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Abstract—In the paper, the analysis of electromagnetic wave
scattering from multilayered frequency selective surfaces is presented.
The surface is composed of periodically arranged posts with irregular
shapes. The multimodal scattering matrix of such structure is derived
and the transmission and reflection characteristic for the structure
with arbitrary plane wave illumination are calculated. The exact full-
wave theory based on the hybrid approach employing mode-matching
method and finite-difference frequency-domain (FDFD) technique is
applied to develop an efficient theory to analyze such structures.
The validity and accuracy of the approach are verified by comparing
the results with those obtained from alternative methods and own
measurements of manufactured periodic structures.

1. INTRODUCTION

The analysis of plane wave scattering from three dimensional (3D)
periodic structures composed of multilayered frequency selective
surfaces (FSS) is conducted in this paper. Each FSS is composed
of periodic in two directions arrangements of scatterers which can be
of irregular shapes. These elements are comparable in size to the
operation wavelength and are composed of isotropic and anisotropic
materials such as conductors, dielectrics, ferrites or semiconductors.

The multilayered FSSs are utilized as an electromagnetic band
structure (EBG) in microwave wavelength range or photonic band
structure (PBG) in optical range [1, 2]. Recently, EBGs and PBGs are
of great interest due to their extraordinary properties and potential
applications e.g., filters, polarizers, substrates for radiating elements,
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or optical switches [2–15]. FSSs find also application in polarizers
and polarization rotators to change the polarization state of an
electromagnetic wave [16, 17]. Through the utilization of these devices
the antennas adopted to receive a single linear polarization (vertical or
horizontal) are able to work with both polarizations at the same time.

Many numerical techniques have been utilized to investigate
band gap structures. The most popular are the cylindrical-harmonic
expansion method [18], the finite element method [19], the finite-
difference method [20], and Fourier modal method [21]. Here we
calculate the scattering parameters of periodic arrangements of metalo-
dielectric or ferrite scatterers assuming a plane wave excitation of
the structure. In order to obtain the scattering parameters we
first calculate the multimodal scattering matrices of each layer (each
FSS), utilizing authors’ numerical technique [22], and then use
cascading formulas to obtain the results for the entire structure. The
proposed approach utilizes an efficient numerical technique described
in [18, 23, 24], which is based on the transmission matrix (T-matrix)
method [25] and uses the lattice sums technique [26]. The obtained
scattering matrix relates the incident space-harmonics to the scattered,
both reflected and transmitted ones. It is expressed in terms of lattice
sums characterizing a periodic arrangement of scatterers and the T-
matrix of periodic unit cell of the structure.

In this paper the investigation of cylindrical unit cells employing
posts with regular or irregular geometry is presented and analytical
method for regular or hybrid technique for irregular shapes are utilized
for the calculation of their T-matrices. The obtained results are verified
by comparing them with ones obtained from commercial simulator and
own measurements of manufactured periodic structures.

2. FORMULATION OF THE PROBLEM

The structure under investigation is presented in Fig. 1. It is composed
of a 3D array of uniformly spaced identical sections situated in a free
space and illuminated by a harmonic wave with arbitrary direction.
The sections are composed of scatterers of height d and are spaced with
distances hx, hy and hz along axes of rectangular coordinate system.

The aim of the analysis is to find scattering parameters of
the investigated structure with the assumption of arbitrary angle of
harmonic wave incidence (θin, φin). In order to determine these
parameters the investigated structure is divided into layers (surfaces
for a fixed y) which constitute two dimensional (2D) periodic FSSs.
Each layer can be described by a multimodal scattering matrix, which
relates the incident space-harmonics to the scattered, both reflected
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Figure 1. Analyzed periodic configuration.

and transmitted ones, utilizing authors’ technique [22] based on an
efficient numerical technique described in [18, 23, 24].

Assuming the surface periodic in x and z directions the fields
consist of set of space harmonics and the z components of the incident
and scattered fields can be described as follows:

F
e(h)
z,i =

∑
p

∑

l

a
e(h)
1,pl e

j(kx,lx+ky,ply+kz,pz) + a
e(h)
2,pl e
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where F e = E, F h = H, l = 0,±1, . . . ± L and p = 0,±1, . . . ± P are
integers denoting the order of space harmonics, and

kx,l = kx,0 +
2lπ

hx
, (3)

kz,p = kz,0 +
2pπ

hz
, (4)

ky,pl =
√

k2
0 − k2

z,p − k2
x,l, (5)

where kx,0 = −k0 sin θin cosφin, kz,0 = k0 cos θin, ae
1 = cosα sin θin,

ah
1 = sinα sin θin, and α is an inclination angle of the incoming field

on the incidence plane.
The resulting scattering matrix of the periodic surface is defined
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Figure 2. S-parameter representation of multilayered structure.

as follows: [
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b2
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=
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= S
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]
, (6)

where Sij (i, j = 1, 2) are square matrices of (2 · (2L + 1) · (2P + 1))
dimensions, and ai and bi (i = 1, 2) are column vectors of complex
amplitudes of (2 · (2L + 1) · (2P + 1)) dimension defined as follows:

a = [a−P , . . . ,aP ]T ,

ap =
[
ae

p(−L), . . . , a
e
pL, ah

p(−L), . . . , a
h
pL

]
,

(7)

where e and h denote TM and TE polarization, respectively, and
column vector b is defined analogously.

Calculating the scattering matrix of one layer it is possible to
use cascading formulas to obtain the results for the entire structure,
in which layers are spaced with distance hy along y axis. This
approach allows one also to investigate structures composed of layers
with different arrangement of scatterers. The schematic representation
of multilayered structure is presented in Fig. 2. In this example the
structure is composed of three layers each of which is composed of
different arrangement and/or size of posts. Each post in the array (unit
cell of the periodic array) is represented by its transmission matrix (T-
matrix), which relates the unknown coefficients of the scattered fields
with the known coefficients of the incident fields. The elements of the
T-matrix are obtained by applying the proper continuity conditions
on the surface of scatterer, and depend on the particles size, shape,
composition and orientation, but not on the nature of the incident or
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scattered fields. As each layer in the structure is different they are
described by different scattering matrices (S1, S2 and S3). To use the
cascading formula the scattering matrices of the empty spaces between
layers of length hy1 and hy2 need to be considered. The scattering
matrix of free space is of identical dimension as the scattering matrices
of each layer and is defined utilizing the propagated and decaying space
harmonic components as follows:

[SLi] =
[

[0] diag
(
ejky,plhyi

)
diag

(
ejky,plhyi

)
[0]

]
(8)

The procedure of calculating scattering matrix of a periodic
layer composed of metalo-dielectric posts with regular cross-section is
described by authors thoroughly in [22]. It involves the calculation
of isolated T-matrix of single scatterer in the array, which in the
case of objects with simple geometry is carried out with the use of
analytical methods. The introduction of more complex objects imposes
the application of more universal methods, such as discrete ones.
The obtained solution is then utilized in the procedure of obtaining
scattering matrix.

To avoid the repetition of the whole approach, presented in [22],
in the following chapters only the procedure of calculating T-matrix
of an isolated scatterer with irregular shape is described.

2.1. T-matrix of an Isolated Scatterer

Consider a single cylinder containing irregular objects arranged
periodically along its axis. Each object in the cylinder corresponds to
a unit cell of the periodic arrangement. These posts can be of irregular
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Figure 3. Single unit cell of periodic along z-axis cylinder containing.
(a) Cylinder with arbitrary cross-section. (b) Rotationally symmetrical
post with irregular shape.
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cross-section (see Fig. 3(a)) or have rotational symmetry with irregular
shape (see Fig. 3(b)). In our approach we introduce lateral surface S
which surrounds analyzed object and divides the computation domain
into two regions I and II. In region I the discrete FDFD solutions of
Maxwell equations are used, while in region II we utilize analytical
solutions. The z components of electric and magnetic fields in region
II are expressed as follows:

EII
z =

∑
p

∑
m

(
âe

1,pmJm(kρ,pρ) + âe
2,pmH(1)

m (kρ,pρ)
)

ej(mϕ+kz,pz), (9)

HII
z =

∑
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∑
m

(
ˆ̃ah
1,pmJm(kρ,pρ) + ˆ̃ah

2,pmH(1)
m (kρ,pρ)

)
ej(mϕ+kz,pz), (10)

where ˆ̃a = j
η0

a, η0 =
√

µ0/ε0, kz,p = k0 cos(θ0) + 2pπ
hz

, k0 =
2πf

c , Jm(·) and H
(1)
m (·) are Bessel and first kind Hankel functions,

respectively, of m-th order, and â
e(h)
1,pm and â

e(h)
2,pm are incident and

scattered field expansion coefficients, respectively, for e-TM, h-TE. The
ϕ field components can be derived from Maxwell equations using (9)
and (10) [27]. In region I the tangential components of electric and
magnetic fields are defined as follows:

EI
z,ϕ(R, ϕ, z)=

P∑

p=−P

M∑

m=−M

c
Ez,ϕ
pm ej(mϕ+kz,pz), (11)

HI
z,ϕ(R, ϕ, z)=

P∑

p=−P

M∑

m=−M

d
Hz,ϕ
pm ej(mϕ+kz,pz). (12)

Imposing the continuity conditions between tangential components ϕ
and z of electric and magnetic fields on the surface S and utilizing the
orthogonality properties of ej(mϕ+kz,pz) function over ϕ ∈ [0, 2π] and
z ∈ [0,H] we obtain the following set of matrix equations:

ME
a1â1 + ME

a2â2 = c, (13)

MH
a1â1 + MH

a2â2 = d. (14)

For the sake of brevity all the matrices in Equations (13) and (14) are
defined in Appendix A. Now we introduce impedance matrix Z defined
as:

c = Zd, (15)

which relates the expansion coefficients c and d of electric (11)
and magnetic (12) fields, respectively. For objects with regular
geometry the impedance matrix can be determined utilizing analytical
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techniques [22]. However, in the case of objects with irregular shape
we utilize finite difference-frequency domain (FDFD) technique [28–
30] which will be described in the next section. Since, the Z-matrix
is known it can be utilized to determine the transmission matrix T of
the object:

â2 = Tâ1, (16)

which defines the relation between incident and scattered field
expansion coefficients and is expressed as follows:

T =
(
ZMH

a2 −ME
a2

)−1 (
ME

a1a1 − ZMH
a1

)
. (17)

Utilizing approach presented in [22] the T-matrix of single object can
be used to determine the scattering parameters of structure composed
of periodically spaced in the x and z directions scatterers.

2.2. Z-matrix of the Post Using FDFD Method

In our approach we focus on two groups of objects which are
homogenous cylinders with arbitrary cross-section (see Fig. 3(a)) and
axially-symmetrical posts with irregular shape (see Fig. 3(b)). The
analyzed objects can be made of dielectric, metal or gyromagnetic
material (ferrite, semiconductor, graphene). Utilizing symmetry
properties of investigated posts the analytical variation of field in the z
or ϕ direction can be assumed for the posts from Fig. 3(a) and Fig. 3(b),
respectively. This allows to reduce the three dimensional (3D) problem
to two-and-a-half (2.5D) one. In the case of post from Fig. 3(a) the
variation of field along z-axis is assumed as ejkz,pz and region I is
discretized only in z-const plane [29]. On the other hand, when the
post from Fig. 3(b) is analyzed, due to its rotational symmetry the
variation of the field along ϕ-axis is assumed as ejmϕ and region I
is disretized only in ϕ-const plane [30]. To include periodicity of the
structure along z-axis the probes of field at z = H are phase shifted
by ejk0 cos(θ0)H with respect to field probes at z = 0. According to the
above assumptions Maxwell equations written in a discrete form are
as follows:

P1D1(QE + QbEb) = jωµ0µrS1H, (18)
P2D2H = jωε0εrS2E, (19)

where P1,2 are matrices of derivatives, Q,Qb are matrices of projection,
D1,2,S1,2 are matrices of space disrcetization, E,H are vector of
electric and magnetic field probes, respectively, in the inner area of
region I and Eb are the probes of electric field on the surface S defined
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by (11) and (12). After simple algebraic manipulation of (18) and (19)
we obtain the relation for H with respect to Eb which takes the form:

H = −jωε0(G)−1S−1P1D1QbEb, (20)

where G = µr
−1S−1

1 P1D1Qεr
−1S2

−1P2D2 + ω2µ0ε0I. Using the
orthogonality of ej(mϕ+kz,pz) function and taking each term of (11)
as a boundary condition with arbitrary values of c

Ez,ϕ
pm , separately the

unknown coefficients of magnetic field components expressed on the
surface S as:

Hpm
z,ϕ(ρ = R, ϕ) =

P∑

k=−P

M∑

l=−M

d
H

(p,m)
z,ϕ

klpm ej(lϕ+kz,kz) (21)

are determined. Now, utilizing coefficients c
Ez,ϕ
pm and d

Hz,ϕ

klpm the Z can
be obtained as follows:

Z = (DH)−1CE, (22)

where CE is diagonal matrix, and DH is full matrix containing electric
and magnetic field expansion coefficients, respectively.

3. ACCURACY OF THE METHOD

In order to perform the calculation of the structure scattering matrix
the sums introduced in previous chapter need to be properly truncated.
To check the convergence of the presented approach two numerical
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Figure 4. Schematic representation of triple layer structures
composed of periodic cylinders.



Progress In Electromagnetics Research, Vol. 135, 2013 665

8 8.5 9 9.5 10 10.5 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S
|

L=1, P=1
L=3, P=3
L=7, P=7
HFSS

8 8.5 9 9.5 10 10.5 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S
|

L=1, P=1
L=1, P=3
L=1, P=7
HFSS

(a) (b)
f  (GHz)f  (GHz)

Figure 5. Convergence of reflection coefficients for periodic structures
composed of metallic cylinders with circular cross-section of radii r =
2.5mm and height d = 12 mm arranged with period hx = hz = 24 mm
and hy = 20 mm for normal incidence. (a) Structure form Fig. 4(a).
(b) Structure form Fig. 4(b).

examples depicted in Fig. 4 are considered. Both structures are
composed of three layers of metallic cylinders with circular cross-
section of radii r = 2.5mm and height d = 12 mm arranged with
period hx = hz = 24 mm and hy = 20 mm. In the first structure all
layers are parallel to each other as illustrated in Fig. 4(a), while in
the second structure the middle layer is rotated by 90◦ with respect to
other layers as depicted in Fig. 4(b). The structures are illuminated
by a plane wave with φ = 90◦, and θ = 90◦.

In the analysis the number of cylindrical eigenfunction M = 7 was
assumed, which provides satisfactory convergence. The convergence
of the solution was investigated by changing the number of space
harmonics L and P . For the sake of brevity only the convergence
of reflection coefficient (STM(TM)

11 ) for both structures is investigated
as for other coefficients similar results were obtained. The frequency
dependent scattering parameters characteristics of this structure for
different values of eigenfunction numbers P and L are presented in
Fig. 5.

In order to more accurately examine the convergence of the
solution the following error criterion is defined:

δS =
||S − Sref ||
||Sref || · 100%, where: || · || =

√√√√√
fmax∫

fmin

| · |2df, (23)
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Table 1. Convergence of reflection coefficients S
TE(TE)
11 , defined by

error coefficient δS versus eigenfunctions numbers P and L for structure
1 from Fig. 5(a) and structure 2 from Fig. 5(b).

L, P 0,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

δstruct·1
S [%] 82.77 16.04 8.95 3.68 4.84 0.52 3.50 0.99 0.98

L, P 0,0 1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

δstruct·2
S [%] 80.13 20.32 8.37 3.87 3.29 1.04 2.25 0.36 0.38

8 8.4 8.8 9.2 9.6 10 10.4 10.8 11.2 11.6 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f  (GHz)

 

 

our method
HFSS
measured

(a) (b)

|S
|

Figure 6. Transmission coefficients for normal plane wave incidence
on periodic structures composed of long metallic cylinders with circular
cross-section of radii r = 3 mm arranged with period hx = 20 mm.
(a) Picture of manufactured structure. (b) Numerical and measured
results.

where Sref are scattering parameters obtained from HFSS based on
Finite Element Method (FEM) in frequency domain with periodic
boundary conditions. The results are collected in Table 1 and show
that the accuracy of the method is improved with the increase of P
and L. It can be seen that a sufficient convergence with less then 1%
error is obtained for P = L = 7 for the second structure while for the
first configuration it was sufficient to assume L = 1 for the analysis.

Assuming the number of eigenfunctions P = L = 7 and M = 7,
the calculation of single frequency point takes approximately 2.5 s on a
Matlab, Xeon X5690 3.47GHz (2 processors). Comparing this to the
calculation of commercial software ANSYS HFSS the time of single
frequency point calculation is 118 s with the number of mesh cells
80238. Despite the undeniable fact of high versatility of commercial
software a high speed of the proposed method makes it ideal for use in
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optimization procedures.

4. RESULTS

Several examples of single and multilayered periodic structures have
been investigated. The scattering characteristics of these arrays have
been calculated and for the selected arrangements the structures have
been manufactured and measured to verify the results. The results
are shown for the case of normal incidence as well as for arbitrary
angle of incidence. The characteristics are illustrated for refection and
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Figure 7. Transmission coefficients for normal plane wave incidence
on periodic structures composed of long metallic cylinders with
rectangular cross-section with dimensions 15 × 3mm arranged with
period hx = 26.6mm for several angles of posts rotation in the
array (solid line — our method, dashed line — HFSS, × —
measurements). (a) Picture of manufactured structure. (b) Posts
holders in manufacturing process. (c) Numerical and measured results
for TM polarization. (d) Numerical and measured results for TE
polarization.
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transmission coefficients of the fundamental space harmonics (p = 0;
l = 0) versus frequency. For the calculations of the presented examples
the maximum number of space harmonics L = 7, P = 7 and number of
cylindrical functions M = 7 were chosen which was sufficient to obtain
convergence of the solution.

In the first example, the single array of infinitely long metallic
cylinders of radii r = 3 mm arranged periodically with period hx =
20mm was considered. The investigated array was manufactured using
60 cm long copper cylinders placed in 60× 60 cm wooden frame as was
shown in Fig. 6(a). The grid was measured in anechoic chamber by
placing it between two tube antennas with 70 cm distance between the
grid and antenna apertures. With this arrangement the measurements
of transmission coefficients were performed. The obtained results are
shown in Fig. 6(b). As can be observed the measurement results
well agree with calculated ones which confirms the correctness of the
measurement setup.
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In the second example, the copper cylinders were replaced by
copper posts with rectangular cross-section with dimensions 15×3mm
as shown in Fig. 7(a). The structure was measured for different angles
of post rotation in the array. In order to set the correct post rotation
angle the posts were placed in a special holder (see Fig. 7(b)) which
allowed to set both angle and distance between them. The calculated
and measured transmission coefficient are shown in Fig. 7(c) for TM
polarization and in Fig. 7(d) for TE polarization. As can be observed
the satisfactory agreement was obtained.

In another example, single, double and triple layer periodic
structures were investigated. The layers were composed of metallic
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(c) structure 2, (d) structure 3.
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cylinders of radii r = 2.5mm and height d = 12 mm arranged with
period hx = hz = 24 mm and hy = 20mm. In order to measure these
double periodic layers the posts were placed in 60 × 60 × 2 cm foam
made from Rohacell 31 HF material with εr = 1.05 (see Fig. 8(a)).

The calculated and measured results for different arrangements of
layers are presented in Figs. 8(b)–(f). As can be seen a satisfactory
results were obtained between the calculations and measurements.

When a periodic surface is multilayered it constitutes a 3D
electromagnetic band gap structure. In a layered system, the multiple
interactions of space harmonics scattered from each of the surface layers
modify the frequency response, and bandgaps or stop bands in which
any electromagnetic wave propagation is forbidden are formed.

The next two examples consider periodic structures composed of
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Figure 10. Scattering coefficients for 30-layered periodic structures
composed of metallic cylinders with circular cross-section of radii
r = 3mm and height δ = 10 mm arranged with period hx = hz =
hy = 25mm for (a) normal incidence, (b) φ = 70◦, θ = 90◦ incidence,
(c) φ = 90◦, θ = 70◦ incidence and (d) φ = 70◦, θ = 70◦ incidence.
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30 layers of single and double periodic surfaces. A single periodic
surface is composed of infinitely long metallic cylinders of radii r =
1mm embedded in dielectric cylinders of radii r = 4.5mm with
εr = 6, arranged with period hx = 22 mm. The scattering coefficients
calculated for 30 layer structures with different arrangement of layers
are presented in Fig. 9. In the first arrangement all the layers are
perpendicular as depicted in schematic representation in Fig. 9(a)
(structure 1). In the second arrangement first 15 perpendicular layers
are followed by identical arrangement rotated by 90◦ with respect to
previous one (structure 2). In the third arrangement every other layer
is rotated by 90◦ (structure 3). As can be observed from the obtained
results the first arrangement produces stopbands for both polarizations
of the incident plane wave, which only slightly overlap near 5.8GHz.
Using the second arrangement the stopband for both polarizations
is widened and covers both stopbands from first arrangement. In
the last case the signal with both polarizations can pass through
the structure except near 5.8GHz where both stopbands for first
arrangement overlap.

In the next example, the double periodic layer is composed of
metallic cylinders with circular cross-section of radii r = 3 mm and
height δ = 10mm arranged with period hx = hz = hy = 25 mm. In
this case the structure is illuminated by a plane wave with different
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Figure 11. Scattering coefficients for periodic structure (hx = hz =
50mm) composed of dielectric cylinder (R = 7 mm, H = 40 mm, εr =
3) loaded with two symmetrically placed ferrite cylinders (r = 5 mm,
h = s = 10 mm, εr = 3). (a) Schematic representation of investigated
structure. (b) Scattering parameters for saturation magnetization
4πMs = {1100} (Gauss) and for different values of internal bias
magnetic field intensity Hi = {0, 4, 8} (kA) — solid line: our method,
dashed line: HFSS.
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angles of incidence. The results of this investigation are presented in
Fig. 10. For the normal incidence the structure produces stopbands
for both polarization in the observed frequency range. Illuminating
the structure with different angle it is possible to shift the stopbands
and adjust them to the desired frequency.

In the last example, a periodic surface employing dielectric
cylinders with double ferrite inclusions (see Fig. 11(a)) is being
investigated. The transmission and reflection coefficients for the case
of normal plane wave incidence were calculated for different values of
internal bias magnetic field intensity Hi = {0, 4, 8} (kA) and the results
are presented in Fig. 11(b). As can be observed in this case by changing
the values of biasing magnetic field it is possible to tune the resonance
frequency of the structure, thus to control its frequency response
without changing the dimension or arrangement of the structure.

5. CONCLUSION

The analysis of electromagnetic wave scattering from 3D periodic
structures has been presented in this paper. The multimodal scattering
matrix of such structure is derived using the efficient numerical model
based on the transmission matrix approach and lattice sums technique.
The transmission and reflection characteristic for the structure with
arbitrary plane wave illumination were calculated for several presented
examples. The validity and accuracy of the approach were verified by
comparing the results with those obtained from alternative methods
and own measurements of manufactured structures.
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APPENDIX A.

In Equations (13) and (14) matrices ME(H)
a1 and ME(H)

a2 take a general
form:

ME(H)
α = diag

[
ME(H)

α,−M , . . . ,ME(H)
α,M

]
,
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where α = {a1, a2},

ME
α,m =

[
MEe

z
α,m 0

M
Ee

ϕ
α,m M

Eh
ϕ

α,m

]
, MH

α,m =

[
M

He
ϕ

α,m M
Hh

ϕ
α,m

0 MHh
z

α,m

]
,

matrices of electric and magnetic fields take form:

[MEe
z

α,m]pp = Zm(kρ,pR), [MHh
z

α,m]
pp

= j/η0Zm(kρ,pR),

[M
Ee

ϕ
α,m]pp =

jm

k2
ρ,pR

Zm(kρ,pR), [M
Eh

ϕ
α,m]pp =

−ωµ0

η0kρ,p
Z ′m(kρ,pR),

[M
He

ϕ
α,m]pp =

−jωε0

kρ,p
Z ′m(kρ,pR), [M

Hh
ϕ

α,m]pp =
−m

η0k2
ρ,pR

Zm(kρ,pR)

and

Zm =
{

Jm for α = a1,

H
(1)
m for α = a2.

(A1)
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