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Abstract—Within the generalized Lorenz–Mie theory framework,
an analytic solution to the scattering by a conducting spheroid
with non-confocal chiral coating, for incidence of an axial Gaussian
beam, is presented. To overcome the difficulty of non-confocal
boundary conditions, a theoretical procedure is developed by virtue
of a transformation between the spherical and spheroidal vector wave
functions. Numerical results of the normalized differential scattering
cross section are shown for chiral-coated conducting spheroids.

1. INTRODUCTION

Some investigations have been carried out on the electromagnetic
wave scattering by spheroids. Aside from providing exact analytic
solutions for a large number of real objects which can be modeled
by spheroids or layered spheroids with appropriate axial ratios, they
are valuable in the evaluation of approximate and numerical solutions.
By using the method of separation of variables for the vector wave
functions in the spheroidal coordinate system, Asano and Yamamoto
studied the scattering of a linearly polarized plane electromagnetic
wave by a homogeneous isotropic spheroid with any size and refractive
index [1, 2]. Sebak and Sinha examined the same case, but for a
conducting spheroidal object with a confocal dielectric coating [3].
Layered spheroids have been treated by the extended boundary
condition method (EBCM) [4]. Li et al. provided a solution of the
electromagnetic radiation from a prolate spheroidal antenna enclosed
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in a confocal radome [5]. For an incident shaped beam, Barton has
calculated the intensity distributions internal and external to a layered
spheroid with arbitrary illumination, in which the method used is that
of describing the incident fields by surface integrals [6]. Within the
framework of the generalized Lorenz-Mie theory (GLMT), Han et al.
investigated the electromagnetic scattering of a shaped beam by a
spheroid at parallel incidence [7, 8], and the general case was analyzed
by Xu et al. of an arbitrarily oriented, located, and shaped beam
scattered by a homogeneous spheroid [9, 10].

A chiral or optically active medium is characterized by different
phase velocities for the right and left circularly polarized waves, and
a linearly polarized wave undergoes a rotation of its polarization
as it propagates inside this medium [11, 12]. The interaction of
electromagnetic waves with chiral media has been studied over the
years for many applications involving antennas and arrays, antenna
radomes, microstrip substrates, and waveguides [13–16]. For normal
incidence of a TE or TM plane wave, analytic solutions have been
presented by Kluskens and Newman to the scattering by a layered
chiral circular cylinder [17], and by Khatir et al. to the scattering
by a chiral elliptic cylinder [18]. Based on the EBCM, a theoretical
procedure is devised by Lakhtakia et al. to examine the plane wave
scattering and absorption characteristics of chiral objects [19]. A
software package was developed by Demir et al. to calculate the plane-
wave scattering by a chiral sphere [20]. The method of moments
technique has been introduced by Worasawate et al., and the bi-
isotropic finite difference time domain technique by Semichaevsky et
al. for the numerical analysis of electromagnetic scattering from a
homogeneous chiral body [21, 22]. Yokota et al. studied the scattering
of a Hermite-Gaussian beam by a chiral sphere by using the relations
between the multipole fields and the conventional Hermite-Gaussian
beam [23]. In our recent papers [24, 25], a great effort has been made
to examine Gaussian beam scattering by a coated spheroid. In order
to analyze theoretically the interaction between the chiral medium
and shaped beam in the spheroidal coordinates, this paper, based on
our previous works, is devoted to the presentation of axial Gaussian
beam (a focused TEM00 mode laser beam) scattering by a chiral-coated
conducting spheroid.

The paper is organized as follows. Section 2 provides the
theoretical procedure for the determination of the scattered fields of
an axial Gaussian beam by a conducting spheroid with a non-confocal
chiral coating. In Section 3, numerical results of axial Gaussian beam
scattering properties are presented. Section 4 is a conclusion.
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Figure 1. The Cartesian coordinate system Oxyz is obtained by a
translation of the Gaussian beam coordinate system O′x′y′z′ along
the z′ axis, and origin O is at (0, 0, z0) in O′x′y′z′. A chiral-coated
conducting spheroid is natural to Oxyz.

2. FORMULATION

2.1. Expansion of Axial Gaussian Beam in Spheroidal
Coordinates

As shown in Fig. 1, an incident Gaussian beam propagates in free
space and from the negative z′ to the positive z′ axis of the Cartesian
coordinate system O′x′y′z′, with the middle of its beam waist located
at origin O′. The system Oxyz is obtained by a translation of O′x′y′z′
along the z′ axis, so that origin O is on the O′z′ axis, i.e., at (0, 0, z0) in
O′x′y′z′. The center of a chiral-coated conducting spheroid is located
at origin O, and the major axis is along the z axis (axial case). The
conducting spheroid surface and the outer surface of the chiral coating
are concentric, but not necessarily confocal. The semifocal distance,
semimajor and semiminor axes are denoted by f1, a1 and b1 for the
conducting spheroid surface, and by f2, a2 and b2 for the outer surface
of the chiral coating. In this paper, we assume that the time-dependent
part of the electromagnetic fields is exp(−iωt).

The electromagnetic fields of an axial Gaussian beam, for the TE
mode, can be expanded in terms of the spheroidal vector wave functions
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attached to the chiral coating, as follows [1, 24, 25]:

Ei = −E0

∞∑

n=1

inGn

[
Mr(1)

e1n (k0f2) + iNr(1)
o1n (k0f2)

]
(1)

Hi = E0
1
η0

∞∑

n=1

inGn

[
iNr(1)

e1n (k0f2)−Mr(1)
o1n (k0f2)

]
(2)

where η0 =
√

µ0/ε0 is the free-space wave impedance, and the beam
shape coefficients Gn can be expressed explicitly as

Gn =
2

N1n(k0f2)

∞∑

r=0,1

′d1n
r (k0f2)gr+1 (3)

N1n(k0f2) = 2
∞∑

r=0,1

′ (r + 2)!
(2r + 3)r!

[
d1n

r (k0f2)
]2 (4)

where the prime over the summation sign indicates that the summation
is over even values of r when n − 1 is even and over odd values of r
when n− 1 is odd.

When the symmetrized Davis-Barton model of the Gaussian
beam is used [26], the gr+1 coefficients (axial Gaussian beam shape
coefficients in the spherical coordinates attached to Oxyz) in Eq. (3)
can be computed by using the localized approximation as [27]

gr+1 =
1

1 + 2isz0/w0
exp(ik0z0) exp

[−s2(r + 1 + 1/2)2

1 + 2isz0/w0

]
(5)

where s = 1
k0w0

, and w0 is the beam waist radius.
In Eq. (4) d1n

r (k0f2) are the expansion coefficients of the spheroidal
angle functions [28].

For the TM mode, the corresponding expansions can be written
as

Ei = E0

∞∑

n=1

inGn

[
Mr(1)

o1n (k0f2)− iNr(1)
e1n (k0f2)

]
(6)

Hi = −E0
1
η0

∞∑

n=1

inGn

[
iMr(1)

o1n (k0f2) + Nr(1)
e1n (k0f2)

]
(7)

2.2. Expansions of Electromagnetic Fields within the Chiral
Coating

The constitutive relations for a chiral medium can be described by [11–
14]

D = ε0εrE + iκ
√

µ0ε0H (8)



Progress In Electromagnetics Research, Vol. 135, 2013 699

B = µ0µrH− iκ
√

µ0ε0E (9)

where κ is the chirality parameter.
The electromagnetic fields in a chiral medium (E, H) are the sum

of the right-handed waves (E+, H+) and left-handed waves (E−, H−)
[
E
H

]
=

[
E+

H+

]
+

[
E−
H−

]
(10)

where

E± = ±iη0

√
µr

εr
H± = ±iηH± (11)

The uncoupled source-free wave equation in chiral media is

∇2

[
E+

E−

]
+

[
k2

+E+

k2−E−

]
=

[
0
0

]
(12)

where
k± = k0(

√
µrεr ± κ) (13)

The curl and divergence of (E+,E−) are given by

∇×
[
E+

E−

]
=

[
k+E+

−k−E−

]
(14)

∇ ·
[
E+

E−

]
=

[
0
0

]
(15)

To represent the fields within the chiral coating, it is necessary that
the spherical vector wave functions be combined to form the right and
left circularly polarized vector wave functions mr(j)

e
omn

(k+r)+nr(j)
e
omn

(k+r)

and mr(j)
e
omn

(k−r) − nr(j)
e
omn

(k−r) (j = 1 or 3 according to the spherical

Bessel functions of the first or third kind used in them) [29], which
satisfy Eqs. (12), (14) and (15) in a source-free chiral region. Then, by
following the expansions expressions of an axial Gaussian beam as in
Eqs. (1), (2) or in Eqs. (6), (7), the electromagnetic fields within the
chiral coating can be expanded in the form

Ew

= E0

∞∑

n=1

in
{
δn

[
mr(1)

e1n (k+r)+nr(1)
e1n (k+r)

]
+δ′n

[
mr(3)

e1n (k+r)+nr(3)
e1n (k+r)

]

+χn

[
mr(1)

o1n (k+r) + nr(1)
o1n (k+r)

]
+ χ′n

[
mr(3)

o1n (k+r) + nr(3)
o1n (k+r)

]

+τn

[
mr(1)

e1n (k−r)− nr(1)
e1n (k−r)

]
+ τ ′n

[
mr(3)

e1n (k−r)− nr(3)
e1n (k−r)

]
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+γn

[
mr(1)

o1n (k−r)−nr(1)
o1n (k−r)

]
+γ′n

[
mr(3)

o1n (k−r)−nr(3)
o1n (k−r)

]}
(16)

Hw

= E0
i

η

∞∑

n=1

in
{
−δn

[
mr(1)

e1n(k+r)+nr(1)
e1n(k+r)

]
−δ′n

[
mr(3)

e1n(k+r)+nr(3)
e1n(k+r)

]

−χn

[
mr(1)

o1n (k+r) + nr(1)
o1n (k+r)

]
−χ′n

[
mr(3)

o1n (k+r) + nr(3)
o1n (k+r)

]

+τn

[
mr(1)

e1n (k−r)−nr(1)
e1n (k−r)

]
+ τ ′n

[
mr(3)

e1n (k−r)−nr(3)
e1n (k−r)

]

+γn

[
mr(1)

o1n (k−r)−nr(1)
o1n (k−r)

]
+γ′n

[
mr(3)

o1n (k−r)− nr(3)
o1n (k−r)

]}
(17)

In order to apply the boundary conditions over the conducting
spheroid surface and over the outer surface of the chiral coating,
which are generally non-confocal, i.e., in different spheroidal coordinate
systems, it is important that the fields expansions in Eqs. (16), (17) be
transformed into their counterparts in terms of the spheroidal vector
wave functions. We have found that a transformation between the
spherical and spheroidal vector wave functions can be used to achieve
this, which is of the form [28]

[m(kr) n(kr)]r(j)e
o1n

=
2n(n + 1)

2n + 1

∞∑

l=1,2

′ il−n

N1l(fk)
d1l

n−1(kf) [M(kf) N(kf) ]r(j)e
o1l

(18)

where the superscript j takes, as already mentioned, the value 1 or 3
according to the radial functions R

(j)
mn(kf) and R

(j)
mn(kr) of the first or

third kind.
Substituting Eq. (18) into Eq. (16), interchanging the summation

order
∞∑

n=1

∞∑
l=1,2

′ with
∞∑
l=1

∞∑
n=1,2

′ and then replacing l by n and n by l,

Eq. (16) or the expansion of the electric field within the chiral coating
in terms of the spheroidal vector wave functions can be written as
follows:

Ew = E0

∞∑

n=1

in
{

An(k+f)
[
Mr(1)

e1n (k+f) + Nr(1)
e1n (k+f)

]
+ A′n(k+f)

[
Mr(3)

e1n (k+f) + Nr(3)
e1n (k+f)

]
+ Bn(k+f)

[
Mr(1)

o1n (k+f) + Nr(1)
o1n (k+f)

]

+B′
n(k+f)l

[
Mr(3)

o1n (k+f) + Nr(3)
o1n (k+f)

]
+ En(k−f)

[
Mr(1)

e1n (k−f)
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−Nr(1)
e1n (k−f)

]
+ E′

n(k−f)
[
Mr(3)

e1n (k−f)−Nr(3)
e1n (k−f)

]
+ Fn(k−f)

[
Mr(1)

o1n (k−f)−Nr(1)
o1n (k−f)

]
+F ′

n(k−f)l

[
Mr(3)

o1n (k−f)−Nr(3)
o1n (k−f)

]}
(19)

where

An(k+f) =
1

N1n(k+f)

∞∑

l=1,2

′ 2l(l + 1)
2l + 1

d1n
l−1(k+f)δl (20)

En(k−f) =
1

N1n(k−f)

∞∑

l=1,2

′ 2l(l + 1)
2l + 1

d1n
l−1(k−f)τl (21)

and A′n(k+f) is obtained by replacing δl in Eq. (20) with δ′l, Bn(k+f)
with χl, B′

n(k+f) with χ′l, and E′
n(k−f) in Eq. (21) with τ ′l , Fn(k+f)

with γl, F ′
n(k+f) with γ′l.

The corresponding expansion of the magnetic field within the
chiral coating can also be obtained by following the same procedure.

2.3. Axial Gaussian Beam Scattering by a Chiral-coated
Conducting Spheroid

By considering the expansions expressions of an axial Gaussian beam
and of the fields within the chiral coating, the scattered fields can be
expanded as follows:

Es = E0

∞∑

n=1

in
[
βnM

r(3)
e1n (k0f2)+β′nM

r(3)
o1n (k0f2)

−iα′nN
r(3)
e1n (k0f2)+iαnN

r(3)
o1n (k0f2)

]
(22)

Hs =
E0

η0

∞∑

n=1

in
[
−iβnN

r(3)
e1n (k0f2)− iβ′nN

r(3)
o1n (k0f2)

−α′nM
r(3)
e1n (k0f2) + αnM

r(3)
o1n (k0f2)

]
(23)

The unknown expansion coefficients of the scattered fields αn, α′n,
βn and β′n in Eqs. (22), (23), and of the internal fields δn, δ′n, χn, χ′n,
τn, τ ′n, γn and γ′n in Eqs. (16), (17) can be determined by using the
boundary conditions, i.e., continuity of the tangential components of
the electromagnetic fields over the surface ζ = ζ2 and vanishing of the
tangential components of the electric field over the surface ζ = ζ1, with
ζ2 and ζ1 as the radial coordinates of the outer surface of the chiral
coating and of the conducting spheroid surface, respectively.
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The boundary conditions at ζ = ζ2 and ζ = ζ1 are described by

Ei
η + Es

η = Ew
η , Ei

φ + Es
φ = Ew

φ

H i
η + Hs

η = Hw
η , H i

φ + Hs
φ = Hw

φ

}
at ζ = ζ2 (24)

and
Ew

η = 0, Ew
φ = 0 at ζ = ζ1 (25)

By virtue of the fields expansions, Eq. (24) can be expressed as
∞∑

n=1

inAn(k+f2)U
(1),t
1n (k+f2) +

∞∑

n=1

inA′n(k+f2)U
(3),t
1n (k+f2)

−
∞∑

n=1

iniBn(k+f2)V
(1),t
1n (k+f2)−

∞∑

n=1

iniB′
n(k+f2)V

(3),t
1n (k+f2)

+
∞∑

n=1

inEn(k−f2)U
(1),t
1n (k−f2) +

∞∑

n=1

inE′
n(k−f2)U

(3),t
1n (k−f2)

+
∞∑

n=1

iniFn(k−f2)V
(1),t
1n (k−f2) +

∞∑

n=1

iniF ′
n(k−f2)V

(3),t
1n (k−f2)

=
∞∑

n=1

inGn

[
U

(1),t
1n (k0f2)+V

(1),t
1n (k0f2)

]

+
∞∑

n=1

in
[
βnU

(3),t
1n (k0f2) +αnV

(3),t
1n (k0f2)

]
(26)

∞∑

n=1

iniAn(k+f2)V
(1),t
1n (k+f2) +

∞∑

n=1

iniA′n(k+f2)V
(3),t
1n (k+f2)

+
∞∑

n=1

inBn(k+f2)U
(1),t
1n (k+f2) +

∞∑

n=1

inB′
n(k+f2)U

(3),t
1n (k+f2)

−
∞∑

n=1

iniEn(k−f2)V
(1),t
1n (k−f2)−

∞∑

n=1

iniE′
n(k−f2)V

(3),t
1n (k−f2)

+
∞∑

n=1

inFn(k−f2)U
(1),t
1n (k−f2) +

∞∑

n=1

inF ′
n(k−f2)U

(3),t
1n (k−f2)

=
∞∑

n=1

in
[
β′nU

(3),t
1n (k0f2) + α′nV

(3),t
1n (k0f2)

]
(27)
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∞∑

n=1

inAn(k+f2)X
(1),t
1n (k+f2) +

∞∑

n=1

inA′n(k+f2)X
(3),t
1n (k+f2)

−
∞∑

n=1

iniBn(k+f2)Y
(1),t
1n (k+f2)−

∞∑

n=1

iniB′
n(k+f2)Y

(3),t
1n (k+f2)

+
∞∑

n=1

inEn(k−f2)X
(1),t
1n (k−f2) +

∞∑

n=1

inE′
n(k−f2)X

(3),t
1n (k−f2)

+
∞∑

n=1

iniFn(k−f2)Y
(1),t
1n (k−f2) +

∞∑

n=1

iniF ′
n(k−f2)Y

(3),t
1n (k−f2)

=
∞∑

n=1

inGn[X(1),t
1n (k0f2) + Y

(1),t
1n (k0f2)]

+
∞∑

n=1

in
[
βnX

(3),t
1n (k0f2) + αnY

(3),t
1n (k0f2)

]
(28)

∞∑

n=1

iniAn(k+f2)Y
(1),t
1n (k+f2) +

∞∑

n=1

iniA′n(k+f2)Y
(3),t
1n (k+f2)

+
∞∑

n=1

inBn(k+f2)X
(1),t
1n (k+f2) +

∞∑

n=1

inB′
n(k+f2)X

(3),t
1n (k+f2)

−
∞∑

n=1

iniEn(k−f2)Y
(1),t
1n (k−f2)−

∞∑

n=1

iniE′
n(k−f2)Y

(3),t
1n (k−f2)

+
∞∑

n=1

inFn(k−f2)X
(1),t
1n (k−f2) +

∞∑

n=1

inF ′
n(k−f2)X

(3),t
1n (k−f2)

=
∞∑

n=1

in
[
β′nX

(3),t
1n (k0f2) + α′nY

(3),t
1n (k0f2)

]
(29)

∞∑

n=1

inAn(k+f2)V
(1),t
1n (k+f2) +

∞∑

n=1

inA′n(k+f2)V
(3),t
1n (k+f2)

−
∞∑

n=1

iniBn(k+f2)U
(1),t
1n (k+f2)−

∞∑

n=1

iniB′
n(k+f2)U

(3),t
1n (k+f2)

+
∞∑

n=1

inEn(k−f2)V
(1),t
1n (k−f2) +

∞∑

n=1

inE′
n(k−f2)V

(3),t
1n (k−f2)
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+
∞∑

n=1

iniFn(k−f2)U
(1),t
1n (k−f2) +

∞∑

n=1

iniF ′
n(k−f2)U

(3),t
1n (k−f2)

=
η

η0

∞∑

n=1

inGn

[
V

(1),t
1n (k0f2) + U

(1),t
1n (k0f2)

]

+
η

η0

∞∑

n=1

in
[
βnV

(3),t
1n (k0f2) + αnU

(3),t
1n (k0f2)

]
(30)

∞∑

n=1

iniAn(k+f2)U
(1),t
1n (k+f2) +

∞∑

n=1

iniA′n(k+f2)U
(3),t
1n (k+f2)

+
∞∑

n=1

inBn(k+f2)V
(1),t
1n (k+f2) +

∞∑

n=1

inB′
n(k+f2)V

(3),t
1n (k+f2)

−
∞∑

n=1

iniEn(k−f2)U
(1),t
1n (k−f2)−

∞∑

n=1

iniE′
n(k−f2)U

(3),t
1n (k−f2)

+
∞∑

n=1

inFn(k−f2)V
(1),t
1n (k−f2) +

∞∑

n=1

inF ′
n(k−f2)V

(3),t
1n (k−f2)

=
η

η0

∞∑

n=1

in
[
β′nV

(3),t
1n (k0f2) + α′nU

(3),t
1n (k0f2)

]
(31)

∞∑

n=1

inAn(k+f2)Y
(1),t
1n (k+f2) +

∞∑

n=1

inA′n(k+f2)Y
(3),t
1n (k+f2)

−
∞∑

n=1

iniBn(k+f2)X
(1),t
1n (k+f2)−

∞∑

n=1

iniB′
n(k+f2)X

(3),t
1n (k+f2)

+
∞∑

n=1

inEn(k−f2)Y
(1),t
1n (k−f2) +

∞∑

n=1

inE′
n(k−f2)Y

(3),t
1n (k−f2)

+
∞∑

n=1

iniFn(k−f2)X
(1),t
1n (k−f2) +

∞∑

n=1

iniF ′
n(k−f2)X

(3),t
1n (k−f2)

=
η

η0

∞∑

n=1

inGn

[
Y

(1),t
1n (k0f2) + X

(1),t
1n (k0f2)

]

+
η

η0

∞∑

n=1

in
[
βnY

(3),t
1n (k0f2) + αnX

(3),t
1n (k0f2)

]
(32)
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∞∑

n=1

iniAn(k+f2)X
(1),t
1n (k+f2) +

∞∑

n=1

iniA′n(k+f2)X
(3),t
1n (k+f2)

+
∞∑

n=1

inBn(k+f2)Y
(1),t
1n (k+f2) +

∞∑

n=1

inB′
n(k+f2)Y

(3),t
1n (k+f2)

−
∞∑

n=1

iniEn(k−f2)X
(1),t
1n (k−f2)−

∞∑

n=1

iniE′
n(k−f2)X

(3),t
1n (k−f2)

+
∞∑

n=1

inFn(k−f2)Y
(1),t
1n (k−f2) +

∞∑

n=1

inF ′
n(k−f2)Y

(3),t
1n (k−f2)

=
η

η0

∞∑

n=1

in
[
β′nY

(3),t
1n (k0f2) + α′nX

(3),t
1n (k0f2)

]
(33)

and Eq. (25) as
∞∑

n=1

inAn(k+f1)U
(1),t
1n (k+f1) +

∞∑

n=1

inA′n(k+f1)U
(3),t
1n (k+f1)

−
∞∑

n=1

iniBn(k+f1)V
(1),t
1n (k+f1)−

∞∑

n=1

iniB′
n(k+f1)V

(3),t
1n (k+f1)

+
∞∑

n=1

inEn(k−f1)U
(1),t
1n (k−f1) +

∞∑

n=1

inE′
n(k−f1)U

(3),t
1n (k−f1)

+
∞∑

n=1

iniFn(k−f1)V
(1),t
1n (k−f1)+

∞∑

n=1

iniF ′
n(k−f1)V

(3),t
1n (k−f1)=0 (34)

∞∑

n=1

iniAn(k+f1)V
(1),t
1n (k+f1) +

∞∑

n=1

iniA′n(k+f1)V
(3),t
1n (k+f1)

+
∞∑

n=1

inBn(k+f1)U
(1),t
1n (k+f1) +

∞∑

n=1

inB′
n(k+f1)U

(3),t
1n (k+f1)

−
∞∑

n=1

iniEn(k−f1)V
(1),t
1n (k−f1)−

∞∑

n=1

iniE′
n(k−f1)V

(3),t
1n (k−f1)

+
∞∑

n=1

inFn(k−f1)U
(1),t
1n (k−f1)+

∞∑

n=1

inF ′
n(k−f1)U

(3),t
1n (k−f1)=0 (35)

∞∑

n=1

inAn(k+f1)X
(1),t
1n (k+f1) +

∞∑

n=1

inA′n(k+f1)X
(3),t
1n (k+f1)
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−
∞∑

n=1

iniBn(k+f1)Y
(1),t
1n (k+f1)−

∞∑

n=1

iniB′
n(k+f1)Y

(3),t
1n (k+f1)

+
∞∑

n=1

inEn(k−f1)X
(1),t
1n (k−f1) +

∞∑

n=1

inE′
n(k−f1)X

(3),t
1n (k−f1)

+
∞∑

n=1

iniFn(k−f1)Y
(1),t
1n (k−f1) +

∞∑

n=1

iniF ′
n(k−f1)Y

(3),t
1n (k−f1) = 0 (36)

∞∑

n=1

iniAn(k+f1)Y
(1),t
1n (k+f1) +

∞∑

n=1

iniA′n(k+f1)Y
(3),t
1n (k+f1)

+
∞∑

n=1

inBn(k+f1)X
(1),t
1n (k+f1) +

∞∑

n=1

inB′
n(k+f1)X

(3),t
1n (k+f1)

−
∞∑

n=1

iniEn(k−f1)Y
(1),t
1n (k−f1)−

∞∑

n=1

iniE′
n(k−f1)Y

(3),t
1n (k−f1)

+
∞∑

n=1

inFn(k−f1)X
(1),t
1n (k−f1) +

∞∑

n=1

inF ′
n(k−f1)X

(3),t
1n (k−f1) = 0 (37)

The parameters U
(j),t
1n , V

(j),t
1n , X

(j),t
1n , Y

(j),t
1n (j = 1 or 3 depending

on the usage of the radial functions R
(j)
mn(kf) in them of the first

or third kind) are provided by Asano and Yamamoto in [1], and
Eqs. (26)–(37) are valid for each of t ≥ 0. We can truncate the
infinite system consisting of Eqs. (26)–(37) by setting n = 1, 2, . . . , N ,
t = 0, 1, . . . , N − 1, N being a suitable large number for a convergent
solution, and then the total number of unknown expansion coefficients
of the scattered and internal fields is 12N . To determine the unknown
coefficients, each summation in Eqs. (26)–(37) is written in a matrix

form. The summation
N∑

n=1
inAn(k+f2)U

(1),t
1n (k+f2) in Eq. (26), for

example, is written as [inU
(1),t
1n (k+f2)]N×N [An(k+f2)]N×1. By doing

so, Eqs. (26)–(37) give a 12N × 12N system of equations. Then,
the standard numerical techniques, such as an iterative procedure or
inverse matrix method, may be employed to solve for the unknown
coefficients [1, 24, 25].

3. NUMERICAL RESULTS

Of practical interest is the behavior of the scattered wave at relatively
large distances from the scatterer (far field), which can be deduced by
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taking the asymptotic form of Es, as k0f2ζ → ∞. When neglected
terms of order higher than 1/r in Mr(3)

e
o1n

(k0f2) and Nr(3)
e
o1n

(k0f2), as

k0f2ζ →∞, the asymptotic form of the scattered electric field Es can
be obtained from Eq. (22), which is of the form [1, 24, 25]

Es
η = −E0

iλ

2πr
exp

(
i
2π

λ
r

)
T1(θ, φ) (38)

Es
φ = E0

iλ

2πr
exp

(
i
2π

λ
r

)
T2(θ, φ) (39)

where

T1(θ, φ) =
∞∑

n=1

{[
αn

dS1n(k0f2, cos θ)
dθ

+ βn
S1n(k0f2, cos θ)

sin θ

]
sinφ

−
[
α′n

dS1n(k0f2, cos θ)
dθ

+ β′n
S1n(k0f2, cos θ)

sin θ

]
cosφ

}
(40)

T2(θ, φ) =
∞∑

n=1

{[
αn

S1n(k0f2, cos θ)
sin θ

+ βn
dS1n(k0f2, cos θ)

dθ

]
cosφ

+
[
α′n

S1n(k0f2, cos θ)
sin θ

+ β′n
dS1n(k0f2, cos θ)

dθ

]
sinφ

}
(41)

By virtue of the asymptotic form of Es, we can have the differential
scattering cross section which is defined by [1, 24, 25]

σ(θ, φ) = 4πr2

∣∣∣∣
Es

E0

∣∣∣∣
2

=
λ2

π

(
|T1(θ, φ)|2 + |T2(θ, φ)|2

)
(42)

In this paper, the normalized differential scattering cross section
πσ(θ, φ)/λ2 is thereafter evaluated in the spherical coordinate system
attached to the coating. In the following calculations, the incident
Gaussian beam is assumed to be TE polarized, and the middle of its
beam waist coincides with the center (origin O) of the chiral-coated
spheroid (z0 = 0).

Figure 2 shows the normalized differential scattering cross section
πσ(θ, φ)/λ2 for incidence of an axial Gaussian beam with w0 = 2λ on
a chiral-coated conducting spheroid.

Figure 3 shows the ratio |T1(θ, 0)|/|T2(θ, 0)| as a function of θ for
the same model as in Fig. 2. From Fig. 3 we can see that |T1(θ, 0)|
and |T2(θ, 0)| are of the same order in magnitude in the angle regions
between 90◦ and 130◦, i.e., the amplitude of the η component of the
scattered electric field is comparable with that of the φ component. But
for the same model with a dielectric coating (κ = 0), the former, to our
computations, is too small to be neglected compared with the latter.
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Figure 2. Normalized differential scattering cross sections πσ(θ, 0)
/
λ2

and πσ(θ, π
2 )

/
λ2 for a chiral-coated conducting spheroid (k0a1 = 6,

a1/b1 =2, k0a2 = 9.14, a2/b2 =2, εr = 4, µr = 1, κ = 0.5) illuminated
by an axial Gaussian beam with w0 = 2λ.
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Figure 3. Ratio |T1(θ, 0)|/|T2(θ, 0)| for the same model as in Fig. 2.

This is due to the chirality of the medium of the coating, which will
rotate the plane of incident polarized electromagnetic waves passing
through the chiral coating.

A comparison is shown in Fig. 4 between the normalized
differential scattering cross section πσ(θ, 0)/λ2 for a conducting
spheroid with a non-confocal chiral coating and that for the same model
but with a dielectric coating, both illuminated by an axial Gaussian
beam with w0 = 2λ.

Figure 4 indicates that there is no obvious difference between the
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Figure 4. Comparison between the normalized differential scattering
cross section πσ(θ, 0)

/
λ2 for a chiral-coated conducting spheroid (solid

line) (k0a1 = 6.28, a1/b1 =2, k0a2 = 9.42, a2/b2 =2, εr = 4, µr = 1,
κ = 0.5) and that for the same model but with a dielectric coating
(dotted line) (κ = 0), both illuminated by an axial Gaussian beam of
w0 = 2λ.

two curves, both in the forwardscattering and in the backscattering
results. But up to now, numerical results are only obtained for a
limited number of theoretical models. From those computational
results, it is probably reasonable to conclude that, for incidence of
an axial Gaussian beam, the chirality of the medium of the coating
has a more significant influence on the polarization properties than on
the intensities of the scattered fields.

4. CONCLUSION

An approach to compute the scattering of an axial Gaussian beam by
a conducting spheroid with a non-confocal chiral coating is provided
within the GLMT framework. In fact, this scattering problem becomes
complicated due to a coupling within the chiral coating between the
right and left circularly polarized waves characterized by different
phase velocities. Numerical results show that the chirality of the
medium of the coating has a greater impact on the polarization
properties of the scattered fields in a certain angle regions, owing
to the optical activity in the chiral medium. As a result, this study
extends the Gaussian beam scattering by a conducting spheroid with
a dielectric coating to the case of a chiral-coated one, and is suggestive
and useful for interpretation of shaped beam scattering phenomena for
chiral-coated conducting objects.
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