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Abstract—The magnetic energy and inductance of current distribu-
tions on the surface of a torus are considered. Specifically, we inves-
tigate the influence of the aspect ratio of the torus, and of the pitch
angle for helical current densities, on the energy. We show that, for a
fixed surface area of the torus, the energy experiences a minimum for a
certain pitch angle. New analytical relationships are presented as well
as a review of results scattered in the literature. Results for the ideally
conducting torus, as well as for thin rings are given.

1. INTRODUCTION

Here we investigate the inductance and magnetic energy of surface
currents on a torus, i.e., a toroid of circular cross section, also called
an anchor ring or doughnut. Since the torus is the most symmetric not
simply connected body, toroidal currents and their magnetic energy
are of great theoretical interest. A toroidal magnetic field has been
used in an experimental verification of the Aharonov-Bohm effect [1, 2].
However, the problem has also technological import in, e.g., plasma
fusion research and astrophysics. In the past, the work on toroids has
focused on the vector potential and magnetic fields of such currents [3–
15], on their inductance and energy [16–22], as well as on force free
configurations of such currents [23–27]. In particular the problem of
surface currents, either due to skin effect, or due to superconductivity
or perfect conductivity of the tori, has been investigated [28–34].

This paper is organised as follows. We first introduce the general
notation needed to describe a torus. The surface current density can
be seen as a superposition of toroidal and poloidal currents resulting
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in a helical current. The total energy is shown to be the sum of a
toroidal and a poloidal contribution. A specific class of helical curves
on a torus is proposed and the resulting current density is discussed.
The energies of such current densities are then given as integrals over
the torus surface, as functions of the aspect ratio. The case of a
purely poloidal current, the toroidal solenoid, is unique and easily
solved analytically. There is a discussion of different purely toroidal
current densities and some relevant results for them. We discuss how
the energy varies as toroidal and poloidal currents are superposed. We
focus on a few types of such toroidal surface current densities and
their energies. We then review results that have been obtained in the
literature using expansion in terms of toroidal functions. In particular
we discuss the energy minimising toroidal current distribution on an
ideally conducting torus, and in connection with this we present the
necessary background relating to toroidal coordinates. Finally the
limiting case of a thin ring is reviewed. An appendix presents general
formulas for magnetic energy and another appendix gives some torus
formulas. At the very end an appendix presents a method for removing
the Coulomb singularity in the integrations.

We aim at some completeness when it comes to presenting
mathematical expressions relevant to surface currents on a torus and
for a thin ring. While we treat the integral form of torus magnetic
energy in some detail, the results relating to expansions in terms of
toroidal functions and thin rings are presented only very briefly; for
actual derivations we refer to the quoted literature.

2. THE TORUS — GEOMETRY AND NOTATION

A toroid is a solid of revolution obtained by rotating a closed plane
curve about an axis in the plane of the curve. A torus (or anchor ring
or “doughnut”) results when the curve is a circle. We denote the radius
of the rotated circle, the minor radius, by b. The distance between the
center of the circle and the rotation axis, which we take to be the z-
axis, is the major radius c, of the torus. We put the origin at the point
on the z-axis closest to the circle. The equation for the surface of the
torus is then given by,

(
c−

√
x2 + y2

)2
+ z2 = b2. (1)

The points of a torus can also be given on parametric form as,

x = (c + β cosχ) cos ϕ,

y = (c + β cosχ) sin ϕ,

z = β sinχ,

(2)
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Figure 1. Section of torus in the xz-plane. The major radius is
denoted c, the minor radius b. The length parameter a of the toroidal
coordinates then obeys, a2 + b2 = c2, as illustrated by the right angled
triangle.

where 0 ≤ β ≤ b, −π < χ ≤ π, and 0 ≤ ϕ < 2π, so that β = b for
the points on the surface. These quantities are illustrated in Fig. 1.
The same figure shows that the line from the origin that is tangent
to the torus touches it at at a point for which the angle χ obeys,
cos(π− χ) = b/c. The distance a to this point obeys a2 + b2 = c2. We
call a the length parameter of the torus.

Below we will often use cylindrical coordinates (ρ, ϕ, z) given by,

x = ρ cosϕ, y = ρ sinϕ, z = z, (3)

ρ =
√

x2 + y2, ϕ = arctan(y/x), z = z, (4)

in terms of the Cartesian (x, y, z). Here the angle ϕ is the same angle
of rotation about the z-axis as in Eq. (2). The distance element is
ds2 = dρ2 + ρ2dϕ2 + dz2, and the metric coefficients are thus, gρρ = 1,
gϕϕ = ρ2, gzz = 1. Unit vectors in the direction of increasing ρ, ϕ, z,
β, and χ are,

uρ=cosϕux + sin ϕuy, uϕ =− sinϕux + cos ϕuy, uz =uz, (5)
uβ =cosχuρ + sin χuz, uχ = − sinχuρ + cosχuz, (6)

respectively, in terms of the Cartesian basis vectors. The Eqs. (1)
and (2) then give,

(c− ρ)2 + z2 = b2, and ρ = c + b cosχ, z = b sinχ, (7)

respectively, for a torus. The parameter form (2), with β = b, gives,

r(ϕ, χ) = cuρ(ϕ) + buβ(ϕ, χ) (8)

using (5) and (6), for the surface of the torus.
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3. MAGNETIC ENERGY FOR SURFACE CURRENT
DENSITY ON A TORUS

A surface current density on a torus is spanned by unit tangent vectors
uϕ(ϕ) in the toroidal direction, and uχ (ϕ, χ) in the poloidal direction.
The general surface current density, with toroidal symmetry, on the
torus can thus be written

J(χ, ϕ) = Jϕ + Jχ = Jϕ(χ)uϕ(ϕ) + Jχ(χ)uχ(ϕ, χ). (9)
The magnetic energy of Eq. (A7) is then

W=Wϕ + Wϕχ + Wχ (10)

=
µ0

8π

∫

∂V

∫

∂V

Jϕ(r)·Jϕ(r′)+2Jϕ(r)·Jχ(r′)+Jχ(r)·Jχ(r′)
|r− r′| dS′dS. (11)

Here the cross term Wϕχ is necessarily zero since it changes sign when
one of the current densities is reversed, and this would mean that
helical currents of different handedness had different energy. We can
therefore write,

W = Wϕ + Wχ =
µ0

8π

∫

∂V

∫

∂V

Jϕ(r) · Jϕ(r′) + Jχ(r) · Jχ(r′)
|r− r′| dS′ dS,

(12)
and discuss the two terms separately.

Using that,
uρ(ϕ) · uρ(ϕ′)=uϕ(ϕ) · uϕ(ϕ′) = cos(ϕ− ϕ′) (13)

uβ(ϕ, χ) · uβ(ϕ′, χ′)=cos χ cosχ′ cos(ϕ− ϕ′) + sinχ sinχ′ (14)
uχ(ϕ, χ) · uχ(ϕ′, χ′)=sinχ sinχ′ cos(ϕ− ϕ′) + cosχ cosχ′ (15)

uρ(ϕ) · uβ(ϕ′, χ′)=cos χ cos(ϕ− ϕ′) (16)
uϕ(ϕ) · uχ(ϕ′, χ′)=sinχ′ sin(ϕ− ϕ′), (17)

and (8), we find the expression
|r− r′|2 = |r(ϕ, χ)− r(ϕ′, χ′)|2

= 2
{
[c2 + cb(cosχ + cosχ′)][1− cos(ϕ− ϕ′)]

+ b2[1− cosχ cosχ′ cos(ϕ− ϕ′)− sinχ sinχ′]
}

(18)
for the distance between two points on the torus. Using (9) and the
scalar products above one also finds

Jϕ(r)·Jϕ(r′)=Jϕ(χ)Jϕ(χ′) cos(ϕ− ϕ′) (19)
Jχ(r)·Jχ(r′)=Jχ(χ)Jχ(χ′)[sinχ sinχ′ cos(ϕ−ϕ′)+cosχ cosχ′] (20)

Using these results one obtains definite integrals for Wϕ and Wχ of (12)
provided the functions Jϕ(χ) and Jχ(χ) are known. We next address
this question.
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4. CURRENT DENSITY FOR A CLASS OF HELICAL
TRAJECTORIES ON THE TORUS

The requirement that the poloidal current Jχ is divergence free leads
to the constraint,

Jχ(χ) =
jχc

ρ(χ)
=

jχ

(1 + δ cosχ)
(21)

where jχ is constant and where we have put,

ρ(χ) = c + b cosχ = c(1 + δ cosχ) where, δ ≡ b

c
. (22)

The poloidal energy Wχ can then be found analytically as shown below.
For the toroidal current density Jϕ(χ) there is no constraint of

this kind. We will here mainly consider a constant (χ-independent) Jϕ

and the energy minimising Jϕ(χ) of Eqs. (54) and (56) below of the
ideally conducting torus.

One possible set of helices on a torus can be defined, on parameter
form, by,

r(t) = ρ(χ(t))uρ(ϕ(t)) + b sinχ(t)uz, (23)

where, ρ(χ) is given in Eq. (22). The unit vectors are defined in Eq. (5).
The velocity along the helix, if t is time, is

ṙ(t) = v(t) = ρ(χ(t))ϕ̇(t)uϕ(ϕ(t)) + b χ̇(t)uχ(χ(t), ϕ(t)), (24)

where uχ is given in Eq. (6). To get explicit helices the angular
functions ϕ(t), χ(t), must be specified. The simplest choice
corresponds to constant angular velocities ϕ̇, χ̇, which gives,

ϕ(t) = ϕ̇t =
2πm

T
t, and χ(t) = χ̇t =

2πl

T
t, (25)

where T is the period. To get closed differentiable curves m and l
should be positive integers. A plot of such a helical curve on a torus
is shown in Fig. 2.

A current density on the torus is obtained by assuming that a
surface charge density σ is moving on the torus surface with velocity
field (24), v = ρ ϕ̇uϕ + bχ̇uχ,

J = σ(ρϕ̇uϕ + bχ̇uχ). (26)

Assuming χ̇ constant and using (22) we find that we must have
σ = σ0c/ρ, where σ0 is constant. Eq. (26) then gives the current
density

J = σ0[c ϕ̇uϕ + (c/ρ)bχ̇uχ]. (27)

Also assuming constant ϕ̇ this corresponds to a surface current density
with Jϕ = σ0cϕ̇ = constant and Jχ = jχc/ρ where jχ = σ0bχ̇ =
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Figure 2. Plot of a torus helix on a torus with major and minor radius
c = 10, b = 2, respectively. The helix has l = 19, m = 2, and pitch
angle α0 = 62.2 degrees as defined in Eq. (47).

constant. This motivates the choice Jϕ = constant mentioned above.
Note however, that while this choice is mathematically convenient it
has no deeper physical motivation.

The density corresponding to geodesic motion of the charge
carriers on the torus, or the density from a winding in which the speed
of the charge carriers in the wires are constant, would be physically
motivated. Unfortunately, these problems do not lead to tractable
formulas. Geodesics on the torus have been calculated by Irons [35]
but they have complicated expressions. Helical windings have been
considered by Bhadra [4] and by Sy [15].

5. ENERGY OF HELICAL CURRENT DENSITY AS A
FUNCTION OF TORUS ASPECT RATIO

Let us thus now consider the explicit current density,

J(χ, ϕ) = σ0

[
c ϕ̇uϕ(ϕ) +

c

ρ(χ)
b χ̇uχ(χ, ϕ)

]
. (28)

Here ρ = (c+ b cosχ) and the angular velocities are assumed constant.
We further assume that the average charge density σ0 = Q/S where Q
is the total charge carried round by the velocity field (24) and where
S = 4π2bc is the surface area of the torus (B2). If we introduce the
aspect ratio,

δ ≡ b/c, (29)
the results of Section 3 then give us

W = Wϕ + Wχ =
µ0

8π

1
(2π)4

Q2

c

[
c2ϕ̇2fϕ(δ) + b2χ̇2fχ(δ)

]
, (30)
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where,

fϕ(δ)=
∫

cos(ϕ1−ϕ2)(1+δ cosχ1)(1 + δ cosχ2) dχ1dχ2dϕ1dϕ2

∆(ϕ1 − ϕ2, χ1, χ2; δ)
(31)

and

fχ(δ)=
∫

[sinχ1 sinχ2 cos(ϕ1−ϕ2)+cosχ1 cosχ2]dχ1dχ2dϕ1dϕ2

∆(ϕ1 − ϕ2, χ1, χ2; δ)
. (32)

The integral signs here imply a quadruple integral over the domains
of the four coordinates. We have also used the shorthand notation
(ϕ = ϕ1 − ϕ2)

|r(ϕ1, χ1)− r(ϕ2, χ2)|
c

≡∆(ϕ, χ1, χ2; δ)
=
√

2×
√

(1−cosϕ)[1+δ(cosχ1+cosχ2)]+δ2(1−cosχ1 cosχ2 cosϕ−sinχ1 sin χ2) (33)
In Appendix C we discuss how this type of integral can be handled, as
regards the symmetries and the Coulomb singularity.

Defining the currents,

Iϕ =
Qϕ̇

2π
, Iχ =

Qχ̇

2π
, (34)

we can write the energy (30) as

W =
1
2
LϕI2

ϕ +
1
2
LχI2

χ (35)

with the inductances,

Lϕ =
µ0

16π3
c fϕ(δ), (36)

and,
Lχ =

µ0

16π3
c δ2fχ(δ). (37)

Here δ = b/c < 1.

6. AN EXACT RESULT FOR Lχ

For the case of a purely poloidal surface current density

Jχ(χ, ϕ) = σ0

[
bc

ρ
χ̇uχ(χ, ϕ)

]
= jχ

c

ρ
uχ, (38)

see (28), one can find an exact expression for the magnetic field from
Ampère’s law, ∮

H · dr = I, (39)
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where I is the current going through the closed path of integration.
Using the cylindrical symmetry and choosing circular paths one easily
finds that the magnetic field is (Hayt and Buck [36])

H = jχ
c

ρ
uϕ, (40)

where now ρ = c + β cosχ, inside the torus (0 ≤ β ≤ b) and H = 0
outside (b < β). We then also have B = µ0H so the energy of this
current distribution is,

Wχ =
∫

1
2
B ·HdV, (41)

where the integration is over the volume of the torus. Using the
coordinates, ϕ, χ, β defined by Eq. (2), with volume element (B3),
integration gives,

Wχ =
µ0

2
j2
ϕc2

∫ π

−π
dϕ

∫ b

0
dβ

∫ π

−π
dχ

β

c + β cosχ
, (42)

for the magnetic energy. Doing the trivial ϕ-integration, the χ
integration gives for the integral in the above formula

Intχ = 4π2

∫ b

0

β dβ

c2 − β2
= 4π2

(
c−

√
c2 − b2

)
= 4π2(c− a). (43)

This integral can also be done by means of standard results and the
final outcome is, using Iχ = Qχ̇

2π ,

Wχ =
µ0

2
j2
ϕc2Intχ =

1
2

[
µ0

(
c−

√
c2 − b2

)]
I2
χ =

µ0

2
(c− a)I2

χ (44)

The quantity inside the brackets is thus the inductance Lχ. This result
can be found in a number of texts, e.g., Grover [37], Snow [38], and
Knoepfel [39]. Snow gives the expression b2/(c +

√
c2 − b2) which is

algebraically equivalent to c−√c2 − b2 = c− a, where a is the length
parameter. None of these authors present an explicit derivation, but
one can be found in Kovetz [40]. The more recent book by Paul [41]
only gives the approximate result Lχ = (µ0/2) b2/c for a thin torus.

This also means that the function fχ defined in (32) and (37) is
given by (δ = b/c)

fχ(δ) = 16π3 1
δ2

(
1−

√
1− δ2

)
(45)

The limiting value for a thin ring is then fχ(0) = 8π3 ≈ 248.050, while
the value for b = c is 16π3.
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7. OPTIMAL HELIX PITCH ANGLE

The angle α that the current vector (28) makes with the azimuthal
(toroidal) direction (uϕ) is given by

tanα(χ) =
Jχ

Jϕ
=

bχ̇

ρϕ̇
=

b

ρ

l

m
. (46)

The angle α0 at χ = ±π/2 may be defined as the pitch angle of the
toroidal helix and is given by,

tanα0 =
b

c

l

m
= δ

χ̇

ϕ̇
, (47)

see (25). Fig. 3 shows how the energy varies with δ for different number
of turns l when bc = 1 and m = 1. The case l = 0 corresponds to a
purely toroidal current (a current loop), which has the minimum energy
of all current configurations. Now, if a poloidal current component is
introduced (l > 0), an energy minimum will be reached at a certain
aspect ratio b/c < 1. The more turns l the current makes around the
torus, the smaller the aspect ratio will be (and the thinner the torus).
Simultaneously, the cross-section area πb2 of the torus diminishes and
its solenoidal inductance is ∼ b2/c. Hence, the energy minimising
pitch angle grows, approaching 90◦, as a function of l (when m = 1),
as shown in Fig. 4.
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8. SOLUTIONS IN TERMS OF SERIES OF TOROIDAL
FUNCTIONS

The field problem is sometimes conveniently analysed in terms of
the orthogonal system of toroidal coordinates η, ψ, ϕ, which are
dimensionless and real valued in the intervals

0 ≤ η < ∞, −π < ψ ≤ π, and 0 ≤ ϕ < 2π. (48)

They are related to the Cartesian coordinates through the transforma-
tion

x=
a sinh η cosϕ

cosh η−cosψ
, y=

a sinh η sinϕ

cosh η − cosψ
and z=

a sinψ

cosh η − cosψ
, (49)

where a =
√

c2 − b2 = b sinh η is the length parameter of the particular
system and c = a coth η. The angles ψ and ϕ designate any point
on a torus, characterised by a constant coordinate η = η0. The
aspect ratio corresponding to η0 is b/c = 1/ cosh η0. Field theory in
terms of toroidal coordinates can be used as described by Moon and
Spencer [42]. Explicit solutions in terms of toroidal coordinates can be
found in Carter et al. [5], Bhadra [4], and Belevitch and Boersma [29].

The ϕ-component of the vector Eq. (A3) is given by,

∇2Aϕ − Aϕ

ρ2
= −µ0Jϕ (50)

where ∇2 is the scalar Laplacian. Expressing this Laplacian in terms
of the toroidal coordinates one can solve the above equations in terms
of series of toroidal functions for certain boundary conditions. Below
we present the solutions most relevant for our study.

8.1. Inductance for Constant Surface Current

In [5] one can find a formula for the inductance of a torus with a
constant (χ-independent) azimuthal surface current density, i.e., the
Lϕ of (36). Using Eq. (52) of their work [5] one finds for the function
fϕ of Eqs. (31) and (36) the expression,

fϕ(1/ξ) = −512π

√
(ξ2 − 1)3

ξ

∞∑

n=0

′
2

[
Q1

n− 1
2

(ξ)
]3

P1
n− 1

2

(ξ)

4n2 − 1
. (51)

Here ξ = 1/δ = c/b and the notation is from Belevitch and
Boersma [29]. The functions P1

n− 1
2

(x) and Q1
n− 1

2

(x) are associated

Legendre functions (defined for 1 < x) and
∑′ means that the term

with n = 0 is to be multiplied by 1
2 . The series converges rapidly
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current densities on a torus. The upper curve is for a constant current
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The series (51) (upper curve) and (58) (lower curve) converge rapidly
except near δ = 1.
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except very near ξ = 1. We have compared this formula with the
integral expression of Eq. (31) and found that they agree. In the plot
Fig. 5 below we compare this function with the corresponding function
fa of Eq. (64) for a thin ring.
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8.2. Current on a Ideally Conducting Torus

The problem of a current on a superconducting or perfectly conducting
torus has been treated by many authors, e.g., Fock [32]. The results
below are from Belevitch and Boersma [29]. Here we consider a such a
torus without external magnetic field. In this case the magnetic flux Φ
through the torus is conserved, and the current flows on the surface of
the torus in such a way that the internal magnetic field is zero and the
magnetic energy is minimised. This means that the vector potential
inside and on the surface of the torus is

A =
Φ

2πρ
uϕ. (52)

Outside the torus one then finds (A = Aϕuϕ),

Aϕ(η, ψ)=
4Φ
π2c

[
coshη−cosψ
2(1− ξ−2)

]1
2
∞∑

n=0

′Q1
n−1

2

(ξ)P1
n−1

2

(cosh η) cos(nψ)

(4n2 − 1)P1
n− 1

2

(ξ)
. (53)

The current density is given by,

jϕ(ψ) =
−Φ√

2π2µ0b2

[
ξ − cosψ

ξ2 − 1

] 3
2
∞∑

n=0

′
cos(nψ)
P1

n− 1
2

(ξ)
. (54)

The total current by

Iϕ =
Φ

µ0b

1
ξ


 1

π2

ξ√
ξ2 − 1

∞∑

n=0

′ −4 Q1
n− 1

2

(ξ)

(4n2 − 1)P1
n− 1

2

(ξ)


 . (55)

The normalised current density jϕ/Iϕ as a function of χ, using,

ψ(χ) = arccos
(

ξ cosχ + 1
cosχ + ξ

)
, (56)

is plotted for b = 1 and various values of ξ = c/b in Fig. 7. It is clear
that the current becomes increasingly concentrated on the inner radius
of the torus as the major radius c approaches the minor radius b. This
was pointed out by Tayler [21] in 1960, who found that for aspect ratio
ξ = 3 the current density on the inside is 8 times greater than on the
outside. Formulas (54)–(56) give jϕ(χ = π)/jϕ(χ = 0) = 8.059984 for
ξ = 3, b = 1, in good agreement with Tayler.

Finally the inductance is given by

Lϕ(ξ) = µ0c


 1

π2

ξ√
ξ2 − 1

∞∑

n=0

′ −4Q1
n− 1

2

(ξ)

(4n2 − 1)P1
n− 1

2

(ξ)



−1

. (57)
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Figure 7. The normalised current density Jϕ(χ) = jϕ(ψ(χ)) on the
superconducting torus as a function of χ which is zero on the outside
of the torus and π on the inside. The current peaks on the inside.
The values of ξ shown are c/b = ξ = 1.1, 1.3, 2.0, 5.0, 100, the slowly
varying curves corresponding to the larger ξ.

This means that the function defined in (36) is given by (ξ = 1/δ)

fϕ(δ) =
16π3

µ0c
Lϕ(ξ). (58)

A plot of this function can be found in Fig. 5.

9. INDUCTANCE OF THIN RING

The inductance for an azimuthal current in a thin ring of radius c
with circular cross section of radius b is given by a number of authors.
Different texts, however, give different expressions and different ranges
of validity of their formulae. Here we try to summarise and harmonise
the various expressions. We also indicate their accuracy by comparing
them with numerical or exact results.

Several texts give the inductance in question as,

La = µ0c

(
ln

8c

b
− 7

4

)
. (59)

The derivation can be found in Becker [43] or in Landau and
Lifshitz [44]. The number 7/4 is valid for a homogeneous current
distribution in the circular cross section. If the current is a constant
surface current in the ring shaped cross section of the torus surface
Becker’s derivation can be modified and one finds instead,

La = µ0c

(
ln

8c

b
− 2

)
, (60)
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a result which some sources present as the inductance of a thin
ring. Essén ([45], Appendix) derives the inductance of a thin
ring as the limit of many charged particles moving in a circle
and finds a discrepancy between results derived from Neumann’s
Formula (A7) and a corresponding one derived using the Darwin
Lagrangian approach.

More accurately the handbook by Cohen [46] gives for a thin
(c > 5b) ring,

La = µ0c

(
ln

8c

b
− 2 + µrg(λ)

)
, (61)

where µr is the relative permeability and g(λ) is a function which is
0.25 = 1/4 for large skin depth and decreases to zero with vanishing
skin depth. Large skin depth and µr = 1 corresponds to (59) while the
limit of small penetration gives (60). Frank and Tobocman [47] give,

La = µ0c

(
ln

8c

b
− 2 +

µr

4

)
, (62)

in agreement with (59) when µr = 1 and with (60) when µr = 0 (no
interior magnetic field). One of very few authors that go beyond the
thin ring approximation is Snow [38], who derives the ring inductance,

La = µ0c

{[
1 +

2γ + 1
8

(
b

c

)2
]

ln
8c

b
− 7

4

+
(γ − 1)

(
γ − 2

3

)

16

(
b

c

)2

+O
[(

b

c

)3

ln
c

b

]}
, (63)

assuming an azimuthal current density inside the ring with Jϕ ∼ ργ for
arbitrary γ. The notation indicates that the result is accurate to order
δ3 ln(1/δ). For the case γ = −1 this formula has also been derived by
Haas [17].

Taking (60) as the most relevant result in the present study implies
that the function corresponding to fϕ of Eqs. (31) and (36) is

fa(δ) = 16π3 [ln(8/δ)− 2] . (64)
For a graph indicating its accuracy, see Fig. 5 above. The functions f
corresponding to (63) of Snow are,

fγ(δ) = 16π3

{[
1 +

2γ + 1
8

δ2

]
ln

8
δ
− 7

4
+

(γ − 1)
(
γ − 2

3

)

16
δ2

}
. (65)

These are plotted in Fig. 8.
Very good analytical approximations to the functions (51)

and (58) can be constructed by starting from (65). One must first
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Figure 8. Plot of the functions fγ of Eq. (65) giving the inductance
for current densities ∼ ργ in a thin ring. The top curve corresponds to
γ = 1, the middle one to γ = 0, and the bottom curve to γ = −1. Note
that the γ-ordering here is the same as in Fig. 6 for surface currents.

replace −7/4 by −2 and then fit the parameter γ to make the curve
optimal in some way. Such an analytical expression together with the
analytical results of Section 6 facilitates the study of the energy of
various helical current distributions on the torus.

10. CONCLUSIONS

In this article we have attempted to organize coherently results from
a large and confusing literature on the inductance for surface currents
on a torus. Helical winding of a torus is found to be analytically non-
trivial, even in the limit of dense winding. Some results can only be
obtained by numerical integration, but even then it is important to use
symmetry and qualitative features of the problem to one’s advantage.
The Coulomb singularity is one of these features. There are careful
treatments of the problem using field theory for toroidal coordinates
scattered in the literature, but these do not refer to each other and
seem to have been done completely independently. We therefore think
that the review of these given here should be of value. Even for the
case of thin rings there is a large literature and results sometimes do
not seem to agree. We try to summarise the reasons for these apparent
discrepancies above.
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APPENDIX A. GENERAL RESULTS FOR MAGNETIC
ENERGY

Here we present some general formulas and definitions relating to
magnetic energy. More detailed results on magnetic energy and current
density can be found in Fiolhais et al. [48].

The electrodynamic field equations are

∇×H = J, (A1)
∇ ·B = 0, (A2)

where B = µ0H is the magnetic flux density (or induction), H the
magnetic field, µ0 the permeability of vacuum and J, the surface
current density made up by the drifting particles. In view of (A2), B is
expressed by means of the divergenceless (Coulomb gauge: ∇ ·A = 0)
vector potential A through B = ∇×A. Since

∇× (∇×A) = ∇(∇ ·A)−∇2A, (A3)

(A1) yields,
∇2A = −µ0J, (A4)

the solution of which is the well-known expression

A(r) =
µ0

4π

∫

∂V

J(r′)
|r− r′|dS′, (A5)

where dS′(r′) is the surface element and ∂V , the entire surface of
the torus. The divergence of (A5) is zero. The magnetic energy W
associated with a current J is the volume integral of the energy density
of the field 1

2B ·H. On account of Gauss’ law we can further write

W =
1
2

∫

V
∇×A ·H dV =

1
2

∫

V
∇×H ·AdV. (A6)

Use of (A1) and (A5) then finally gives

W =
1
2

∫

∂V
J ·AdS =

µ0

8π

∫

∂V

∫

∂V

J(r) · J(r′)
|r− r′| dS′ dS. (A7)

The last expression gives Neumann’s formula [49] for the inductance L
through

W =
1
2
LI2, (A8)

where I is the net current.
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APPENDIX B. TORUS TERMINOLOGY, AREA AND
VOLUME

Referring to the parameterisation in Eq. (2) and Fig. 1, only a torus
for which c > b is really a ring, and such a torus is called a ring torus.
The degenerate case when b = c is called a horn torus [50]. Here we
are not interested in the case c < b (spindle torus) when the surface
intersects itself. The surface area element of the torus in terms of the
coordinates χ, ϕ, defined in Eq. (2) with β = b, is

dS = bρ(χ)dϕdχ = b(c + b cosχ)dϕdχ. (B1)

For the torus surface area S one finds,

S =
∫

∂V
dS = 4π2bc. (B2)

To get the volume we must integrate over all points inside the torus
(0 ≤ β ≤ b) and we again use the parametrization of (2). The volume
element is then

dV = β(c + β cosχ)dϕdχdβ (B3)

Using this we obtain,

V =
∫

V
dV = 2π2b2c, (B4)

for the volume of the torus.

APPENDIX C. HANDLING THE COULOMB
SINGULARITY IN THE INDUCTANCE INTEGRALS

Straightforward numerical integration is often the fastest way to
quantitative results for integrals. When there is a Coulomb singularity,
however, the straightforward method usually have trouble with
convergence. Here we indicate how the Coulomb singularity can be
handled.

We first note that the double integration over the torus surface
that is implied in the Eqs. (31) and (32) can be simplified by noting
that,

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

∫ 2π

0
dχ1

∫ 2π

0
dχ2 g(ϕ1 − ϕ2, χ1, χ2)

= 2π

∫ 2π

0
dϕ

∫ 2π

0
dχ

∫ 2π

0
dξ g(ϕ, χ + ξ, ξ), (C1)

where the coordinate transformations (ϕ = ϕ1 − ϕ2, ψ = ϕ2, χ =
χ1 − χ2, ξ = χ2) of Fig. C1 have been employed. The integration over
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Figure C1. Since the functions involved in our induction integrals are
periodic, with period 2π, in the variables ϕ1, ϕ2, χ1, χ2 one can change
the integration over these to integration over ϕ = ϕ1−ϕ2, ψ = ϕ2 with
0 ≤ ϕ, ψ < 2π, as indicated in the figure above. Analogously for χ1,
χ2 we put χ = χ1 − χ2, ξ = χ2.

ϕ2 = ψ is trivial since it does not appear in the integrand. Here, and
below, we put χ2 = ξ.

We now note that the distance expression, ∆ of Eq. (33), in the
denominator or the integrals can be written,

∆2 = 2 ([1− cosϕ] {1 + δ[cos(χ + ξ) + cos ξ]}
+δ2[1− cos(χ + ξ) cos ξ cosϕ− sin(χ + ξ) sin ξ]

)

≈ (1 + δ cos ξ)2ϕ2 + δ2χ2 + . . . (C2)

when squared. The approximation of the last line is valid for small ϕ
and χ.

Our integrals of type (C1) can now be written by subtracting and
adding a function with identical behavior at the singularity. One finds;

2π

∫ 2π

0
dϕ

∫ 2π

0
dχ

∫ 2π

0
dξ g(ϕ, χ + ξ, ξ)

≡ 2π

∫ 2π

0
dϕ

∫ 2π

0
dχ

∫ 2π

0
dξ

h(ϕ, χ + ξ, ξ, δ)
∆(ϕ, χ + ξ, ξ; δ)

(C3)

= 2π

∫ π

−π
dϕ

∫ π

−π
dχ

∫ 2π

0
dξ

[
h(ϕ,χ+ξ, ξ,δ)
∆(ϕ,χ+ξ, ξ;δ)

− h(0, ξ, ξ,δ)√
(1+δ cos ξ)2ϕ2+δ2χ2

]
(C4)

+2π
∫ 2π

0
dξ F (ξ, δ) (C5)

where,

F (ξ,δ)=h(0, ξ, ξ, δ)
∫ π

−π
dϕ

∫ π

−π
dχ

1√
(1 + δ cos ξ)2ϕ2 + δ2χ2
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=h(0,ξ,ξ,δ)2π

[
1

(1+δcos ξ)
ln

(√
δ2+(1+δcos ξ)2+(1+δcos ξ)√
δ2+(1+δcos ξ)2−(1+δcos ξ)

)

+
1
δ

ln

(√
δ2 + (1 + δ cos ξ)2 + δ√
δ2 + (1 + δ cos ξ)2 − δ

)]
. (C6)

The integral over the Coulomb singularity in (C5) can thus be made
analytically, as shown in Eq. (C6), while the integral (C4) is non-
singular.
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