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Abstract—The single mode condition of rectangular waveguides
is derived by using a simple ray-optics approach, which relies on
geometrical ray tracing principles as in classical optics. Light
propagation through such a waveguide can be approximately simplified
as reflections within two planes of incidence. By employing the mode
equations for different polarizations, a relation that shows the single-
mode cut-off as a function of the waveguide dimensions is readily
obtained.

1. INTRODUCTION

Optical waveguides with a wide variety of shapes have been studied
during the past decades [1–16]. As one of the most basic structures
among them, rectangular waveguides undoubtedly attracted the
attention of early researchers. An analytical solution for the modal
dispersion problem in a rectangular core guiding structure was first
given by Marcatili [2] as early as 1969. He solved Maxwell’s equations
mathematically by way of separation of variables. In the same year,
Goell [17] presented his circular harmonic computer analysis. Other
approaches such as Knox and Toulios’ [18] equivalent-index method,
Yeh’s [19] finite-element method, and Jain’s [20] variational method
have appeared later to solve the problem in different ways. However,
all these techniques above analyze modes by a physical-optics method,
which involves complex algebraic or differential calculation but does
not give an explicit solution for the single mode condition of rectangular
dielectric waveguides. The purpose of this paper is to present a
convenient ray-optics method to determine the single mode condition
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for rectangular waveguides. The analytical solution in this paper
is extended from the ray-optics theory of planner waveguide, and
optical modes are therefore described in a more visualized and less
complicated way. We are using the same approximation as Marcatili,
which turns out to be very good for all the cases we looked at. We
finally give the theoretical cut-off dimension curves for specific single
mode waveguides, and compare our results with computer simulations
obtained with a fully-vectorial mode solver.

2. THEORY

As an introduction, we will look at the 2-D waveguide first before we
discuss the 3-D waveguide. A particular ray pattern within a slab
waveguide is depicted in Fig. 1. According to the ray-optics theory
based on classical optics, if light undergoes a constructive interference
when propagates through a slab waveguide, the total phase change for
a guided wave that bounces once between the two interfaces must be
a multiple of 2π [21], expressed as

2k0n1d sin θ − 2ϕ12 − 2ϕ13 = 2mπ, m = 0, 1, 2, . . . (1)
where m is the mode number, ϕ12 and ϕ13 are the phase changes
suffered upon the total internal reflection at the interfaces. Values for
the two polarizations are:





TE modes: tanϕ12 =

√√√√1−
(

n2
n1

)2

sin2 θ
− 1 (2)

TM modes: tanϕ12 =
(

n1

n2

)2

√√√√1−
(

n2
n1

)2

sin2 θ
− 1 (3)

Figure 1. Optical ray pattern within a planar waveguide: n1, n2, n3

are the refractive indices of the core, substrate and cladding, d is the
thickness of the core region, θ is the angle of reflection with respect to
the z direction.
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Each allowed mode has a corresponding effective index, defined as

neff = n1 cos θ (4)

Only when n2 ≤ neff ≤ n1, mode is well confined in the core
region. So for a slab waveguide, the critical condition of guided modes
would be (assuming n2 ≥ n3)

neff = n2 (5)

Now let us consider the light propagation in a 3-D rectangular
waveguide. The basic configuration to be studied is shown in
Fig. 2. Accordingly, light within such a core guiding structure can
be characterized by values of (θ, α) [Fig. 3(a)]. A ray propagating in a
spiral-like fashion can therefore be decomposed to be two zig-zag paths
within different planes of incidence.

Figure 3(a) shows the reflection at the top- and bottom interfaces.
AO is the actual ray, with a unique set of values for (θ, α). (π

2 − θ)
indicates the incident angle within the incident plane AOC, α is the
angle between plane AOC and z direction (BO). Fig. 3(b) illustrates
the reflection between the left- and right interfaces. (π

2 − θ′) indicates
the incident angle within the incident plane AOD. Accordingly, the
effective index is defined as

neff = n1 cos θ cosα (6)

As shown in Fig. 2, the two angles of incidence have a relation as

sin θ′ =
AD

OA
=

BC

OA
=

OC · sinα

OC/ cos θ
= sin α · cos θ (7)

From Eq. (1), the constructive interference conditions at the
horizontal and vertical boundaries result in:

Figure 2. Cross section for a typical rectangular waveguide: w, h are
the width and height of the core region.
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{
k0n1h sin θ = mπ + ϕ12 + ϕ13, m = 0, 1, 2, . . . (8)

k0n1w sin θ′ = nπ + 2ϕ13, n = 0, 1, 2, . . . (9)

Next we will consider the propagation characteristics of the modes.
While there is a clear definition of TE and TM modes for 2-D
waveguides, for 3-D rectangular waveguides, a definition of Ex

pq, Ey
pq

modes is more useful. In rectangular waveguides, two families of optical
modes, noted as Ex

pq and Ey
pq modes, are strongly polarized along the x

and y direction, respectively [22]. The Ex
pq modes (p, q = 1, 2, 3 . . .; p

and q denote the number of antinodes of the electric field in the x and
y direction, respectively), where the electric field is polarized mainly
along the x direction, are equivalent to TE modes in Fig. 3(a) and TM
modes in Fig. 3(b). According to Eqs. (2), (3), (8), (9), Ex

pq (also noted
as Ex

m+1,n+1, m, n = 0, 1, 2 . . .) mode can be expressed as:




k0n1h sin θ=mπ+tan−1

√√√√1−
(

n2
n1

)2

sin2 θ
−1+tan−1

√√√√1−
(

n3
n1

)2

sin2 θ
−1 (10)

k0n1w sin θ′ = nπ + 2 tan−1




(
n1

n3

)2

√√√√1−
(

n3
n1

)2

sin2 θ′
− 1


 (11)

(a) (b)

Figure 3. Ray pattern in a rectangular waveguide. (a) Reflection
between the horizontal boundaries. (b) Reflection between the vertical
boundaries.
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Similarly, Ey
pq modes, for which the dominant electric field is along

the y direction, can be taken as TM modes in Fig. 3(a) and TE modes
in Fig. 3(b). Therefore we get:





k0n1h sin θ=mπ+ tan−1


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(
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n2

)2

√√√√1−
(
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)2

sin2 θ
− 1




+ tan−1


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(
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sin2 θ
− 1
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 (12)

k0n1w sin θ′ = nπ + 2 tan−1

√√√√1−
(

n3
n1

)2

sin2 θ′
− 1 (13)

We thus get the mode Eqs. (10), (11), (12), (13), with which the
problem of the single mode condition can be solved. It should also be
mentioned that the single mode condition is the same as the cut-off of
the first higher order modes — Ex

21, Ex
12, Ey

21 and Ey
12, so once these

modes meet the critical condition (assuming n2 > n3)

neff = n2, (14)

they cannot be supported by the waveguide anymore. It should be
noted that Eq. (14) is obtained by extending from the 2-D waveguide
case (Eq. (5)). To be specific, when we have a mode that has a neff

which is approaching the refractive indices of the surrounding materials
(here we have n2 > n3, so we use n2) it is equivalent to having no
dielectric boundary, and therefore there is no confinement for the mode.

Take the cut-off condition of Ex
21 mode for example, substituting

m = 1 into Eq. (10) we can obtain θ from a given value of height (h),
then the angle θ′ can be calculated from Eqs. (6), (14), (7), finally we
take θ′ and n = 0 into Eq. (11) to get the corresponding width (w).
That is how we plot a curve for the cutoff dimension of the Ex

21 mode.
Cutoff conditions of Ex

12, Ey
21 and Ey

12 can be worked out in the same
manner.

3. RESULTS AND DISCUSSION

Theoretical results of single mode conditions for polymer and silicon
waveguides with rectangular cross-section are plotted together with
computer simulations obtained with the vectorial mode solver MODE
from Lumerical Solutions Inc. [23] in Fig. 4. The regions above the



86 Song and Leonhardt

(b)

(c)

(a)

Figure 4. Single mode conditions for (a) Amorphous Polycarbonate
(APC) waveguide on glass substrate: n1 = 1.558, n2 = 1.5188,
n3 = 1; (b) APC waveguide on glass substrate with Poly (methyl
methacrylate) (PMMA) cladding: n1 = 1.558, n2 = 1.5188, n3 = 1.49;
(c) Si waveguide on SiO2 substrate: n1 = 3.48, n2 = 1.44, n3 = 1.
The curves represent the analytical calculation, the points are the
simulation results. (The regions below the curves/points define the
parameters for single-mode propagation).

curves/points give the dimensions that are able to guide the first
higher order modes. The regions beneath the curves/points indicate
dimensions that support single mode propagation.

It should be noted that this ray-optics approach is based on the
approximation that the mode is confined to the core region (with
evanescent field in areas with n2, n3, n4 and n5 in Fig. 5), completely
ignoring the four corner areas (shaded area in Fig. 5), which are
taken into account in physical optics. In practice, this is the main
difference between the ray and the fully-vectorial methods. Fig. 4



Progress In Electromagnetics Research, Vol. 135, 2013 87

Figure 5. Rectangular waveguide geometry for a general analysis.

shows a very good agreement between the theoretical and simulated
results, indicating the validity of our approximation. So when very
high precision is not required, the ray-optics approach is a much
more convenient method to determine the waveguide dimensions for
single mode operation. Especially, from the equations above, we
can quickly obtain the theoretical curve, while the simulations only
deal with a very limited number of points. Taking Fig. 4(a)) as
an example, the theoretical data take only 30 seconds to generate,
however, for the simulated points, it takes 3 days of computing time
using a standard desktop computer. By studying the mode equations,
it is mathematically proven that greater n2 and smaller n3 values lead
to larger single mode cut-off dimensions, which are desirable for the
convenience of manufacturing in most of the cases.

While in this paper only the more common structures of
rectangular waveguides have been used to clarify the ray method, for
the general case [Fig. 5], in which we have different values for n3, n4,
n5, the ray method in a slightly modified version will be valid as well.

4. CONCLUSION

In this paper, we have demonstrated that ray-optics approach is
applicable to calculate the single mode conditions of rectangular
waveguides much faster than can be done with the physical-optics
methods. It also provides a visualized-oriented method to understand
the light propagation through 3D waveguides, and the necessary
approximation still leads to results that are in very good agreement
with our fully-vectorial computer simulations.
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