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Abstract—In this study, the Artificial Bee Colony Optimization
(ABCO) algorithm has been proposed to estimate the atmospheric
duct in maritime environment. The radar sea clutter power is
calculated by the parabolic equation method. In order to validate the
accuracy and robustness of ABCO algorithm, the experimental and
simulation study are respectively carried out in the current research.
In the simulation study, the statistical analysis of the estimation
results in term of the mean squared error (MSE), mean absolute
deviation (MAD) and mean relative error (MRE) are presented to
analyze the optimization performance with different noise standard
deviation, and the comparative study of the performance of ABCO
and particle swarm optimization (PSO) algorithm are also shown.
The investigation presented indicate that the ABCO algorithm can
be accurately and effectively utilized to estimate the evaporation duct
and surface-based duct using refractivity from clutter (RFC) technique
in maritime environment. In addition, the performance of ABCO
algorithm is clearly superior to that of the PSO algorithm according
to the statistical analysis results, especially for the four-parameter
surface-based duct estimation.

1. INTRODUCTION

Atmospheric duct is a type of abnormal atmosphere structure above
maritime boundary layer, caused by the abrupt changes in the
vertical atmospheric temperature and humidity profiles above the
sea surface [1]. Under the atmosphere duct environment, the non-
standard electromagnetic propagation can be observed, and the
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fundamental parameters and the performance of radar system and
communication system can be drastically affected, such as the
maximum operation range, creation of radar holes where the radar
is practically blind, and strengthened sea surface clutter [2]. The
atmospheric duct environment is usually described by the atmospheric
modified refractivity profile. Two common abnormal refractivity
structure in maritime environment are evaporation duct and surface-
based duct, respectively. Especially, the evaporation duct is a nearly
everlasting phenomenon. Although the probability of occurrence of the
surface-based duct is less common than that of evaporation duct, the
influence of surface-based duct on radar system and communication
system is greater than that of evaporation duct. Consequently,
estimation of atmospheric duct has been an important research subject
owing to its considerable application in the design of radar system
and communication system. The traditional ways of determining
the modified refractivity profile include devices such as radiosondes,
rocketsondes, microwave refractometers and lidar [2]. However, these
methods have the disadvantages of high cost and difficult in practice.
In recent years, refractivity from clutter (RFC) technique has been
a novel and promising method to estimate the atmospheric duct
instead of using the traditional ways mentioned above. Atmospheric
duct is usually associated with increased sea clutter due to the
heavy interaction between the sea surface and the electromagnetic
wave trapped within the electromagnetic duct, and this unwanted
sea clutter is a rich source of information about the low-altitude
maritime environment and can be used to estimate the atmospheric
duct [3]. Estimation of atmosphere duct using RFC technique is an
inverse problem, and the relationship between the forward propagation
model and atmosphere duct parameters is a complex nonlinear model.
Recently, many researchers dedicated to the study of estimating the
atmosphere duct [4–14] with efficient optimization methods, estimation
model and analyze the performance of the optimization algorithm,
and the detailed estimation steps and the latest research progress
about the RFC technique can be founded in [4, 5]. Due to the
nonlinear relationship between the forward propagation model and
atmospheric duct parameters, the intelligent optimization algorithms,
such as genetic algorithm (GA) [15], particle swarm optimization
(PSO) [16], differential evolution (DE) [17] and ant colony optimization
(ACO) [18], are good candidates to estimate the atmospheric duct from
radar sea clutter.

The ABCO algorithm [19–21] is one of the most recently
introduced swarm intelligence algorithm under the inspiration of
intelligent behavior of honey bee swarm, which was firstly introduced
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by Karaboga and Basturk In ABCO algorithm, the optimization
procedures are implemented by simulating the intelligent foraging
behavior of a honeybee swarm to share information of bees for the
purpose of finding the optimal solution. Furthermore, the optimization
performance of ABCO algorithm has been proven to perform better
than GA, DE and PSO for the multimodal benchmark function. Thus,
the ABCO algorithm has been applied to the field of the design of linear
array antenna and neuroimaging [22, 23].

In this study, the powerful and efficient ABCO algorithm is
presented to estimate the evaporation duct and surface-based duct
with the RFC technique. The accuracy and robustness of the
ABCO algorithm is validated by the experimental data and synthetic
data produced by the parabolic equation method. In addition, the
optimization performance of ABCO algorithm is compared with that
of PSO algorithm.

The remainder of this paper is organized as follows. In Section 2
gives the formula of radar sea clutter power and the objective function
of the estimation problem. Section 3 briefly introduces the main
procedures and flowchart of ABCO algorithm. The estimation results
and performance analysis in Section 4 indicate the accuracy and
robustness of ABCO algorithm, and the conclusions are drawn in
Section 5.

2. THE FORWARD PROPAGATION MODEL AND
OBJECTIVE FUNCTION

2.1. Parabolic Equation Method

In the atmospheric duct environment, the electromagnetic wave will
be trapped into an electromagnetic duct layer, and it can give rise
to the over the horizon propagation phenomenon and form the radar
detection shadow zone. To estimate the atmospheric duct from radar
sea clutter, we should quantitatively compute the propagation loss
of the electromagnetic signal within the electromagnetic duct. The
parabolic equation method is a useful tool to model the electromagnetic
wave field distribution under the atmospheric duct environment due to
its accuracy and stability. Given the initial field distribution, the split-
step fourier transform solution of parabolic equation is given by [24]

u(x0 + ∆x, z)

= exp
[(

ik0/2
)[

n2−1
]
∆x

]
F−1

{
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)
p2

]
F [u(x0, z)]

}
(1)

where F and F−1 are the forward fourier transform and inverse
fourier transform, respectively, and p = k0 sin θ denotes the transform
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variable. θ is the angle measured with respect to the horizontal
direction, ∆x the range step, k0 the wavenumber, n the refractive
index, and u (x0, z) the initial field distribution.

2.2. The Modified Refractivity Profile Model

To describe the negligibly small change of refractive index n with
altitude in atmospheric duct environment, the refractivity N and
modified refractivity M are generally used to define the change of n [25]

N = (n− 1)× 106 (2)

M = N +
( z

R

)
× 106 (3)

where z is the altitude and R the Earth’s radius.
With the help of modified refractivity, the profile of evaporation

duct [2] can be described by the log-linear evaporation duct using only
one parameter

M(z) = M0 + 0.125z − 0.125d ln
z + z0

z0
(4)

where z is the height above the mean height of sea surface, d the
evaporation duct height, z0 roughness factor whose typical value is
0.00015, and the constant M0 usually taken as 330.0 M units.

While the surface-based duct can be usually represented by
trilinear profile model using a four-parameter model

M(z) = M0 +





c1z if z < h1

c1h1 + c2(z − h1) if h1 ≤ z ≤ h2

c1h1 + c2h2 + 0.118(z − h1 − h2) if z > h2

(5)

where c1 and h1 are the slope and thickness of the base layer, whereas
c2 and h2 are the slope and thickness of the inversion layer. The slope
of the top layer is treated as a constant at 0.118 M-units/m. The
modified refractivity profiles for evaporation duct and surface-based
duct are given in Fig. 1.

2.3. Calculation of the Radar Sea Clutter Power

In the RFC technique, the received radar sea clutter power at different
propagation distances are chosen as the input data. Taking the
influence of atmosphere condition into account, the received radar sea
clutter power can be obtained from radar equation [4]

Pc =
PtG

2
t λ

2F 4σ

(4π)3r4
(6)
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(a) (b)

Figure 1. The modified refractivity profiles of (a) evaporation duct
and (b) surface-based duct.

where Pt is the transmitted power, Gt the gain of transmitting antenna,
λ the wavelength, r the distance between radar and illumination area,
F the propagation factor, and σ the sea surface radar cross section,
which can be expressed in term of normalized sea surface radar cross
section σ0. Finally, the received radar sea clutter power can be
expressed in dB by

Pc,dB(r,m) = −2L + σ◦ + 10 lg(r) + C (7)

where L is the propagation loss obtained from the parabolic equation
method mentioned above, C the constant terms in Eq. (6), and m the
unknown environmental parameter vector. In general, the normalized
sea surface radar cross section σ0 is of difficulty to calculate with
analytical or numerical methods at low grazing angle [26, 27], thus
it can be acquired by the sea clutter theoretical model of GIT [28].

2.4. The Objective Function

The objective function of the optimizaiton problem adopted in this
work is the least squares objective function, it can be expressed by [4]

f(m) = eTe (8)

where

e = Pobs
c −Pc(m)− T̂ (9)

T̂ = P̄obs
c − P̄c(m) (10)

where Pobs
c and Pc (m) are the observed and received radar sea clutter

power vector at different propagation distance, whereas P̄obs
c and

P̄c (m) are the mean observed and received radar sea clutter power
across the elements in the vector, respectively.
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3. INTRODUCTION OF THE ARTIFICIAL BEE
COLONY ALGORITHM

It is well known that the RFC technique is an inverse problem, an
efficient optimization algorithm needs to be selected to minimize the
objective function for obtaining the best refractivity profile. In this
section, the ABCO algorithm [19–21] is briefly introduced. The ABCO
algorithm is an efficient optimization algorithm based on the intelligent
behavior of honey bee swarm, the colony of bees consists of three
essential components: employed bees, onlookers and scouts. The
employed bee is used to search for the food sources, the onlooker bee
makes a decision to choose the food sources by sharing the information
of employed bee, and scout is used to determine a new food source if
a food source is abandoned by the employed bee and onlooker bee.
In the ABCO algorithm, the position of a food source corresponds to
a possible solution of the optimization problem in the search space
and the solution is evaluated by fitness function. In addition, only an
employed bee exists for each food source, that is to say, the number of
the employed bees is equal to the number of solutions. The flowchart
of ABCO algorithm is shown in Fig. 2.

4. ESTIMATION RESULTS AND PERFORMANCE
ANALYSIS

In the following, the estimation of evaporation duct and surface-based
duct using RFC technique are investigated by the ABCO algorithm
via the experimental and the simulation study. In addition, the
statistical analysis of the estimation results and comparative analysis
of the optimization performance of ABCO and PSO algorithm for the
estimation of evaporation duct and surface-based duct with different
noise standard deviation are also presented in the simulation study. For
evaporation duct, only one parameter m = d needs to be estimated,
whereas four-parameter m = (c1, c2, h1, h2) need to be estimated for
surface-based duct. Therefore, the estimation of evaporation duct is
relatively easier than that of surface-based duct. The lower and upper
search bounds of the parameters used in the estimation are given in
Table 1.

In this study, the radar sea clutter power from 10 Km to 50 Km
are used to estimate the atmospheric duct, and the propagation loss
in Eq. (7) are calculated at the effective scattering height given as
0.6 times the mean wave height [2]. The control parameters of each
algorithm can be achieved by the trial and error method to obtain
better performance in the estimation. For the evaporation duct
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Figure 2. The flowchart of ABCO algorithm.

Table 1. The lower and upper search bounds of the parameters used
in the estimation.

Parameter Lower Bound Upper Bound Units
d 0.0 40.0 m
c1 0.0 0.25 M-units/m
c2 −3.5 −1.0 M-units/m
h1 25.0 50.0 m
h2 10.0 35.0 m

estimation, the control parameters of ABCO algorithm are given as
follows: the number of colony size is 40, the number of food sources
is 20, the maximum search limit is 100, and the maximum number of
cycles is 100; the control parameters of PSO algorithm are given as
follows: the population size is 10, the learning factor is 2.0, the inertia
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weight is 0.5, and the number of iteration is 20. Taking the randomness
of parameter in the initialization stage and gaussian random noise
into consideration, each run is repeated for 100 times to analyze the
performance of ABCO and PSO algorithm for the evaporation duct and
surface-based duct estimation with different noise standard deviation.

4.1. Estimation of Evaporation Duct

To validate the feasibility and effectiveness of the ABCO algorithm, the
ABCO algorithm is firstly verified by the experimental data measured
in East China Sea [29]. During the experiment, the radar system works
at a frequency of 10GHz, antenna height of 10 m, beam width of 0.7◦,
and the HH polarization is employed. The dependence of measured
radar sea clutter power on the propagation distance is demonstrated
in Fig. 3.

Figure 4 gives the comparison of the ABCO algorithm estimation
modified refractivity profile with the measured profile, it can be seen
that the modified refractivity profile estimated by ABCO algorithm is
in excellent agreement with the measured one.

To further analyze the performance of ABCO algorithm, the
simulation study are also carried out with synthesized radar sea clutter
power produced by Eq. (7), and the gaussian noise with zero mean and
different standard deviations are added to the synthesized radar sea
clutter power to analyze the robustness of the optimization algorithm.
The synthesized radar sea clutter power is generated at a frequency
of 8 GHz, power of 91.4 dBm, antenna gain of 52.8 dB, antenna height
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Figure 5. Comparision of the histograms of ABCO and PSO
algorithm for the evaporation duct height estimation with different
noise standard deviation. (a) 3 dB standard deviation. (b) 6 dB
standard deviation. (c) 9 dB standard deviation.

of 7 m, beam width of 0.7◦, 600 m range bins, and HH polarization
is adopted. Here, we take the synthesized radar sea clutter power
of evaporation duct height 11.5m and 23.0 m with 3 dB, 6 dB, 9 dB
noise standard deviation as the observed radar sea clutter power to
analyze the performance of ABCO algorithm. In addition, the ABCO
algorithm simulations are compared with those of the commonly used
PSO algorithm for different noise standard deviation.

The histograms of estimation height for ABCO and PSO algorithm
are given in Fig. 5, and the blue vertical lines stand for the actual
evaporation duct height of synthesized radar sea clutter power. It
is obvious that the statistical results of ABCO algorithm are more
concentrated than those of PSO algorithm for different noise standard
deviation, that is to say, the performance of ABCO is better than
that of PSO. Overall, the estimation results of ABCO and PSO are
accepted. However, the instability of PSO is obviously exhibited as
the standard deviation reaches 9 dB as depicted in Fig. 5(c) for the
23m evaporation duct height estimation. The part estimation height
of PSO algorithm on the right side of the blue vertical line deviates
greatly from the actual value. This phenomenon may be caused by the
fact that the PSO algorithm has the shortcoming of sinking into local
best.

To quantitatively analyze the performance of ABCO and PSO
algorithm, the statistical analyses for the evaporation duct estimation
in term of the Mean Squared Error (MSE), Mean Absolute Deviation
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Table 2. The performance analysis of the evaporation duct height
estimation results of ABCO and PSO (d = 11.5m).

Noise level
ABCO PSO

MSE MAD MRE MSE MAD MRE
3dB 0.005 0.055 0.47% 0.016 0.097 0.85%
6dB 0.014 0.10 0.88% 0.052 0.186 1.62%
9dB 0.036 0.15 1.30% 0.174 0.33 2.87%

Table 3. The performance analysis of the evaporation duct height
estimation results of ABCO and PSO (d = 23.0m).

Noise level
ABCO PSO

MSE MAD MRE MSE MAD MRE
3 dB 0.045 0.15 0.66% 0.13 0.30 1.27%
6 dB 0.23 0.36 1.58% 0.37 0.49 2.11%
9 dB 0.38 0.49 2.13% 2.37 0.96 4.19%

(MAD) and Mean Relative Error (MRE) [30] are illustrated in Tables 2
and 3. From Tables 2 and 3, we can see that the MSE, MAD and MRE
of ABCO algorithm are slightly smaller than those of PSO algorithm
with different noise level. That is to say, the accuracy and robustness
of ABCO algorithm is slightly better than that of PSO algorithm for
the evaporation duct estimation.

4.2. Estimation of Surface-based Duct

The histograms of simulation study of the ABCO and PSO algorithm
for estimating the four-parameter surface-based duct are shown in
Fig. 6, and the blue vertical lines stand for the actual surface-based
parameters of synthesized radar sea clutter power. In our simulation,
the radar system parameters are the same as those of the simulation for
evaporation duct presented in Section 4.1. The actual surface-based
duct parameters m = (0.13, −2.5, 40, 20) are chosen from the Ref. [1].
For the surface-based duct estimation, the control parameters of ABCO
algorithm are given as follows: the number of colony size is 100, the
number of food sources is 50, the maximum search limit is 100, and
the maximum number of cycles is 500; the control parameters of PSO
algorithm are given as follows: the population size is 50, the learning
factor is 2.0, the inertia weight is 0.5, and the number of iteration is
50.

In Fig. 6, it is evident that there are different distribution
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Figure 6. Comparision of the histograms of ABCO and PSO
algorithm for the four-parameter surface-based duct estimation with
different noise standard deviation. (a) 3 dB standard deviation.
(b) 6 dB standard deviation. (c) 9 dB standard deviation.

features for the four-parameter in surface-based duct estimation, we
can see that the distribution area of PSO algorithm is wider than
those of ABCO algorithm for different noise standard deviation, it
means that the accuracy and robustness of ABCO algorithm surpass
the PSO algorithm. Especially in the histogram for the estimation
of h2 in Fig. 6, the accuracy and robustness of ABCO algorithm
greatly outperform the PSO algorithm for the 3 dB and 6 dB standard
deviation. This is due to the fact that the PSO algorithm have
the drawback of premature convergence and trapping into local best
when it comes to complex nonlinear objective function. However,
the search capability of ABCO algorithm operator is strengthened
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by simultaneously taking the local and global search strategy into
consideration, and the local best can be avoided by constantly
adjusting the search space and producing new solution. Moreover,
the instability of PSO algorithm is evident for the estimation of the
h2, and the instability of ABCO algorithm are also encountered in
the estimation of h2 with 9 dB standard deviation. This phenomenon
indicates that although the performance of ABCO algorithm has been
dramatically improved via the local and global search strategy at each
iteration, the swarm intelligence algorithm has the disadvantage of
sinking in to local best, which needs to be further investigated.

Similarly, the comparisons of performance analysis of the ABCO
and PSO algorithm in terms of MSE, MAD and MRE mentioned above
are also summarized in Tables 4–7. In Tables 5–6, it can be observed
that the MSE, MAD and MRE of ABCO algorithm are slightly smaller
than those of PSO algorithm with different noise standard deviation.
That is to say, the performance of ABCO algorithm is slightly better
than that of PSO algorithm for the estimation of c2 and h1 in surface-
based duct. In contrast, the MRE of PSO algorithm in Table 4 and the
MSE, MRE of PSO algorithm in Table 7 are considerably greater than
those of ABCO algorithm, these indicate that the stability of ABCO
algorithm is much better than that of PSO algorithm for the estimation

Table 4. The performance analysis of the surface-based duct
estimation results of ABCO and PSO (c1).

Noise level
ABCO PSO

MSE MAD MRE MSE MAD MRE
3dB 7.5E-5 0.006 4.78% 0.0015 0.027 20.7%
6dB 2.3E-4 0.012 9.2% 0.0015 0.027 20.7%
9dB 2.4E-4 0.018 14.1% 0.001 0.025 19.2%

Table 5. The performance analysis of the surface-based duct
estimation results of ABCO and PSO (c2).

Noise level
ABCO PSO

MSE MAD MRE MSE MAD MRE
3dB 2.3E-4 0.011 0.46% 0.013 0.073 2.93%
6dB 0.0015 0.02 0.88% 0.01 0.07 2.7%
9dB 0.0043 0.04 1.57% 0.013 0.08 3.4%
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Table 6. The performance analysis of the surface-based duct
estimation results of ABCO and PSO (h1).

Noise level
ABCO PSO

MSE MAD MRE MSE MAD MRE
3 dB 0.018 0.11 0.27% 1.14 0.72 1.8%
6 dB 0.15 0.23 0.57% 0.84 0.63 1.59%
9 dB 0.42 0.4 0.98% 1.22 0.79 1.97%

Table 7. The performance analysis of the surface-based duct
estimation results of ABCO and PSO (h2).

Noise level
ABCO PSO

MSE MAD MRE MSE MAD MRE
3dB 0.03 0.14 0.71% 25.8 2.75 13.7%
6dB 0.08 0.22 1.1% 90.7 5.4 26.97%
9dB 14.7 1.55 7.75% 51.0 3.8 19.2%

of c1 and h2 in surface-based duct. As a whole, the performance of
ABCO algorithm distinctly is better than that of PSO algorithm for
the surface-based duct estimation.

Since the modified refractivity profile of surface-based duct is
depicted using a four-parameter refractivity profile model, so the
difference of propagation loss between the estimation refractivity
parameters and the actual refractivity parameters are calculated by
the parabolic equation method, where the estimation refractivity
parameters are obtained by averaging over the 100 times estimation
results. Here, the difference of propagation loss is defined by
subtracting the propagation loss simulated by actual refractivity
parameters from the propagation loss simulated by estimation
refractivity parameters.

Figure 7 demonstrates the comparison of the difference of
propagation loss simulated by the surface-based duct parameters
estimated by the ABCO and PSO algorithm with different noise
standard deviations. It can be clearly seen that the differences of
propagation loss estimated by ABCO algorithm are less than those of
PSO algorithm for the same standard deviation, which also validates
the conclusion drawn above for the surface-based duct estimation in
Fig. 6 and the performance analysis in Tables 4–7.
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(a)
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(c)

Figure 7. Comparision of the difference (dB) of propagation loss
between the ABCO and PSO estimation results with different noise
standard deviation. (a) 3 dB standard deviation. (b) 6 dB standard
deviation. (c) 9 dB standard deviation.

5. CONCLUSION

In this paper, the powerful and efficient ABCO algorithm has been
proposed to estimate the evaporation duct and surface-based duct
in maritime environment. The experiment and simulation are used
to validate the accuracy and robustness of ABCO algorithm. For
the experimental study, the radar sea clutter power data gathered in
East China Sea are used to estimate the evaporation duct, and the
estimated profile is in excellent agreement with the measured one. For
the simulation study, the statistical analyses in term of MSE, MAD,
MRE are adopted to analyze the optimization performance, and the
comparative study of the ABCO and PSO algorithm is also involved.
The investigation presented indicates that the ABCO algorithm can
be accurately and effectively utilized to estimate the evaporation duct
and surface-based duct using RFC technique in maritime environment.
In addition, the performance of ABCO algorithm is superior to that
of the PSO algorithm, especially for the four-parameter surface-based
duct estimation. It should be noted that the improved or hybrid
optimization scheme will be evaluated in the future investigation.
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