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Abstract—Current automotive electromagnetic compatibility (EMC)
standards do not discuss the effect of the driving profile on real
traffic vehicular radiated emissions. This paper describes a modeling
methodology to evaluate the radiated electromagnetic emissions of
electric motorcycles in terms of the driving profile signals such as
the vehicle velocity remotely controlled by means of a CAN bus. A
time domain EMI measurement system has been used to measure
the temporal evolution of the radiated emissions in a semi-anechoic
chamber. The CAN bus noise has been reduced by means of
adaptive frequency domain cancellation techniques. Experimental
results demonstrate that there is a temporal relationship between the
motorcycle velocity and the radiated emission power in some specific
frequency ranges. A Multilayer Perceptron (MLP) neural model has
been developed to estimate the radiated emissions power in terms of
the motorcycle velocity. Details of the training and testing of the
developed neural estimator are described.

1. INTRODUCTION

In the next 50 years, the global population is expected to increase from
6 billion to 10 billion and thus the number of vehicles is estimated
to increase from 700 million to 2.5 billion. If all these vehicles are
propelled by internal combustion engines, where will the oil come from?
And where should the emissions be disseminated? Answers to these
questions impose people to strive for sustainable road transportation
for the 21st century [1]. In a world where energy conservation and
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environment protection are growing concerns, the development of
electric vehicles has achieved an accelerated pace.

There are serious EMC problems in electric vehicles. A
systematic model to analyze conducted interferences of the electric
drive system has been presented in [2]. EMC issues related to
the integration of an electric drive system into a conventional
passenger car were investigated in [3]. Implementation difficulties
encountered when measuring radiated electric and magnetic field
emissions of experimental electric vehicles in the range 9 KHz to
30MHz were described in [4]. Some electromagnetic interference (EMI)
measurements including electric as well as magnetic field in two electric
cars and a bus have been presented in [5]. Methods to control EMI
noise generated in electric vehicle drive systems were studied using an
electric vehicle prototype in [6].

There are several published works related to noise cancellation
techniques in the EMC field. A noise cancellation method for
estimating a specific signal with the existence of background noise
of non-Gaussian distribution was presented in [7]. Also, an SVD
based noise-reduction technique to improve the accuracy of radar
target recognition was introduced in [8]. Besides, A Hidden Markov
Model based meter self-noise cancellation method for Electromagnetic
measurements has been proposed in [9]. Furthermore, ambient
noise cancelation in TDEMI measurements has been investigated and
applied in [10]. Moreover, hardware implementation of a real-time
FPGA-based ambient noise cancellation system for EMI measurements
in time domain has been developed in [11].

Artificial neural networks (ANNs) have been exploited in different
EMC problems such as detection and identification of vehicles based on
their unintended radiated emissions [12], target discrimination [13, 14],
calculation of multilayer magnetic shielding [15], estimating PCB
configuration from EMI measurements [16], characterization and
modeling of the susceptibility of integrated circuits to conducted
electromagnetic disturbances [17], recognition and identification of
radiated EMI for shielding apertures [18], prediction of electromagnetic
field in metallic enclosures [19], adaptive beamforming [20, 21], PAD
modeling [22], and detection of dielectric cylinders buried in a lossy
half-space [23]. This paper takes advantage of MLP neural networks
to model and estimate motorcycle’s radiated emissions in terms of the
registered velocity.

The Electronics Department at the University of Alcala (UAH),
in collaboration with the Thermal Engines Group of the ETSII-
UPM in Madrid and the Research Center for Environmental Energy
and Technology (CIEMAT) in Madrid developed an electronic
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measurement equipment to relate the driver activity, vehicle state and
road conditions with vehicular emissions (gases and particles) in real
traffic conditions [24]. This was the starting point to extend the study
to radiated emissions of electrical vehicles in this work.

The rest of the paper is arranged as follows: Section 2 illustrates
the motivation and context of this work. Section 3 points out the
measurement methodology followed in this paper. Neural model
development details are discussed in Section 4. Section 5 is devoted
to experimental results. Finally the sixth section includes conclusions
and future works.

2. DRIVING PROFILE AND VEHICULAR RADIATED
EMISSIONS

Consequences of the driving profile on real traffic vehicular radiated
emissions are not analyzed in currently available automotive EMC
standards like CISPR 16-2-3. The driving profile can be described by
various parameters such as: vehicle velocity, linear acceleration, frontal
inclination, regime engine, following distance, relative lane position,
yaw angle, as well as position of throttle, clutch, and brake pedals [16].

In order to study the effect of the driving pattern on the
corresponding radiated emissions of an electric vehicle in real traffic,
experiments have to be carried out registering the driving profile
signals as well as the corresponding radiated emissions of the vehicle
under test (VUT). The problem isn’t straightforward; because in real
traffic, it is not possible to fix an onboard antenna to receive the
radiated emissions due to the VUT only. This is because, this onboard
antenna would receive radiated electromagnetic signals from other
various sources like: radiated emissions due to other vehicles, Wifi,
radio and television broadcast, mobile networks, satellite networks,
Bluetooth devices, GPS, high voltage towers, . . . etc.. Mainly for this
reason, but also for the size and weight of the required antennas for this
purpose, it’s impossible to measure the real traffic vehicular radiated
emissions due to a specific VUT. However, a lot of the signals related
to the driver behavior can be easily measured by means of the vehicle’s
electronic system. Thus, the development of a model that would be
able to estimate real traffic vehicular radiated emissions in terms of the
corresponding driving profile signals would be a novel work. In this
way, the relative change of the real traffic radiated emissions due to
the driving pattern parameters can be quantified. Therefore, guidelines
can be determined in order to ensure green driver behavior in terms of
minimization of radiated electromagnetic interferences.

In order to tackle with this objective, authors propose a process of



234 Wefky et al.

three main stages as shown in Fig. 1. Firstly, tests with the vehicle in a
semi-anechoic chamber have to be done measuring some driving profile
signals as well as the corresponding radiated emissions. Secondly,
artificial neural networks should be exploited to develop the desired
model using data registered from the previous stage. Finally, real
traffic experiments have to be done registering only the driving profile
signals that would be simultaneously applied to the obtained model
estimating the real traffic radiated emissions.

Figure 1. Complete process for estimating real traffic vehicular
radiated emissions in terms of the driving profile.

As a first trial, the authors presented a measurement methodology
of the radiated emissions of electric vehicles as well as the driving
behavior [25]. This methodology is based on frequency domain
EMI measurement procedure where a spectrum analyzer has been
used to make sweeps of the radiated emissions signal without the
capability of noise cancellation. In this paper, the authors propose a
TDEMI measurement system employing an adaptive noise cancellation
technique based on neural networks.

This paper describes the methodology and the obtained results of
the first two stages of the complete process described in Fig. 1. That
is, the velocity measurement of an electric motorcycle simultaneously
with the corresponding radiated emissions in a semi-anechoic chamber.
The motorcycle’s speed has been controlled by a CAN bus connecting
the motorcycle with a remote laptop outside the chamber. Adaptive
noise cancellation techniques have been exploited to cancel out the
electromagnetic noise due to the CAN bus. Once these data are
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obtained, an MLP neural network is designed to model and estimate
the electromagnetic emissions due to electrical vehicle under test
operating in urban or interurban circuits.

3. METHODOLOGY

The key aspects of the methodology to evaluate the effect of the driving
profile on the radiated electromagnetic emissions, based on TDEMI
measurement, are shown in Fig. 2. EMI signals are captured by
biconical antennas, filtered by anti-aliasing low pass filters, sampled
as well as quantized by a digital oscilloscope, and sent to the PC’s
USB port via the GPIB/USB converter to be saved in a database
for offline processing. The previous scenario is repeated until all the
time domain records are saved in the PC’s database. At the end
of the experiment, the noise cancelation algorithm is applied. Then,
spectra of the noisy, filtered, and CAN bus noise signals are computed
via DFT. The measurement procedure is general, but an anti-aliasing
filter with 32 MHz cutoff frequency has been used in this work; so the
experimental results have been obtained up to 32MHz range.
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Figure 2. Block diagram of the proposed TDEMI measurement
system.

The simultaneous registration of two antennas allows the off-line
noise cancellation according to the adaptive noise cancellation theory.
According to Fig. 2, antenna 1 is responsible for receiving the emissions
of the VUT as well as the CAN bus noise, and antenna 2 captures only
the CAN bus noise correlated with the noise component in the signal
received by antenna 1. The frequency range of interest in the study
must be covered by the antennas’ bandwidth.

The following parameters of the oscilloscope have to be properly
adjusted: sampling time Ts (or the sampling frequency Fs), capture
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time Tc (i.e., duration of the time domain record of the oscilloscope),
and recording time Tr (or the recording frequency Fr) [26, 27]. In this
work, the EMI signals were sampled at 125 MHz, a 100µs capture time
has been selected, and a 250 ms recording time has been used.

Adaptive filtering techniques exploit the correlation between the
noise component in the noisy EMI signal received by antenna 1, as can
be seen in Fig. 2, and the reference noise signal received by antenna 2 to
extract the EMI signal of the VUT. In this paper, a frequency domain
FIR adaptive filter using the DFT filtering algorithm has been used.
The filter’s length is 4000 and the step size is 0.01. These parameters
gave the best performance in terms of noise suppression.

Figure 3 includes two photos of a real test inside the semi-anechoic
chamber of the University of Alcala in Spain. The overall system has
been calibrated against a periodically calibrated spectrum analyzer
(ESIB26) measuring a square waveform; because a square waveform
theoretically has many odd harmonics; consequently covering all the
measurement range. It’s noteworthy that the absolute measurement
accuracy is not a key point in this work; because the authors are
interested in evaluating the relative change of the radiated emissions
due to the driver behavior.

CAN Bus

Isolating Electromagnetic Material

CAN Bus

(a) (b)

Figure 3. Real photos of the measurement setup in the semi-anechoic
chamber. (a) Isolating material and antenna 2. (b) Motorcycle and
antenna 1.

4. NEURAL MODEL DEVELOPMENT

Various neural networks are available for function approximation. An
MLP neural network, with “tansig” hidden neurons and linear output
neurons, trained with backpropagation is chosen in this work because
of its many useful function approximation properties [28]. It can
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efficiently learn large data sets as compared to RBF and GRNN
networks. Moreover, it has a relatively simple structure as compared
to recurrent networks; where it doesn’t contain neither delay elements
nor feedback connections. Besides, the back-propagation training
algorithm is already implemented in well-known software tools such as
Matlab. And finally, an MLP network with sufficient hidden neurons
can satisfy the universal approximation property [29].

Concerning the data preparation task, the early stopping
technique is used to improve the generalization performance. In this
technique the entire normalized data set has been divided randomly
into training (80%), validation (10%), and testing (10%) subsets. The
validation subset is employed during the training phase by monitoring
the validation set error. It normally decreases during the initial phase
of the training, as does the training set error. However when the
network begins to over-fit the data, the validation set error begins to
rise [30]. When it increases for 10 iterations, training stops and the
network parameters are returned to the minimum validation set error
state. The testing subset isn’t used during training but the testing set
error helps to compare different models based on the generalization
performance.

Since the basic back-propagation learning algorithm is too slow
for most practical applications, there have been extensive research
efforts to accelerate its convergence. These researches fall into two
categories, heuristic techniques and numerical techniques. In this
paper, the MLP neural network is trained with the Levenberg-
Marquardt numerical optimization method; because it is the fastest
for function approximation problems of networks containing up to a
few hundred weights [31].

When a particular training algorithm fails on an MLP network, it
could be due to one of two reasons. The learning rule fails to converge
to the proper values of the network parameters, perhaps due to
unsuitable network initialization, or the inability of the given network
to implement the desired function, perhaps due to an insufficient
number of hidden neurons. To avoid the first possibility, each MLP
neural network model was trained and tested 100 times. The network
architecture with the lowest root mean square error (RMSE) on the
testing data set has been chosen.

Concerning the second reason, there is no theory yet to explain
how many hidden neurons are needed to approximate any given
function. If there are too few hidden neurons, a high training error
and high generalization error would result due to under-fitting. On
the other hand, if there are too many hidden neurons, there would be
a low training error, but there would still be a high generalization error
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due to over-fitting. In most situations, there is no way to determine
the best number of hidden neurons without training several networks
and estimating the generalization error of each [29]. In this paper, the
network growing technique [32] is applied by adding hidden neurons
sequentially from 1 to 30 comparing the testing RMSE error.

Table 1. Complete process for estimating real traffic vehicular
radiated emissions in terms of the driving profile.

Hidden
neurons

5 10 15 18 25 30

Testing
RMSE * 1e-11

0.2289 0.2229 0.2763 0.2097 0.2362 0.2266

Table 1 shows that 18 hidden neurons have achieved the best
generalization performance in terms of the testing RMSE calculated
as follows

RMSE =

[
1
N

N∑

i−1

(pi −Qi)

]1/2

(1)

where O is the vector of observed (measured) values, P is the vector
of model-estimated values, and N is the number of samples in the
testing subset. The input to the neural network model is the vehicle
velocity, while the output is the radiated emissions power. Therefore,
this paper presents a single input single output neural network model
whose structure is shown in Fig. 4.

Vehicle Velocity
Radiated 

Emissions
Power.

.

Input
Linear layer 
(1 neuron)

Tansig layer 
(18 neurons)

Output

Figure 4. Structure of the proposed MLP model.
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5. EXPERIMENTAL RESULTS

Before doing any radiated emission measurement, a test evaluating
the background noise has been carried out in order to quantify the
minimum detectable level. Then, the motorcycle was subjected to
the typical Urban European Cycle (UEC) velocity profile depicted in
Fig. 7. Fig. 5 shows the spectra of noisy (received by antenna 1), noise
(received by antenna 2), and filtered (estimated by the adaptive noise
canceller) signals. This figure clearly points out the capability of the
proposed adaptive filter to cancel out or to reduce the additive CAN
bus noise component on the motorcycle’s EMI signal. For example,
in the frequency ranges (1–2) and (7–8)MHz, although the reference
CAN bus noise level was strong relative to the noisy signal level, the
adaptive filter has successfully reduced the additive CAN bus noise.

Table 2 points out a comparison between the performance of
different adaptive algorithms in terms of the root mean square
difference (RMSD) between the noisy and estimated signals spectra.
The more the RMSD, the more the capability of the adaptive noise
canceler to reduce the additive CAN bus noise; because the RMSD
in this case reflects the amount of noise suppression. As can be
seen, the DFT adaptive algorithm achieved the best noise suppression
performance in comparison with five different time as well as frequency
domain adaptive algorithms.

Figure 6 shows the spectrogram of the filtered (estimated) EMI
signal of the motorcycle in response to the applied velocity profile.
It is clear that a part of the emission levels doesn’t change with the
velocity. However, there are frequency bands containing emission levels
that relatively change with the corresponding UEC velocity profile.
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Table 2. Comparison between different adaptive algorithms.

Algorithm & Parameters RMSD
DFTa (Sg = 0.01) 4.3669
PBFDb (S = 0.01, BLh = 100) 3.8493
PBUFDc (S = 0.01, BL = 250) 1.0948
NLMSd (S = 0.5) 3.9104
SDLMSe (S = 0.05) 2.8912
SELMSf (S = 0.5) 4.0438

a: Discrete Fourier Transform [33]. b: Partitioned Block Frequency Domain [32].
c: Partitioned Block Unconstrained Frequency Domain [32]. d: Normalized Least
Mean Square [33]. e: Sign Data Least Mean Square [34]. f : Sign Error Least Mean
Square [34]. g: Step-size. h: Block Length.

An interesting frequency band is the one between 4.5 and 8 MHz,
surrounded by an ellipse in Fig. 6.

According to Parseval’s theorem, the sum (or integral) of the
squares of a function is equal to the sum (or integral) of the squares
of its transform. Consequently, the record mean power (RMP) has
been calculated for all records in the (4.5–8) MHz frequency range
according to (2), where Nss is the number of FFT points in the record
spectrum, i is the index of the FFT point in the record spectrum, and
v is the value of the FFT point. Fig. 7 depicts the estimated and
measured RMP as well as the applied UEC velocity profile. It clearly
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shows the direct relationship between the motorcycle’s velocity and the
corresponding RMP of the radiated emissions. The level of the RMP
increases with increasing the motorcycle’s velocity. Also, the level of
the RMP remains at its minimum value when the motorcycle was not
activated, i.e., the velocity was zero. Moreover, it shows that the
developed MLP model can successfully estimate the radiated emissions
RMP in terms of the applied vehicle velocity.

RMP =
(

1
Nss

∑Nss

i=1
v2
i

)/
50 (2)

6. CONCLUSIONS

Till now, the direct measurement of real traffic radiated emissions
of electric vehicles is an unapproachable task. However the authors’
proposal allows a reasonable estimation in terms of the driving profile
applied to the vehicle, using artificial neural networks.

A methodology based on TDEMI measurement system has been
developed to simultaneously register the radiated emissions as well
as the velocity of electric motorcycles. An Urban European Cycle
velocity profile has been remotely applied to the motorcycle under test
by means of a CAN bus. The radiated emissions due to the CAN
bus have been cancelled using frequency domain adaptive cancelling
techniques.

Measurement results of real tests with a commercial electric
motorcycle in a semi-anechoic chamber have been described and
commented. The spectrogram of the estimated motorcycle radiated
emissions showed that emission levels in a specific frequency range
change directly with the motorcycle’s velocity. An MLP neural network
has been successfully trained and tested to estimate the radiated
emissions RMP in terms of the corresponding vehicle velocity.

As a future work, authors intend to apply the developed ANN
estimator to electric motorcycles in real traffic conditions, and to
extend the neural model to other kinds of electric vehicles.
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