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Abstract—In this paper, the performance analysis of the natural
frequency-based radar target recognition in the time domain is
considered. We investigate the dependence of the probability of correct
classification on a specific threshold value, and determine the optimum
threshold value for two targets, and the sub-optimal threshold for
multiple targets to maximize the probability of correct classification.
Based on the probability density function (PDF) of some quantity
consisting of the projections of the late time response onto the column
spaces of the matrices constructed using the natural frequencies of the
specific targets, we propose how to determine an optimum threshold in
the sense that the probability of correct classification of two targets is
maximized. By extending the scheme for two targets, we show how to
determine a threshold value close to the optimal threshold for multiple
targets. The scheme is validated by comparing the performance using
the analytic method with that using the Monte-Carlo simulation.

1. INTRODUCTION

Radar [1–25] has been widely used as a sensor for detection [26–46] and
tracking [17, 47–49] of radar target. The range to the target and the
velocity of the target can be measured using radar. Doppler shift can
be used to estimate the velocity of moving target [26–28, 50, 51]. The
radar cross section (RCS) [52–59] of radar target can be estimated from
the strength of the signal reflected from the target. The reflected signal
of the radar target can be simulated using scattering analysis of the
radar target [60–69]. In addition to radar detection and tracking, there
have been many studies on radar target recognition [70–80, 159–166].
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There are many radar signatures which can be used for radar
target recognition: Natural frequencies of radar target [159–166], high
resolution range (HRR) profiles [72, 75–80] of radar target, microwave
image [101–123] of the radar target [1, 26, 31, 50, 55, 70, 73, 81–100],
and inverse synthetic aperture radar (ISAR) [55, 86–100, 125, 126]
image proved to be useful features for target recognition. Jet engine
modulation and helicopter modulation [127, 128] have also been known
as useful features for target recognition.

It has been shown that the performance of radar target recog-
nition can be improved by exploiting the polarization characteris-
tics [1, 31, 71, 84, 129]. In the viewpoint of the anti-stealth technol-
ogy, detection of low RCS target has been an interest. Multiple-input
and multiple-output (MIMO) radar, bistatic radar and multi-static
radar [51, 84, 85, 124, 130–137] have been employed to detect low-RCS
target. Pulse compression proved to be an effective way to enhance
the performance of radar target detection and recognition [138–140].
In addition, ultra-wideband (UWB) radar [71, 89, 141–146] has been
employed to improve the performance.

There have been many studies in the literature about radar target
detection [148–155, 169] and recognition [70, 159–166]. The first set of
works presents how different techniques have been successfully applied
to detect radar targets in different environments such as sea [152, 153]
and ground [154, 155]. The typical techniques are neural-network
based detectors [148, 149] and constant false alarm rate (CFAR)
detectors [150, 151]. The works of the second set [148–164] present how
the above-mentioned or other techniques have been successfully applied
in radar target recognition tasks. Natural frequency is a commonly
used radar signature for radar target recognition [159–162, 163–167].

In [160, 161], the authors presented the natural frequency-based
radar target recognition scheme in the time domain [160] and in the
frequency domain [161]. In [162] and [168], performance of natural
frequency-based target recognition has been analyzed in the time
domain and in the frequency domain, respectively. The schemes are
based on the binary hypothesis testing and a numerical evaluation of
a probability density function (PDF).

In this paper, based on the results in [162], we consider how to
improve the probability of correct classification by properly selecting
the threshold value used for the classification.
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2. LATE TIME RESPONSE AND NATURAL
FREQUENCIES

Let yn|k represent a sampled response with sampling interval of ∆t,
and define zm|k = exp[sm|k∆t], where s1|k, . . . , sMk|k are the natural
frequencies of the k-th target. Mk is the number of the natural
frequencies of target k. It can be easily shown that, based on the
late time representation using the natural frequencies, the late time
response can be written as [160], for the k-th target,

yn|k = un|k + gn|k =
Mk∑

m=1

cm|kzm|kn + gn|k n = 1, 2, . . . , N (1)

where N is the number of the sampled frequency response.
gn|k is the zero-mean Gaussian distributed with variance of σ2,

associated with yn|k. sm|k, m = 1, . . . , Mk, is the natural frequency of
the k-th target. un|k, n = 1, . . . , N , is the noiseless late time response
of the k-th target.

If we define
yk =

[
y1|k y2|k . . . yN |k

]T (2)

ck =
[

c1|k c2|k . . . cMk|k
]T (3)

gk =
[

g1|k g2|k . . . gN |k
]T (4)

uk =
[

u1|k u2|k . . . uN |k
]T

, (5)
Equation (1) can be written as

yk = Bkck + gk = uk + gk (6)
where {Bk}nm is defined as

{Bk}nm = zm|kn. (7)

3. MOTIVATION

In [162], the authors chose zero for the threshold for the classification.
Assume that we try to recognize target 1 and target 2 based on the
PDF of

Z21|k≡‖P2yk‖2−‖P1yk‖2 = yH
k P2yk−yH

k P1yk

target 2
>
<

target 1
0 k=1, 2 (8)

where k denotes that the noisy late time response is from the k-th
target and the projection matrices P1 and P2 are defined as

P2 = B2

(
BH

2 B2

)−1
BH

2 (9)

P1 = B1

(
BH

1 B1

)−1
BH

1 . (10)
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Eigendecomposition of P2 −P1 results in

P2 −P1 = VΛ21VH. (11)

wk is defined from

wk =
[
w1|k . . . wN |k

]
= VHyk. (12)

The mean of wk is denoted as

mean(wk) =
[
µ1|k . . . µN |k

]
= VHuk. (13)

Z21|k in Eq. (8) can be written as [162, 170]

Z21|k = F21|k + G21|k (14)

where

F21|k =
M2−M1∑

l=1

wl|k2 and G21|k =
2M1∑

l=1

λlwM2−M1+l|k2. (15)

The characteristic functions of F21|k and G21|k are [162]

ΦF21|k(jω) =
1

(1−j2ωσ2)(M2−M1)/2
exp




jω
M2−M1∑

l=1

µ2
l|k

1−j2ωσ2


 (16)

ΦG21|k(jω) =
2M1

Π
l=1

λl

|λl| (1−j2ωλlσ2)
1
2

exp

(
jωµ2

M2−M1+l|kλl

1−j2ωλlσ2

)
. (17)

Finally, the PDF of Z21|k is

pZ21|k(z) = F−1
{

ΦF21|k(jω)ΦG21|k(jω)
}

. (18)

The cumulative distribution function (CDF) of Z21|k is obtained from

FZ21|k(z) =
∫ z

−∞
pZ21|k

(
z′

)
dz′. (19)

The performance analysis of the natural frequency-based radar
target recognition in the frequency domain is considered in this paper.
In the scheme presented in [162], the authors set the threshold for the
classification to zero. In this paper, we propose to change the threshold
value to see what threshold value results in the maximum probability
of correct classification.

In addition, we show how to determine the optimum threshold
from the analytic PDF’s and CDF’s for two targets. For more than
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two targets, we propose how to choose a threshold value which is very
close to the optimum threshold γsimul

opt maximizing Eq. (25).
P2y should be a vector on the column space of B2 since P2y is a

projection of y onto the column space of B2. Similarly, P1y should be
on the column space of B1.

For M1 < M2, the dimension of the column space of B2 is greater
than that of the column space of B1.

Note that the ranks of B1 and B2 are M1 and M2, respectively.
For M1 < M2, the constraint that the projection should be on the
column space of B2 is less demanding than the constraint that the
projection should be on the column space of B1.

For M1 < M2, ‖P2y‖ tends to be larger and ‖P1y‖ tends to be
smaller both for y = y1 and y = y2.

‖P2y‖ gets smaller for smaller M2, and vice versa, and ‖P1y‖ gets
smaller for smaller M1, and vice versa.

The constraint that the projection should be on the column space
of B2 gets stricter resulting in smaller ‖P2y‖ as M2 gets smaller, and
vice versa. Similarly, the constraint associated with P1y gets stricter
resulting in smaller ‖P1y‖ as M1 gets smaller, and vice versa.

Prob(‖P2y‖ > ‖P1y‖) for M2 > M1 becomes larger than
Prob(‖P2y‖ > ‖P1y‖) for M2 = M1, and Prob(‖P2y‖ < ‖P1y‖) for
M2 > M1 becomes smaller than Prob(‖P2y‖ < ‖P1y‖) for M2 = M1.

What we suggest in this paper is to improve PI(γ) by defining

PI|1(γ) = Prob
((
‖P2y‖2−‖P1y‖2

)
<γ|1st target is present

)
(20)

PI|2(γ) = Prob
((
‖P2y‖2−‖P1y‖2

)
>γ|2nd target is present

)
(21)

PI(γ) =
2∑

k=1

PI|k(γ)Prob(k-th target is present)

=
1
2

2∑

k=1

(
PI|1(γ) + PI|2(γ)

)
. (22)

The simulation performance can be written as

P simul
I|1 (γ) = Prob

((
‖P2y1‖2 − ‖P1y1‖2

)
< γ

)
(23)

P simul
I|2 (γ) = Prob

((
‖P2y2‖2 − ‖P1y2‖2

)
> γ

)
(24)

P simul
I (γ) =

2∑

k=1

P simul
I|k (γ)Prob(k-th target is present)
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=
1
2

2∑

k=1

P simul
I |k (γ)

=
1
2

[
Prob

((
‖P2y1‖2 − ‖P1y1‖2

)
< γ

)

+Prob
((
‖P2y2‖2 − ‖P1y2‖2

)
> γ

)]
(25)

where ‖P2y1‖2, ‖P1y1‖2, ‖P2y2‖2 and ‖P1y2‖2 are obtained from the
Monte-Carlo simulation in the sense that the noises in y1 and y2 are
Gaussian random vectors.

By setting γ = 0 in Eq. (23) and Eq. (24), we get PI|1 and PI|2
defined in the scheme presented in [162].

4. DEPENDENCE OF PI ON γ FOR TWO TARGETS

Let PI|2(γ) be the probability of correct classification with the specified
threshold value of γ given that the second target is present and PI|1(γ)
be the probability of correct classification with the specified threshold
value of γ given that the first target is present.

The probability of correct classification with threshold value γ is
obtained from the PDF as follows:

P analy
I|1 (γ) = Prob(Z21|k < γ |k = 1)

=
∫ γ

−∞
pZ21|1(z)dz = FZ21|1(γ) (26)

P analy
I|2 (γ) = Prob(Z21|k > γ |k = 2)

=
∫ ∞

γ
pZ21|2(z)dz = 1− FZ21|2(γ) (27)

P analy
I (γ) =

2∑

k=1

P analy
I | k (γ)Prob(k-th target is present)

=
1
2

2∑

k=1

PI | k (γ) =
1
2
(FZ21|1(γ) + 1− FZ21|2(γ)) (28)

where FZ21|1(z) and FZ21|2(z) represent the CDF of Z21|k=1 and Z21|k=2,
respectively. Refer to Section 3 to see how to numerically evaluate the
PDF’s and the CDF’s of Z21|1 and Z21|2 [162].

As we change γ in Eq. (28) with respect to γ, the optimum
threshold value, γopt can be determined from the threshold value at
which PI(γ) is maximized.
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From Eq. (26) and Eq. (27), P analy
I|1 (γ) and P analy

I|2 (γ) are monotonic

increasing and decreasing functions of γ, respectively. Since P analy
I (γ)

is a sum of monotonic increasing and decreasing functions, it is quite
intuitive to see that PI(γ) tends to have a local maximum at γ = γopt.

γopt can also be analytically found by differentiating PI(γ) with
respect to γ:

d

dγ
P analy

I (γ) = 0

d

dγ

(
1
2

(
P analy

I|1 (γ)+P analy
I|2 (γ)

))
=

1
2

d

dγ

(
1−FZ21|2(γ)+FZ21|1(γ)

)

=
1
2

(
−pZ21|2(γ) + pZ21|1(γ)

)
= 0

pZ21|2(γ) = pZ21|1(γ).

(29)

Therefore, γopt can be found from γ value satisfying Eq. (29).
Let ζ1 and ζ2 denote the limit above which the values of pZ21|1

and pZ21|2 can be practically set to be zero, respectively, which can be
given, for k = 1, 2, [162]

ζk = µZ21|k + 6σZ21|k , µZ21|k > 0

ζk = −
(
µZ21|k − 6σZ21|k

)
, µZ21|k < 0.

(30)

Using Eq. (30), the range of γ over which PI(γ) should be
calculated is given by

−max(ζ1, ζ2) < γ < max(ζ1, ζ2). (31)

5. DEPENDENCE OF PI ON γ FOR THREE TARGETS

For simplicity, we assume that there are three targets. We can extend
the results to more than three targets.

For three targets, we tabulate the decision strategy for nonzero
threshold γ in Table 1: Notation I is the convention used for two
targets and Notation II and Notation III are the conventions used for
more than two targets.

Note that in Table 1, for derivation of Notation II from Notation I,
we use the fact that, for example, Z31|1 < γ is equivalent to Z13|1 > −γ
due to Z31|1 = −Z13|1. In general, Zik|k < γ is equivalent to Zki|k > −γ
because of Zik|k = −Zki|k.

If we define

tkl|k(γ) =
{

γ, k > l
−γ, k < l,

(32)
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Table 1. Decision strategy for three targets.

targets Notation I Notation II Notation III

1 2
Z21|2 > γ, Z21|2 > γ Z21|2 > t21|2(γ)
Z21|1 < γ, Z12|1 > −γ Z12|1 > t12|1(γ)

1 2
Z31|3 > γ, Z31|3 > γ Z31|3 > t31|3(γ)
Z31|1 < γ, Z13|1 > −γ Z13|1 > t13|1(γ)

1 2
Z32|3 > γ, Z32|3 > γ Z32|3 > t32|3(γ)
Z32|2 < γ, Z23|2 > −γ Z23|2 > t23|2(γ)

we get Notation III from Notation II in Table 1.
From Table 1, the probability of correct identification can be

written as

PI|1(γ) = Prob
{
Z12|1 > t12|1(γ), Z13|1 > t13|1(γ)

}
(33)

PI|2(γ) = Prob
{
Z21|2 > t21|2(γ), Z23|2 > t23|2(γ)

}
(34)

PI|3(γ) = Prob
{
Z31|3 > t31|3(γ), Z32|3 > t32|3(γ)

}
. (35)

Using Eq. (32) in Eq. (33)–Eq. (35), we have

PI|1(γ) = Prob
{
Z12|1 > −γ, Z13|1 > −γ

}
(36)

PI|2(γ) = Prob
{
Z21|2 > γ, Z23|2 > −γ

}
(37)

PI|3(γ) = Prob
{
Z31|3 > γ, Z32|3 > γ

}
. (38)

6. DEPENDENCE OF PI ON γ FOR MULTIPLE
TARGETS

Equations (33)–(35) are valid for three targets. It is straightforward
to extend Eq. (33)–Eq. (35) to more than three targets. Assume that
there are Q targets.

Assuming that the k-th target is present, the probability of correct
classification can be written as, for k = 1, . . . , Q,

PI|k(γ) = Prob
(
Zk1|k > tk1|k(γ), . . . , Zk,k−1|k > tk,k−1|k(γ) ,

Zk,k+1|k > tk,k+1|k(γ), . . . , Zk,Q|k > tk,Q|k(γ)
)
. (39)

Using Eq. (32) in Eq. (39), we have

PI|k(γ) = Prob
(
Zk1|k > γ, . . . , Zk,k−1|k > γ

Zk,k+1|k > −γ, . . . , Zk,Q|k > −γ
)
. (40)
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Zkl|k and Zlk|k are defined as

Zkl|k ≡ ‖Pkyk‖2 − ‖Plyk‖2 (41)

Zlk|k ≡ ‖Plyk‖2 − ‖Pkyk‖2 . (42)

Note that Eq. (41) and Eq. (42) are consistent with Eq. (8).
Using Eq. (41) and Eq. (42) in Eq. (40), the probability of

classification can be expressed as

PI |k(γ) = Prob
[
yHPky > yHP1y + γ, . . . ,yHPky

> yHPk−1y + γ,yHPky > yHPk+1y − γ, . . . ,yHPky

> yHPQy − γ |kth target
]
. (43)

Since evaluating Eq. (43) is quite challenging, we try to get
the upper bound and the lower bound of the probability of correct
classification.

Assuming that the correct target is the k-th target, the upper
bound and the lower bound of correct classification are given by [137]

P up
I | k (γ) = min

i6=k

{∫ ∞

tki|k(γ)
pZki|k(z)dz

}
=min

i 6=k

{
1−FZki|k(tki|k(γ))

}
(44)

P lo
I | k (γ) = max





0, 1−
Q∑

i=1
i6=k

∫ tki|k(γ)

−∞
pZki|k(z)dz





= max





0, 1−
Q∑

i=1
i6=k

FZki|k(tki|k(γ))





. (45)

where FZki|k(z) denotes the CDF of Zki|k.
Note that, the PDF’s and the CDF’s in Eq. (44)–Eq. (45) are

evaluated using the scheme in Section 4.
Simulation performance based on the Monte-Carlo simulation is

P simul
I|k (γ) = Prob

[
yH

kPkyk > yH
kP1yk + tk1|k(γ), . . . , yH

kPkyk

> yH
kPk−1yk + tk,k−1|k(γ),yH

k Pkyk>yH
kPk+1yk

+tk, k+1|k(γ), . . . ,yH
k Pkyk>yH

kPQyk + tk,Q|k(γ)
]
. (46)

The upper bound and the lower bound of correct classification,
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considering all Q targets, are given by [162]

P up
I (γ) =

1
Q

Q∑

k=1

P up
I | k (γ) (47)

P lo
I (γ) =

1
Q

Q∑

k=1

P lo
I | k (γ). (48)

Simulation performance considering all Q targets is

P simul
I (γ) =

1
Q

Q∑

k=1

P simul
I|k (γ). (49)

Using Eq. (45) in Eq. (48), we can plot P up
I (γ) as we change γ.

From the plot, we can easily identify the optimum threshold, γlo
opt, at

which P lo
I (γ) is maximized:

γlo
opt ≡ arg max

γ
P lo

I (γ) . (50)

Similarly, using Eq. (44) in Eq. (47), we can calculate P up
I (γ) for

various γ values and the optimum threshold value, γup
opt, can be found

from the threshold value at which P up
I (γ) achieves the maximum.

γup
opt ≡ arg max

γ
P up

I (γ) . (51)

7. PROCEDURE ON HOW TO DETERMINE THE
OPTIMAL THRESHOLD

7.1. Two Targets

What makes the scheme in this paper very useful in practical
implementation of radar target recognition is that the optimal
threshold γsimul

opt for practical implementation of Eq. (25) can be
calculated analytically from γ = γsimul

opt using Eq. (28) or Eq. (29).
The procedure for getting the optimal threshold for two targets

can be summarized as follows:

(i) Given σ2 of gn|k in Eq. (1), calculate γanaly
opt from γ value satisfying

Eq. (29) or γ value maximizing Eq. (28).

(ii) Use γ = γsimul
opt = γanaly

opt in Eq. (25) to get the maximum
probability of identification in practical implementation.
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The procedure is essentially based on the fact that the simulation
performance in Eq. (23), Eq. (24) and Eq. (25) do agree with the
analytic performance in Eq. (26), Eq. (27) and Eq. (28) respectively,
for all γ values in Eq. (31).

Accordingly, γ = γsimul
opt maximizing Eq. (25) can be found from

γ = γanaly
opt maximizing Eq. (28) or γ = γanaly

opt satisfying Eq. (29).
Note that the PDF’s and the CDF’s in Eq. (28) and Eq. (29) can

be analytically obtained, given the variance of σ2 of gn|k in Eq. (1).
We do not have to know specific realization of gn|k and y to get the
PDF’s and the CDF’s in Eq. (28) and Eq. (29), from which we can get
the optimum threshold γ = γanaly

opt .
That is, we do not have to perform the Monte-Carlo simulation in

Eq. (25) to get γ = γanaly
opt . γ = γanaly

opt from Eq. (28) or Eq. (29) can be
used in direct evaluation of Eq. (25) with γ = γsimul

opt = γanaly
opt via the

Monte-Carlo simulation.

7.2. Multiple Targets

For more than two targets, we can not calculate P analy
I (γ) analytically,

and only get the upper bound P up
I (γ) and the lower bound P lo

I (γ) of
the probability of classification [162]. The threshold values, at which
P up

I (γ) and P lo
I (γ) are maximized, are denoted as γup

opt in Eq. (51) and
γlo
opt in Eq. (50), respectively. We define γanaly

opt using γlo
opt and γup

opt as
follows:

γanaly
opt =

{
γlo

opt, P simul
I|1 (γlo

opt) > P simul
I|1 (γup

opt)
γup

opt, P simul
I|1 (γlo

opt) < P simul
I|1 (γup

opt)
(52)

where γlo
opt and γup

opt are obtained from Eq. (50) and Eq. (51),
respectively.

Note that γlo
opt and γup

opt should be obtained for each signal-to-noise
ratio (SNR), which results in different γanaly

opt for each SNR.

8. NUMERICAL RESULTS

We use two straight wires of length = 1.0m and 1.2m for two targets.
For three targets, the three straight wires of length = 0.8m, 1.0m and
1.2m are used.

When we only consider two targets, we compare the analytic
results in Eq. (28) with the simulation-based performance. For multiple
targets, the analytic results in Eq. (48) and Eq. (47) are compared
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1.2m (SNR = −20 dB).
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Figure 2. Dependence of pZ21|1(z), pZ21|2(z), PI|1(γ), PI|2(γ) and
PI(γ) on the value of γ for two straight wires of length = 1.0m and
1.2m (SNR = 0 dB).
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PI(γ) on the value of γ for two straight wires of length = 1.0m and
1.2m (SNR = 20 dB).



Progress In Electromagnetics Research, Vol. 135, 2013 541

with the results based on the Monte-Carlo simulation. In getting the
simulation-based performance, the probability of correct classification
is obtained from 10,000 repetitions.

The noiseless frequency response is obtained via the method
of moments (MoM). We calculated the back-scattered field. The
frequency response up to 0.5 GHz is obtained in increments of 7.8 MHz.
The incident angle for all the numerical examples is θ = 30◦. The
frequency response is inverse Fourier transformed to obtain the time
domain response.

The numbers of the natural frequencies for two targets
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Figure 4. The performance improvement at γ = γanaly
opt = γsimul

opt over
the performance at γ = 0 for two straight wires of length = 1.0m and
1.2m.

Table 2. The optimal threshold values in Fig. 4 for various SNR
values.

SNR (dB) γanaly
opt = γsimul

opt

−20 2.97× 107

−15 0.72× 107

−10 0.25× 107

−5 0.11× 106

0 −0.79× 106 < γanaly
opt = γsimul

opt < 2.95× 106

5 −1.66× 106 < γanaly
opt = γsimul

opt < 4.07× 106

10 −2.14× 106 < γanaly
opt = γsimul

opt < 4.74× 106

15 −2.39× 106 < γanaly
opt = γsimul

opt < 5.11× 106

20 −2.53× 106 < γanaly
opt = γsimul

opt < 5.35× 106
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corresponding to the frequency range up to 0.5 GHz are M1 = 6 and
M2 = 8 [162].

In Figs. 1–3, we illustrate how pZ21|1(z), pZ21|2(z), PI|1(γ), PI|2(γ)
and PI(γ) look for various SNR’s.

In Figs. 1(a)–3(a) and Figs. 1(b)–3(b), we confirm that the
analytic PDF’s pZ21|1(z) and pZ21|2(z) agree quite well with the
empirical PDF’s obtained from the histogram using Z21|1 values and
Z21|2 values in Eq. (8) from the Monte-Carlo simulation for each SNR
value. Refer to Section 3 to see how to obtain the analytic PDF’s of
pZ21|1(z) and pZ21|2(z) [162].

In Figs. 1(c)–3(c), we overlap the analytic PDF’s of Z21|1 and Z21|2
to graphically check at what γ value Eq. (29) holds. PI|1(γ) in Eq. (26),
PI|2(γ) in Eq. (27) and PI(γ) in Eq. (28) are shown in Figs. 1(d)–3(d),
Figs. 1(e)–3(e) and Figs. 1(f)–3(f), respectively. Note that γ values
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Figure 5. Analytical and simulated results as a function of γ value for
three targets (SNR = −20 dB, γanaly

opt = 1.28×107, γsimul
opt = 2.84×107).

(a) PI|1(γ), (b) PI|2(γ), (c) PI|3(γ) and (d) PI(γ).
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Figure 6. Analytical and simulated results as a function of γ value for
three targets (SNR = 0 dB, γanaly

opt = 0.15 × 106, γsimul
opt = 0.22 × 106).

(a) PI|1(γ), (b) PI|2(γ), (c) PI|3(γ) and (d) PI(γ).

maximizing Eq. (28) coincide with γ values satisfying Eq. (29) for all
SNR’s, which can be graphically checked by comparing γ value at which
the PDF’s of Z21|1 and Z21|2 in Figs. 1(c)–3(c) overlap with γ value at
which PI(γ) is maximized in Figs. 1(f)–3(f). The optimal values of the
thresholds are γanlay

opt = 2.97 × 107, −0.79 × 106 < γanlay
opt < 2.95 × 106

and −2.53×106 < γanlay
opt < 5.35×106 for SNR = −20 dB, SNR = 0dB,

and SNR = 20 dB, respectively.
For SNR = 0 dB, since pZ21|1(z) is almost zero for z > −0.79×106,

and pZ21|2(z) is nearly zero for z < 2.95 × 106, the probability of
correct classification is nearly constant for the threshold value of
−0.79 × 106 < γ < 2.95 × 106. Similarly, the optimal threshold for
SNR = 20 dB can be expressed as −2.53× 106 < γ < 5.35× 106.

It is also shown in Figs. 1(d)–3(d), Figs. 1(e)–3(e) and Figs. 1(f)–
3(f) that analytic P analy

I|1 (γ), P analy
I|2 (γ) and P analy

I (γ) show agreements
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with simulated P simul
I|1 (γ), P simul

I|2 (γ) and P simul
I (γ) for all γ values in

Eq. (31).
In Fig. 4, we illustrate how much improvement we can get by

adopting the optimal threshold γ = γanaly
opt = γsimul

opt in comparison
with γ = 0. In Table 2, the optimal threshold values are explicitly
shown. Note that the γanaly

opt value should be calculated using Eq. (28)
or Eq. (29) for each SNR value. Since we have more performance
improvement at low SNR than high SNR, the proposed scheme is
useful at low SNR. It is also shown that analytic performance shows an
excellent agreement with simulation performance at γ = γanaly

opt = γsimul
opt

as well as at γ = 0.
In Figs. 5–7, we illustrate the results for three targets. The

three targets are straight wires of length = 0.8 meter, 1.0 meter, and
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Figure 7. Analytical and simulated results as a function of γ value
for three targets (SNR = 20dB, 0.10 × 104 < γanaly

opt < 2.13 × 104,
0.10× 104 < γsimul

opt < 2.08 × 104). (a) PI|1(γ), (b) PI|2(γ), (c) PI|3(γ)
and (d) PI(γ).
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1.2 meter with M1 = 4, M2 = 6 and M3 = 8, respectively [162].
In Figs. 5–7(a), we show P simul

I|1 (γ), P up
I|1(γ) and P lo

I|1(γ) as γ

varies for various SNR values. Note that, in Figs. 5–7, the simulation
performance is actually between the lower bound and the upper bound
for all γ values:

P lo
I|k(γ) ≤ P simul

I|k (γ) ≤ P up
I|k(γ). (53)

Similarly, the results assuming that the true targets are target 2
and target 3 are shown in Figs. 5–7(b) and Figs. 5–7(c), respectively.

The results from Eq. (44) and Eq. (45) are used for an upper bound
and a lower bound in Figs. 5–7(a), Figs. 5–7(b) and Figs. 5–7(c). The
simulation performance in Figs. 5–7(a), Figs. 5–7(b) and Figs. 5–7(c)
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Figure 8. The performance improvement at γ = γsimul
opt and γ = γanaly

opt

over the performance at γ = 0 for three straight wires of length = 0.8 m,
1.0m and 1.2 m.
Table 3. The optimal threshold values for three targets.

SNR (dB) γanlay
opt γsimul

opt

−20 1.28× 107 2.84× 107

−15 0.40× 107 0.53× 107

−10 0.12× 107 0.21× 107

−5 0.40× 106 0.74× 106

0 0.15× 106 0.22× 106

5 0.05× 106 0.08× 106

10 0.03× 106 0.02× 106

15 0.01× 106 0.01× 106

20
0.10× 104 < γanlay

opt

< 2.13× 104

0.10× 104 < γsimul
opt

< 2.08× 104
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Table 4. The performance improvement at γ = γsimul
opt and γ = γanaly

opt

over the performance at γ = 0 for three straight wires of length = 0.8 m,
1.0m and 1.2 m (Numerical values).

SNR (dB) −20 −15 −10 −5 0 5 10 15 20

P simul
I

(γ = γsimul
opt )

0.44 0.43 0.43 0.44 0.47 0.58 0.77 0.97 1.00

P simul
I

(γ = γanaly
opt )

0.38 0.39 0.38 0.40 0.44 0.55 0.77 0.96 1.00

P simul
I

(γ = 0)
0.34 0.33 0.35 0.35 0.36 0.43 0.60 0.83 0.98

are obtained from Eq. (46).
The upper bound and the lower bound in Figs. 5–7(d) are obtained

from Eq. (47) and Eq. (48). The simulation performance in Figs. 5–
7(d) are from Eq. (49). γanaly

opt and γsimul
opt values are also specified in

the captions of Figs. 5–7.
In Fig. 8, we illustrate P simul

I (γ = 0), P simul
I (γ = γsimul

opt ) and
P simul

I (γ = γanaly
opt ) for various SNR values. In Table 3, we also tabulate

P simul
I (γ = γsimul

opt ), P simul
I (γ = γanaly

opt ), and P simul
I (γ = 0) in Fig. 8.

Although we get γlo
opt and γup

opt from Eq. (50) and Eq. (51),
respectively, using the PDF’s and the CDF’s without the Monte-Carlo
simulation, we can not get γsimul

opt analytically. We do have to perform
the Monte-Carlo simulation as γ value varies to see what γ value results
in the maximum P simul

I (γ).
How to choose the sub-optimal threshold without exhaustive

search over γ value is given in Eq. (50)–Eq. (52). γanaly
opt and γsimul

opt

values in Fig. 8 are indicated in Table 4. In Fig. 8, we illustrate
how close P simul

I (γ = γanaly
opt ) is to P simul

I (γ = γsimul
opt ), and how much

P simul
I (γ = γanaly

opt ) has improved in comparison with P simul
I (γ = 0).

9. CONCLUSIONS

We considered the dependence of the probability of correct
identification on the value of the threshold in the radar target
recognition using the natural frequency. We illustrated how to
determine the optimum threshold for use with the natural frequency-
based radar target recognition of two targets. For multiple targets, we
show how to determine the sub-optimal threshold.
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We extended the formulation in [162] by adopting a nonzero
threshold. How the probability of correct identification is dependent on
the threshold value is addressed by numerical evaluation of the PDF.

The derivation is validated by comparing the analytical
performance with the performance based on the Monte-Carlo
simulation. To show the agreement between the analytic results
and the simulation results for nonzero threshold value, the late time
responses of simple targets are used. The results for two targets show
that the scheme presented in this paper can be used to determine the
optimum threshold for use with the performance analysis of the natural
frequency-based radar target recognition in the time domain. For more
than two targets, we show how to choose the threshold which is very
close to the optimum threshold.
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