built in Ansoft environment, using 2D-FEM. Design
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Three-axis
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Linear machine

Connected to PC

Connected to

Gauss/Tesla meter

Platform

Figure 4. Experimental testbed for magnetic field measurement.
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Figure 5. Magnetic field variation versus z at r = 11.5 mm. (a) Br

variation. (b) Bz variation.

parameters are the same as those in research prototype, and the
simulation is implemented by applying master and slave boundary at
z = 0 and z = τp, and symmetry boundary at z = 0.

5.2.1. Magnetic Field Variation in Winding Region

Magnetic field variations versus axial distance z are measured and
simulated. Results at r = 11.5mm, 12 mm, 12.5 mm are presented
in Figs. 5, 6, and 7, respectively. In this study, experiments are
conducted neighboring to the center of linear machine (z = 0) to reduce
the longitude fringe effect. Variation of radial flux component that
interacts with current input to produce axial force output is in sine
waveform approximately, and harmonic contents of radial flux density
at distinctive radius are shown in Fig. 8. It is found that the analytical
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Figure 6. Magnetic field variation versus z at r = 12 mm. (a) Br

variation. (b) Bz variation.
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Figure 7. Magnetic field variation versus z at r = 12.5 mm. (a) Br

variation. (b) Bz variation.

models fit with the finite element results and experimental results
closely. The difference is caused by manufacturing errors, assembly
errors and replacement of diametrically magnetized segmental PMs.

5.2.2. Magnetic Field Variation in the Magnet Region

Figures 9 and 10 present magnetic field variation versus axial distance
z at the center radius of internal and external Halbach array, i.e.,
r = (Rr + Ra)/2 and r = (Rb + Rs)/2, respectively. Magnetic field in
either magnet region varies in line with the magnetization vector M.
Therefore, the radial flux component is even-symmetric about z = 0,
while the axial field is odd-symmetric. However, the radial flux density
in the internal magnet area is greater than that in the external magnet
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Figure 9. Field variation at the center of internal magnet area.
(a) Variation of Br. (b) Variation of Bz.
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Figure 10. Field variation at the external magnet area. (a) Variation
of Br. (b) Variation of Bz.

area due to a decreasing section crossed by constant flux lines. The
analytical results fit with the finite element results well. The difference
is mainly caused by the simplification of models and FEM meshing.
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6. CONCLUSION

A novel dual Halbach magnet array is proposed in this paper for
the development of tubular linear machines. It helps to improve
the radial flux, and reduce the axial flux. The 3D magnetic field
distribution is formulated analytically based on Laplace’s and Poisson’s
equations. Numerical computation of magnetic field is conducted
with FEM method. It shows that the analytical model fits with
the numerical result closely. A research prototype and an automatic
apparatus are developed for experimental purpose. The experimental
result validates the analytical magnetic field model well. The analytical
model in this paper can be used for design optimization and control
implementation of tubular electromagnetic linear machines. The
proposed dual Halbach array can also be utilized for rotary machines.

ACKNOWLEDGMENT

The authors acknowledge the financial support from the National
Natural Science Foundation of China under grant 51175012, 51235002,
the Program for New Century Excellent Talents in University of China
under grant NCET-12-0032, the Fundamental Research Funds for
the Central Universities, and Science and the Technology on Aircraft
Control Laboratory.

REFERENCES

1. Stumberger, G., M. T. Aydemir, D. Zarko, and T. A. Lipo,
“Design of a linear bulk superconductor magnet synchronous
motor for electromagnetic aircraft launch systems,” IEEE
Transactions on Applied Superconductivity, Vol. 14, No. 1, 54–62,
2004.

2. Kou, B. Q., X. Z. Huang, H. X. Wu, and L. Y. Li,
“Thrust and thermal characteristics of electromagnetic launcher
based on permanent magnet linear synchronous motors,” IEEE
Transactions on Magnetics, Vol. 45, No. 1, 358–362, 2009.

3. Thornton, R., M. T. Thompson, B. M. Perreault, and J. R. Fang,
“Linear motor powered transportation,” Proceedings of the IEEE,
Vol. 97, No. 11, 1754–1757, 2009.

4. Yan L. G., “The linear motor powered transportation development
and application in China,” Proceedings of the IEEE, Vol. 97,
No. 11, 1872–1880, 2009.

5. Yamada, H., M. Yamaguchi, M. Karita, Y. Matsuura, and



298 Yan et al.

S. Fukunaga, “Acute animal experiment using a linear motor-
driven total artificial heart,” IEEE Translation Journal on
Magnetics in Japan, Vol. 9, No. 6, 90–97, 1994.

6. Yamada, H., M. Yamaguchi, K. Kobayashi, Y. Matsuura, and
H. Takano, “Development and test of a linear motor-driven
total artificial heart,” IEEE Engineering in Medicine and Biology
Magazine, Vol. 14, No. 11, 84–90, 1995.

7. Mohammadpour, A., A. Gandhi, and L. Parsa, “Winding factor
calculation for analysis of back EMF waveform in air-core
permanent magnet linear synchronous motors,” IET Electric
Power Applications, Vol. 6, No. 5, 253–259, 2012.

8. Wang, J. B. and D. Howe, “Design optimization of radially
magnetized, iron-cored, tubular permanent-magnet machines and
drive systems,” IEEE Transactions on Magnetics, Vol. 40, No. 5,
3262–3277, 2004.

9. Mahmoudi, A., N. A. Rahim, and W. P. Hew, “Axial-flux
permanent-magnet motor design for electric vehicle direct drive
using sizing equation and finite element analysis,” Progress In
Electromagnetics Research, Vol. 122, 467–496, 2012.

10. Wang, J., G. W. Jewell, and D. Howe, “A general framework
for the analysis and design of tubular linear permanent magnet
machines,” IEEE Transactions on Magnetics, Vol. 35, No. 3, 1986–
2000, 1999.

11. Fang, J. R., D. B. Montgomery, and L. Roderick, “A novel mag
pipe pipeline transportation system using linear motor drives,”
Proceedings of the IEEE, Vol. 97, No. 11, 1848–1855, 2009.

12. Gurol, H., “General atomics linear motor applications: Moving
towards deployment,” Proceedings of the IEEE, Vol. 97, No. 11,
1864–1871, 2009.

13. Torkaman, H. and E. Afjei, “Magnetostatic field analysis
regarding the effcts of dynamic eccentricity in switched reluctance
motor,” Progress In Electromagnetics Research M, Vol. 8, 163–180,
2009.

14. Torkaman, H. and E. Afjei, “Comparison of two types of dual
layer generator in field assisted mode utilizing 3D-FEM and
experimental verification,” Progress In Electromagnetics Research
B, Vol. 23, 293–309, 2010.

15. Torkaman, H. and E. Afjei, “Comparison of three novel types
of two-phase switched reluctance motors using finite element
method,” Progress In Electromagnetics Research, Vol. 125, 151–
164, 2012.



Progress In Electromagnetics Research, Vol. 136, 2013 299

16. Jian, L. and K.-T. Chau, “Design and analysis of a magnetic-
geared electronic-continuously variable transmission system using
finite element method,” Progress In Electromagnetics Research,
Vol. 107, 47–61, 2010.

17. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir,
“Experimental investigation and optimization of permanent
magnet motor based on coupling boundary element method with
permeances network,” Progress In Electromagnetics Research,
Vol. 111, 71–90, 2011.

18. Lecointe, J. P., B. Cassoret, and J.-F. Brudny, “Distinction of
toothing and saturation effects on magnetic noise of induction
motors,” Progress In Electromagnetics Research, Vol. 112, 125–
137, 2011.

19. Zhao, W., M. Cheng, R. Cao, and J. Ji, “Experimental comparison
of remedial single-channel operations for redundant flux-switching
permanent-magnet motor drive,” Progress In Electromagnetics
Research, Vol. 123, 189–204, 2012.

20. Mahmoudi, A., S. Kahourzade, N. A. Rahim, and W. P. Hew, “Im-
provement to performance of solid-rotor-ringed line-start axial-
flux permanent-magnet motor,” Progress In Electromagnetics Re-
search, Vol. 124, 383–404, 2012.

21. Musolino, A., R. Rizzo, and E. Tripodi, “Tubular linear induction
machine as a fast actuator: Analysis and design criteria,” Progress
In Electromagnetics Research, Vol. 132, 603–619, 2012.

22. Matyas, A. R., K. A. Biro, and D. Fodorean, “Multi-phase
synchronous motor solution for steering applications,” Progress
In Electromagnetics Research, Vol. 131, 63–80, 2012.

23. Youn, H. K., S. J. Chang, K. Sol, D. C. Yon, and L. Ju,
“Analysis of hybrid stepping motor using 3D equivalent magnetic
circuit network method based on trapezoidal element,” Journal of
Applied Physics, Vol. 91, No. 10, 8311–8313, 2002.

24. Amrhein, M. and P. T. Krein, “Induction machine modeling
approach based on 3-D magnetic equivalent circuit framework,”
IEEE Transactions on Energy Conversion, Vol. 25, No. 2, 339–
347, 2010.

25. Liu, C. and K.-T. Chau, “Electromagnetic design and analysis
of double-rotor flux-modulated permanent-magnet machines,”
Progress In Electromagnetics Research, Vol. 131, 81–97, 2012.

26. The Wolfram functions site, 2012, http://functions.wolfram.com/
Bessel-TypeFunctions/StruveL/introductions/Struves/01/.


