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Abstract—The insertion of vertical slabs in a metallic rectangular
waveguide distorts the power distribution of the waveguide, producing
new modes and modifying the existing ones. The resulting waveguide,
known as FE-plane loaded rectangular waveguide, is studied in this
paper, focusing the attention on the TE-type modes in a symmetrical
case. A quasi-TEjg is found which may confine the energy in the
central air region by suitably choosing the dielectric slabs’ dimensions.
An algorithm to optimize these dimensions is proposed in order to
maximize the confinement of power in the air region and minimize the
attenuation of the mode. This minimization is specially important at
high frequencies, where the ohmic losses and the dielectric absorption
become extremely high. This paper includes an example at THz
frequencies and presents the design of several devices using the E-plane
loaded rectangular waveguide.

1. INTRODUCTION

Partially filled rectangular waveguides have been extensively studied
in the literature [1,2] due to their wide range of applications, e.g.,
matching transformers, phase shifters [3] or electromagnetic material
characterization [4]. These kind of waveguides may be divided into two
main types: E-plane loaded rectangular waveguides [5-8] and H-plane
loaded rectangular waveguides [9, 10].

FE-plane loaded rectangular waveguides contain dielectric slabs
parallel to the narrow wall and extending the full height of the

Received 23 October 2012, Accepted 20 December 2012, Scheduled 26 December 2012
* Corresponding author: Daniel Sanchez-Escuderos (dasanes1@iteam.upv.es).



412 Sanchez-Escuderos et al.

waveguide. In general, the number and material of the different
slabs, and the separation between them, are arbitrary [6,7], allowing
the waveguide to be designed for a wide range of applications and
frequencies.

The modal analysis of this waveguide finds hybrid modes with
regard to the longitudinal direction. These modes may be classified
as Longitudinal Section Electric Modes (LSE), with a transversal
component of the electric field vanishing, e.g., E, = 0, and
Longitudinal Section Magnetic Mode (LSM), with the same vanishing
transversal component but for the magnetic field (H, = 0). According
to Harrington’s notation [2], LSE modes can also be noted as TE?, and
LSM modes as TM?. In this paper, this last notation is adopted.

Both modes have been studied previously in [7] for N symmetrical
slabs and in [6] for a general configuration. This paper is focused on
the study of a particular case formed by the insertion of 2 dielectric
slabs in a rectangular waveguide, placed symmetrically with regard to
the waveguide centerline [5]. Under this configuration, low-order TE®*
modes are dominant [7].

The proposed configuration presents an interesting characteristic.
If materials and dimensions of the different slabs are suitably chosen,
one of the first TE? modes (TEZ,) is able to confine the energy in the
central region. This mode is a quasi-TE;g mode since it presents an
amplitude distribution similar to that of the fundamental mode in a
conventional rectangular waveguide.

By confining the energy in the central region and choosing low-
loss materials, the attenuation of the TEj, mode may become lower
than the attenuation of the fundamental mode in the equivalent
rectangular waveguide. This characteristic is specially important at
high frequencies, e.g., submillimeter-wave or THz frequencies. At these
frequencies, waveguides are affected by severe conductor skin-depth
losses and dielectric absorption [11], which considerably increases the
attenuation of the waveguides [12]. Hence, the confinement of power
in a region of air by non-conducting materials may decrease noticeably
the attenuation of the waveguide. The resulting structure may be
specially useful in highly sensitive applications [13], in the design of
horn antennas with an enhanced efficiency [14] or in near-field probing
systems [15].

The aim of this paper is to present an algorithm to efficiently
determine the dimensions of the dielectric slabs in the E-plane loaded
rectangular waveguide to maximize the power confinement of TEZ,
mode. Taking advantage of this confinement, this paper shows that
the proposed waveguide also presents low losses on curves [11, 16], and
can be used to design efficient devices.
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The paper is organized as follows: firstly, the TE* modes of the
E-plane loaded waveguide are analytically studied and both, conductor
and dielectric losses are obtained. Then, the algorithm to optimize the
dielectric slabs is proposed and several examples, including a practical
realization, are shown. Finally, the behaviour of the waveguide at
high frequencies is reported and the possibility of bending the E-plane
loaded rectangular waveguide and designing a directional coupler is
examined.

2. E-PLANE LOADED RECTANGULAR WAVEGUIDE

The FE-plane loaded rectangular waveguide under study, shown in
Fig. 1, is a rectangular waveguide with dimensions w x h. The
waveguide is divided into 5 different regions. The central region
(wqo) and the lateral regions (wgq1) are filled with air, whereas the
intermediate regions (wy), in dark gray in Fig. 1, are dielectric slabs
with permittivity e, loading the waveguide.

The described waveguide cannot be analysed using TE* and TM?*
modes, and a combination of both, the so-called hybrid modes, must be
used instead [7]. To simplify the analysis, modes transversal to the z
component are normally considered. These modes are known as LSE,
for which E; = 0 (TE?), and LSM (Longitudinal Section Magnetic
Modes), for which H, =0 (TM*) [1,2].

In general, the analysis of the F-plane loaded rectangular
waveguide finds both, TE* and TM? modes. However, as stated
in [6], low-order TE* modes are dominant in the described structure,
provided that h < w. Since the aim of this paper is to maximize the
confinement of a TE® mode, only these modes are considered in the
analysis.

Wd

‘w\aodqﬂ;

Figure 1. Symmetrical E-plane loaded rectangular waveguide.
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In any region r (labeled as r =1 to r = 5 from x = 0 to z = w)
of the structure shown in Fig. 1, the electric and magnetic fields may
be obtained from Maxwell’s equations [2,17] and are given by

82
B, = 0 Ho= (g +1) 0 0
0 ?
Ey = —jwp 815 H, = 830(;2 (2)
oY %
E, = jw,ua—y H, = 9200 (3)

where k is the wavenumber and ) is the solution to the scalar
Helmholtz equation given by

V3 + k%) =0 (4)

The solution to the above equation is a combination of harmonic
functions. By inserting this solution in expressions (1)—(3), the
electric and magnetic field can be easily obtained. These fields are a
general solution that must be particularized according to the boundary
conditions. In the structure of Fig. 1, boundary conditions state that
E, must vanish on the upper and lower metallic walls (y = 0 and
y = h) and on the lateral metallic walls (zx = 0 and z = w). If
boundary conditions are only applied on the upper and lower walls,
the solution can be expressed as:

ET) = —wuup (A(T) cos(k{Nz) + BM sin(kg(f)x)) cos(kyy)e %% (5

<~

E

N~

N = —jwuk, (A(r) cos(k{"z) + B" sin(ké”:c)) sin(kyy)e 9P (6

Hé’"):—kg(f)ky (—A(r) sin(kMz)+ B cos (kM ))sm(k y)e P (8

()
(6)
HD = (k2-(k)?) (A cos (k) + BOsin (k) cos (kyy)e7(7)
(8)
9)

H" =—jgk{) (—A( ) sin(k{"z)+B™ cos(k{" )) cos(kyy)e 7% (9
where A") and B(") are constants, ky = nm/h and k( ") are determined
for each region applying continuity conditions at the interface between
the different regions [18-20] and boundary conditions at outer lateral

metallic walls. Constants k‘gf) are related to ky, ( (the propagation
constant) and k as:

2
kM) = \/ (kg@) + k2 + 3 (10)
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Figure 2. Application of a symmetry condition in the waveguide
centerline: Separation into two subproblems. (a) Magnetic wall (even
solution). (b) Electric wall (odd solution).

In region r = 1, the boundary condition E, = 0 must be enforced
at = 0. By doing so, it can be easily determined that A = 0. To
determine the rest of parameters, the problem is simplified assuming a
symmetry plane at x = w/2. Thus, just half of the waveguide needs to
be considered, which simplifies the computations. In order to consider
all the TE® modes, two different boundary conditions must be applied
on the symmetry plane. These problems are depicted in Fig. 2.

On the one hand, if the magnetic wall condition shown in Fig. 2(a)
is applied, and the continuity condition is enforced for tangential
electric and magnetic field at * = wy1 and & = wg + wy, the following
system is obtained:

B -B§ -B; 0 0 Aeh)

0
kKB kPBy —kPBS 0 0 Ac®) 0
0 B B —-Bf -Bj Be@ | =10 | (11)
0 —kPBy KBS KBy kP B | | A 0
0 0 0 —By B Be® 0

where B} = sin(kg(cl)wal), B = sin(k;(rz)wal), B = sin(kg(f) (wa1 +wyq)),

B = sin(kg(cg)(wal + wq)), By = sin(k;3)w/2), and B¢ are the same
expressions but substituting sine functions by cosine functions.

On the other hand, if the electric wall condition shown in Fig. 2(b)
is applied, and the continuity condition is enforced at the interface
between regions, the resulting system is:

o(1

Bf —-BS —-By 0 0 A 0
KYB KBy —kPB 0 0 A 0

0 B B  -Bf -Bj B°@ | =10 | (12)

0 —kPBs KPBs KBy kP Bs | | A 0

0 0 0 B  Bj B°® 0
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Propagation constants for modes of each problem of Fig. 2 form
the complete solution of TE* modes in the E-plane loaded rectangular
waveguide shown in Fig. 1. The propagation constant (3) of each
mode is determined by solving the dispersion equation. To obtain this
equation, the determinant of matrices in (11), for even modes (TE™),
and (12), for odd modes (TE*™), is cancelled [21]. The resulting
dispersion equation may be expressed for even modes as:

cos (k,(vg) Wao/ 2)

1 () s @) ool |0 09
o sin (kg wao
and for odd modes as:
in (k§ wao/
() (] é;iff/g) o
where the matrix [S] is given by:
5] = coS (kg(f)wd) k(12) sin <k§2)wd) (15)

kg(,;z) sin (kg(f)wd) (gzcos (k:;(f)wd>

Once the propagation constant of each mode is determined,
constants A%°(") and B%°(") on each region can be easily obtained
by solving (11) and (12). To do so, one column of the matrices is
placed as an independent term and one row must be removed due to
redundancy. As a result, a 4 x 4 equation system is found. This system
must be finally solved to determine constants A%°(") and B o).

Example

The above method has been implemented to obtain the propagation
constants of an F-plane loaded rectangular waveguide with dimensions:
Weo = 22.86mm, we1 = 8mm, wy = 4mm and A = 10.16 mm, and
permittivity €, = 2.2. Fig. 3 shows the obtained dispersion diagram
for the TE® modes.

Low-order modes (TE3; and TE3]) concentrate the energy
inside the dielectric slabs (regions r = 2 and r = 4), whereas
high-order modes (TE3;, TEJ], etc.) spread the energy across all
regions. Nevertheless, it must be noted that mode TES§ concentrates
significantly the energy in the central region (r = 3). These differences
may be observed in Fig. 4, which shows the field distribution for 4
different modes.
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Figure 3. Dispersion diagram of the FE-plane loaded rectangular

waveguide in the X-band.
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Figure 4. Normalized field distribution of the first TE® modes

in the E-plane loaded rectangular waveguide in the X-band (green-
dashed lines indicate limits of dielectric slabs). (a) Electric field (E,).
(b) Magnetic field (H.).

The field distribution of mode TES§ is specially important since
it allows the confinement of most of the energy in the central region
of air by suitably choosing the waveguide dimensions and the width
and position of the dielectric slabs. By doing so, total losses may
be decreased enabling a low-loss waveguide. Next section deals with
the way in which losses may be analytically obtained and Section 4
proposes an optimization procedure for the dielectric slabs.

3. LOSSES ON LOADED WAVEGUIDE

The attenuation in the E-plane loaded rectangular waveguide is caused
by losses on the outer conductor and in the dielectric slabs. Both can
be easily determined from the electric and magnetic field expressions
shown in Equations (5)—(9). This section is devoted to the analytical
determination of these losses.
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Ohmic losses on the outer metallic surface cause an attenuation
() that can be computed by means of the following expression [22]:

_ P
2P,

where Py is the power transmitted by the waveguide determined as
follows:

(16)

%

1 L
P = %e?é B x f*ds (17)
2 Js

and P is the power dissipated in ohmic losses per unit length of the
metallic walls. This power can be obtained as:

R, L
P, = / |Hy|*ds (18)
2 Js

where R; is the surface resistance computed as Ry = \/wp/(20).
The dielectric slabs dissipate power due to the absorption of

energy. The additional attenuation caused by this dissipation can be

computed as:

_Pu

2P,

where Py is the power dissipated in dielectric slabs per unit length
given by:

Qg (19)

/!
Pu="5- [ |EPav (20)
2 Jv
being ¢’ = g,e9tand. Note that the field used in these expressions is
the solution of the loss-free case (5)—(9), which is a common solution

in the perturbational method.

The conductor (o) and dielectric (ag) attenuations have been
computed for the example presented in previous section. Fig. 5
shows the obtained attenuation considering copper for the metallic
walls and dielectric slabs with permittivity €, = 2.2 and loss tangent
tand = 0.001.

From Fig. 5, it can be clearly seen that all modes present higher
dielectric losses than conductor losses, but this trend is increased in
modes TES§ and TESS. This is because these modes concentrate most
of power in the dielectric slabs, as shown in Fig. 4.

Furthermore, from Fig. 5, it also can be concluded that the best
trade-off between conductor and dielectric losses takes place in mode
TE5;. This mode confines most of power in the central region of
air. Consequently, ohmic losses are mainly produced by the upper
and lower central conductors and, hence, conductor losses remain
moderately low. Also, dielectric losses are lower than in other modes
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Figure 5. Conductor and dielectric attenuation in the E-plane loaded
rectangular waveguide. (a) Conductor losses (a.). (b) Dielectric losses

(avg).

because the dielectric absorption only takes place in the small portion
of power transmitted to the dielectric slabs.

Probably, the most important drawback to work with mode TESj
is the fact of not being the fundamental mode. However, since modes
TE5; and TESS are only present in the dielectric slabs, mode TESf can
be easily excited without exciting modes TE3; and TES§. Also, there
is a great bandwidth between this mode and the next mode, TEJ] (see
Fig. 3). Therefore, all along this bandwidth, bends and discontinuities
will not excite any high-order mode, since they are all below cut-off.

Although mode TE3; is the best choice to operate, it must be
taken into account that the presented waveguide is not optimized.
Focusing our attention on this mode, dielectric slabs may be optimized
to reduce the total attenuation of the mode. The first option
consists in optimizing the dielectric slabs applying the previously
presented method. Nevertheless, the determination of the propagation
constants for every considered slabs’ size using (11) and (12) requires
a high computation time. To speed-up the optimization, next section
proposes a faster algorithm.

4. DIELECTRIC SLAB OPTIMIZATION

As commented above, the attenuation of mode TEZj§ is caused by,
both, ohmic losses and dielectric losses. In order to reduce this
attenuation, the position and dimensions of lateral dielectric slabs
must be optimized to maximize the confinement of TES; mode in the
central region of air. This optimization is carried out considering the
rectangular metallic waveguide as a reference.

By looking at Fig. 4(a), and taking into account that E, = 0
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for TES§ mode, it is clear that this mode looks like the fundamental
mode (TE%;) in a common rectangular metallic waveguide. They both
have the same polarization and the same cosine-like distribution in
the central region. The difference lies in the lateral walls: whereas
TE5, mode is limited on laterals by a metallic surface, which makes £,
vanish on these surfaces; TE5§ mode in the E-plane loaded rectangular
waveguide is just confined by dielectric slabs, what causes the field to
partially flow to the lateral regions.

Therefore, the waveguide under study may be considered as a
special case of a rectangular metallic waveguide with lateral metallic
walls substituted by a multilayer structure. This structure is formed
by the dielectric slabs and the outer lateral air regions (regions 1
and 2, and 4 and 5, in Fig. 1). Hence, the maximization of power
confinement in TE3§ mode must determine not only the dimensions of
the dielectric slabs, but also the width of the outer lateral air regions,
i.e., the complete lateral multilayer structure must be considered to
this aim.

The maximum confinement of mode TESf is achieved by enforcing
an electric wall boundary condition in the interface between the central
region and the multilayer lateral structure. By doing so, a total
reflection condition is obtained. This kind of reflection may be better
studied from the point of view of a plane wave impinging on the
multilayer lateral structure. To start with this study, the behaviour of
the rectangular waveguide must be first reviewed.

The fundamental mode of a rectangular metallic waveguide (TE7)
may be studied as two plane waves with an oblique incidence on side
walls [?], as shown in Fig. 6. The interference of these two plane waves
causes the sinusoidal variation of the TEj], mode on the transversal
plane. In the vertical direction (y), the electric field is invariant because
both plane waves propagate parallel to the upper and lower walls. The
angle of incidence (f) may be obtained from the propagation constant

g

€0

a T
Li

Figure 6. Decomposition of the fundamental mode into two plane
waves, in a metallic rectangular waveguide.
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(B) as:
0 = arccos (g) (21)

To keep the same field distribution in both, the rectangular
metallic waveguide and the E-plane loaded rectangular waveguide,
the same plane waves concept may be considered. Fig. 7 depicts a
longitudinal top view of the FE-plane loaded rectangular waveguide
with mode TE5; decomposed into two plane waves in the central region
of air. Since it is desired the same field distribution in modes TE},
and TEZS, it may be assumed the same propagation constant for both
modes. Therefore, the angle of incidence in Fig. 7 coincide with that
of the rectangular metallic waveguide of Fig. 6, provided that a = wgp.

The above decomposition allows the easy optimization of the
dielectric slabs by just considering the reflection of a plane wave on
the multilayer structure. This is because only half of the structure in
Fig. 7 needs to be considered due to the symmetry of the problem.
Thus, the optimization problem may be simplified to the one depicted
in Fig. 8. As can be observed, the incidence of a single plane-wave is
considered. The material of the first and third layers (the central and
outer air regions in the original problem) is air (g9), whereas the second
layer (the dielectric slabs) is characterized by the permittivity &,.

The determination of the optimal w, and w,; widths considers the

Figure 7. Decomposition into two plane waves of the TES§ mode in
the E-plane loaded rectangular waveguide.

Figure 8. Incidence of a plane wave on a 2-layer structure.
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reflection on the final metallic surface as well as the multiple reflections
in the intermediate layers. All these reflections may be characterized
by the matrix multiplication shown in [23] or in [24]. Nevertheless, for
the sake of simplicity, in this paper the generalized reflection coefficient
of the multilayer structure [25] is considered. This coefficient can be
determined, for a TE incidence, as:

Rn+17n B R?—‘—El’n + Rn,n 1 —jankmn

TE 1+Rn+1 nR;r;g 1 e—i2wnka,

(22)

where the superindices indicate the layers between which the reflection
coefficient is computed, starting from n = 3 for the upper layer (the
central air region) and ending in layer n = 0 for the lower metallic
layer (surrounding conductor in the original waveguide). Parameter
wy, is the width of layer n (we = wy and w; = wg1) and kg, is the
wavevector along the z-direction in the nth-layer. Coefficients [LUR
known as Fresnel coefficients, represent the reflection produced by an
individual dielectric discontinuity and are given by

mn kfﬂm — kxn

LR A (23)

Once the generalized reflection coefficient at each interface is

known, the generalized transmission coefficient from any layer to the
lower conductor medium (qu,\fg) can be easily determined by means of
the following expression:

N—1
Trp = H grtlng=jwnsikit! (24)
n=0
where o
n+1,n
Sn—‘rl,n — TTE (25)

1+ R”‘H ”Rg’g_le—ﬂwnkxn

The optimization process determines the widths wg and we; that
minimize the coefficient T%OE, i.e., the power transmitted from the
first layer (n = 3, the central region of air) to the metallic medium.
By doing so, ohmic losses are minimized and the power transmitted
to the dielectric slabs is considerably reduced, increasing the field
confinement.

Results

The E-plane loaded rectangular waveguide shown in Section 2 has been
optimized at 10 GHz. The central region dimensions of this waveguide
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are wqo = 22.86 mm and A = 10.16 mm. The propagation constant of
the fundamental mode in the equivalent rectangular metallic waveguide
is f = 158.25rad/m. From this propagation constant, the angle of
incidence determined with (21) is # = 49.08°.

Figure 9(a) shows the transmission coefficient T3% computed with
(24) for different widths wy and wg;. From this figure, it can be easily
deduced the combination of widths wgq and wg1 that give the minimum
transmission coefficient. In this example, the optimized widths are:
wg = 5.87mm and w,; = 11.44 mm.

The dispersion diagram of the optimal E-plane loaded rectangular
waveguide has been computed with (11) and (12). The result is shown
in Fig. 9(b). As can be observed, now, a higher number of modes
propagate along the optimized waveguide. However, it must be noted
that, from 7 to 10 GHz, there are only three propagating modes: TEZf,

350
‘_“ —TEY
300 R
_250 TESS
= =150 —TEso
= =% g
100 2!
—

50

0 5 10 15 20 0 3 9 1 11 12 13
W, [mm] freq [GHz]
(a) (b)

Figure 9. Optimization of the multilayer structure and dispersion
diagram in the optimized waveguide. (a) Transmission coefficient.
(b) Dispersion diagram.
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Figure 10. Comparison of TEZ§ mode in the optimized and non-
optimized E-plane loaded rectangular waveguide. (a) Electric field
(Ey) cross section. (b) Total losses.
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TESS and TESS.

Figure 10(a) compares the electric field distribution of mode
TES5; in the optimized waveguide and in the non-optimized waveguide
(described in Section 2). As it was desired, the optimized mode
presents a higher confinement than the non-optimized mode. Also,
in the optimized design, the field completely vanishes in the interface
between the central region and the dielectric slabs, and lateral lobes
are lower than in the non-optimized design (note that dashed lines
indicate limits of regions in the optimized design).

Since the electric and magnetic field of the optimized mode
decrease in lateral regions, and power is confined in the central region
of air, both conductor and dielectric losses decrease. Fig. 10(b) shows
a comparison of total losses (o = @+ ay) in the optimized and non-
optimized waveguides. From this comparison, it may be concluded that
a considerably reduction in total losses is achieved at the frequency of
interest by means of the proposed optimization.

5. PRACTICAL RESULTS

The E-plane loaded rectangular waveguide has been fabricated to proof
the validity of the proposed optimization algorithm. The prototype
has been designed to work in the Ka-band. The dimensions of the
standard WR-28 waveguide (7.112mm x 3.556 mm) have been used
for the central region of air. The material for the lateral dielectric
layers is the Arlon’s substrate AD1000, with permittivity €, = 10.2 and
tand = 0.0025. The optimization of lateral layers gives the following
dimensions: wg = 0.78 mm and wy,; = 3.57 mm.

A 3D-view of the manufactured prototype is shown in Fig. 11.
Note that, in this picture, the upper metallic wall has been removed
to be able to observe the internal E-plane loaded structure. In these
pictures, it can be seen the internal air region confined by the vertical
dielectric slabs and the outer air regions. The conductor used for the
outer metallic walls is Aluminum (o = 3.8 x 107 S/m).

The internal configuration may be better observed in Fig. 12.
Here, it can be seen the wider central region of air and the lateral
dielectric and air regions. The transition from the WR-28 waveguide
to the E-plane loaded waveguide may be observed on input and output
ports. This transition injects directly the fundamental mode of the
feeding rectangular waveguide into the central region of air in the
proposed waveguide, taking advantage of the similar field distribution
in both cases.

The optimized FE-plane loaded rectangular waveguide has been
simulated with Ansys HFSS [26]. Fig. 13(a) depicts the simulated
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structure, including the input and output transitions. Fig. 13(b) shows
the electric field in the waveguide on a longitudinal section at 30.5 GHz.
As can be observed, the electric field is mostly confined inside the
central region of air.

The S-parameters of the fabricated prototype have been measured
and compared to simulations. Fig. 14 shows the comparison for both,
the S11 and So; parameters. In Fig. 14(a) it can be seen that the
measured S7; parameter is quite similar to the simulated one. Despite
the measured Si; is a bit higher than the simulated Si; parameter,
measurements are below —20dB in all the band.

In Fig. 14(b), measured and simulated Ss; parameters are
compared. From this figure it can be concluded that measured
results confirm the simulated predictions. The measured transmission
coefficient presents a variation of less than 0.4 dB caused by the effect
of transitions. The most important result, however, is the fact that
losses are quite low due to the power confinement in the central air
region. Considering the total length of the waveguide (11 cm) and the
losses introduced by the input and output transitions, an attenuation
of around 0.03dB/cm may be determined from results in Fig. 14.

6. E-PLANE LOADED RECTANGULAR WAVEGUIDE
AT HIGH FREQUENCIES

The E-plane loaded rectangular waveguide presents valuable features
at low frequencies due to the strong confinement of field in the
central region of air [3,4]. Also, if a low-loss dielectric is used, total
attenuation of the waveguide may be lower than the attenuation of a
rectangular waveguide. This improvement is particularly significant at
high frequencies, e.g., in the submillimeter-wave band or in the THz
band.

At these frequencies, conductors present high skin-depth losses

Figure 11. FE-plane loaded rectangular waveguide fabricated in the
Ka-band.
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Figure 12. Top view of the E-plane loaded rectangular waveguide
fabricated in the Ka-band.

Port 1

(@) (b)

Figure 13. Optimized E-plane loaded waveguide simulated with
HFSS. (a) Simulated prototype. (b) Simulated electric field.
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Figure 14. Comparison of simulated and measured (a) S11 and (b) So1
parameters in the fabricated E-plane loaded waveguide in the Ka-band.

and dielectrics have a high power absorption [11], which increases the
attenuation of any waveguide [12]. This makes common waveguides,
e.g., the metallic rectangular or circular waveguides, impractical.
Several low-loss waveguides have been proposed to solve this
problem, e.g., the dielectric circular waveguide [27], the elliptical
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polymer tube [28], the Ribbon waveguide [29] or the single-wire
waveguide [30]. All these waveguides present low attenuation at
high frequencies, but are affected by high losses on bends and
discontinuities.

The FE-plane loaded rectangular waveguide may solve these
problems while keeping the attenuation below those of common
waveguides at high frequencies. This improvement is similar to that
of the metallo-dielectric EBG waveguide [11], where the energy is also
confined by a multilayer structure, but in a circular waveguide. The
main advantage of the waveguide under study lies in the rectangular
shape of the waveguide, suitable to easily design and manufacture
devices and antennas.

The proposed optimization algorithm has been used to design the
E-plane loaded rectangular waveguide at 1 THz. The dimensions of the
central region of air are 240 pum x 120 um. The materials used for the
lateral layers are: high resistivity silicon (¢, = 11.58 and tan § = 0.0003
at 1 THz) [31] for the dielectric slabs (regions r = 2 and r = 4) and air
(e, = 1) for the outer layers (regions r = 1 and r = 5). The optimized
dimensions, according to Fig. 1 notation, are: wy = 22.66 um and
Wq1 = 120.48 pm.

The resulting structure has been simulated with Ansys HFSS [26].
Fig. 15 shows both, the structure and the electric field distribution in
the waveguide. As in previous designs, the energy is mainly confined
in the central region of air.

The total attenuation of the optimized E-plane loaded rectangular
waveguide at 1 THz assuming a gold shielding (¢ = 4.098 x 107 S/m,
shown in Fig. 15(a) as a red sheet) is 0.7dB/cm, which means a
33% reduction with regard to the attenuation of a fully metallic

@ (b)

Figure 15. E-plane loaded rectangular waveguide at THz frequencies.
(a) Structure. (b) Electric field.
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Figure 16. Attenuation of the E-plane loaded rectangular waveguide
optimized at 1THz and scaled at different frequencies. (a) Total
attenuation. (b) Partial attenuation in the proposed waveguide.

rectangular waveguide (@ = 0.91dB/cm) with the same dimensions
(240 pm x 120 pm).

The optimized design has been scaled at different frequencies
keeping the same dielectric material (high resistivity silicon). The
ailm is to know the frequency at which the optimized FE-plane
loaded rectangular waveguide presents lower losses than a conventional
rectangular waveguide with the same internal dimensions. Fig. 16(a)
shows the comparison between these two waveguides. From this figure
it may be concluded that the higher the frequency, the larger the
reduction of attenuation in the optimized E-plane loaded rectangular
waveguide. In addition, although it cannot be clearly seen in Fig. 16(a),
a study of this comparison at low frequencies lets us conclude that
the proposed waveguide presents lower losses than the equivalent
rectangular metallic waveguide from 20 GHz on.

Losses are jointly produced by the outer metallic walls and the
dielectric materials. However, by looking at Fig. 16(b) it can be clearly
seen that, since a low-loss dielectric is used, the dielectric attenuation
is extremely low, and the main contribution to the total losses comes
from the conductor, which are located on the upper and lower metallic
walls of the central region of air. If a higher reduction of losses is
desired, attention should be focused on the elimination of these losses,
though this study is beyond the scope of this paper.

Finally, it is worth noting that the E-plane loaded rectangular
waveguide may be bent or used to efficiently design devices. This
possibility becomes specially important at high frequencies, where
devices are hardly designed with any other kind of waveguide due to
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(@ (b)

Figure 17. 90° bend on the F-plane loaded rectangular waveguide.
(a) Structure. (b) Electric field.

@ (b)

Figure 18. Coupler designed with the E-plane loaded rectangular
waveguide. (a) Structure. (b) Electric field.

technology problems or high losses.

Figure 17 shows a curve in the FE-plane loaded rectangular
waveguide at 1 THz (outer metallic shielding is omitted in the picture
to show the internal configuration). In this figure, it can be clearly
seen that field is completely confined along the curve and a very low
coupling is produced to other modes. From this behaviour it may be
assumed a quite good performance in using the proposed waveguide to
design other types of devices, e.g., power dividers or power distributors.

Figure 18 shows a directional coupler designed with the optimized
E-plane loaded rectangular waveguide (outer metallic shielding is again
omitted to show the internal configuration). In Fig. 18(a), red slabs
are metallic walls inserted to adjust the coupling between the different
ports (clockwise from the lower port: input, isolated, coupled and
through). Fig. 18(b) shows the electric field in the coupler where, as
can be observed, the field is correctly distributed from the input to the
coupled and through ports. The behaviour of this coupler is similar to
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a quadrature hybrid at 1 THz, with a directivity of 17dB, a coupling
factor of 3.73dB, and 3.45dB of insertion losses, with a bandwidth
for these parameters of 10%. These results show the wide range of
possibilities that an optimized E-plane loaded rectangular waveguide
may offer.

7. CONCLUSIONS

The E-plane loaded rectangular waveguide with symmetrical dielectric
slabs has been analytically studied. The attention has been focused on
the study of TE* modes, the lower-order modes of this waveguide.
By looking at the power distribution of these modes, interesting
characteristics have been found for one of them, the TES§ mode which,
despite not being the fundamental mode, confines the energy in the
central air region.

This paper proposes a method to optimize the lateral layers in
the E-plane loaded rectangular waveguide. The aim of the method
is to maximize the power confinement of TES§ mode in the central
region and, hence, reduce its attenuation. The proposed optimization
is faster than the analytical optimization of the waveguide since the
computation of propagation constants and the integration of field are
avoided.

Results show the reduction of attenuation of mode TESS in the
optimized waveguide. These results have been tested in a practical
case. Measurements let us conclude that the proposed procedure gives
quite good results according to the high power confinement simulated
with HFSS and the high similarity between simulated and measured
S91 parameter.

Finally, the good behaviour of the waveguide at THz frequencies
has been pointed out. At these frequencies, the proposed procedure not
only allows the maximization of power confinement, but also allows the
design of waveguides with lower losses than conventional waveguides.
This fact, in conjunction with its good behaviour on bends, opens
new possibilities for the design of practical low-loss waveguides at THz
frequencies and for the design of efficient devices at these frequencies.
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