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Abstract—Efficient and accurate modeling of electromagnetic
structures is valuable in antenna analysis and design, and time domain
solutions are at a premium over frequency domain in the case of ultra
wide band signals or transients. Among the full wave electromagnetic
methods in time domain the method of moments in time domain
(MoM-TD) is very interesting. Such a method can be implemented, as
for frequency domain, either resorting to a thin wire approximation or
to a surface patch model. Depending on the structure to be analyzed
one or the other is most convenient. For heterogeneous structures both
implementations might be needed, and the problem of the attachment
between a perfectly conducting thin wire and a perfectly conducting
surface is hence relevant. In this paper, attachment modes are
introduced in MoM-TD. The solution is validated on a test case and
against another numerical technique.

1. INTRODUCTION

When dealing with ultra wide band (UWB) signals and transients, a
single time domain analysis is usually more efficient than having to
perform several frequency domain analyses at the relevant frequencies
in the spectrum of the UWB signal and then perform an inverse Fourier
transform (IFT). Among the various time domain techniques, the
method of moments in time domain (MoM-TD) is less investigated
than others like, for example, finite difference in time domain (FD-
TD) or finite elements in time domain (FE-TD); yet MoM-TD,
being an integral equation method based on currents, share the
same advantages of the frequency domain MoM over frequency based
techniques exploiting differential equations and fields: the domain to be
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discretized are surfaces, thus 2D and not 3D, and radiation boundary
conditions are implicit in the formulation [1, 2].

Field computation via MoM-TD is not a new concept; it was
proposed in the 60s [3] but has not been applied to practical
electromagnetic engineering problems until recent times. There are
some papers on MoM-TD relative both to thin wire approximation
(TWA) [2] and to surface patch model (SPM) [1, 4–6] developed either
via implicit or explicit time schemes. In all these approaches the major
issue appears to be that of late time stability, indeed the solutions
have a strong tendency to exponentially diverge as the time marching
scheme proceeds [7, 8].

The authors have presented recently an implementation of both
thin wire and surface patch MoM-TD in an unified approach [9, 10],
also presenting new time basis function aimed at higher stability and
insights on how to enhance stability via explicit filtering [10]. In such
implementation the scattering body can be either a wire grid model
(WGM) or a SPM and unconnected bodies modeled either via SPM or
WGM can be present in the same simulation.

To analyze a scatterer whose model contains both a WGM and
a SPM part an appropriate model for the junction, or attachment,
between wires and surface patches is necessary. Such an attachment is
commonly treated in method of moments in frequency domain [11–15]
but is less investigated in time domain.

This paper is mainly devoted to present the theory and the
implementation of a space basis function for the attachment in time
domain. Secondarily, in this paper the computation of transient
scattered fields is also performed, whereas previous papers only dealt
with currents [9, 10].

This paper is organized as follows: Section 2 will briefly summarize
the MoM-TD method, with an unified notation valid for wires, patches
and attachments. Section 3 will describe the space base functions
and test functions peculiar to the attachment, the details relevant
to wires and patches being given in [9, 10]. Section 4 will describe
the transient radiated field theory and implementation. Section 5
will present numerical results, and finally Section 6 will draw some
conclusions.

2. THEORY

A generic scattering body S may contain a planar part ST to be
subdivided into a mesh-grid of planar patches and a wire part SW

to be subdivided into a mesh-grid of piece-wise rectilinear segments
of radius a as shown in Figure 1. For each non-boundary edge in
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ST
SW

a

Figure 1. Scattering body with planar and wire part connected.

ST a Rao-Wilton-Glisson (RWG) spatial basis is defined along the two
triangular patches sharing it [10, 16] and for each non boundary node in
SW a wire basis function is defined on the two wire segments sharing
it [1, 9]. The attachment comprises one or more triangular patches,
sharing a vertex node, and one segment connected to that same node.

By deriving the tangential electric field continuity condition with
respect to time and considering the continuity equation for charge and
current, a variant of the standard EFIE equation can be obtained [1, 5]

[
∂2a (r, t)

∂t2
+∇ψ (r, t)

]

tan

=
[
∂ei (r, t)

∂t

]

tan

(1)

being

a (r, t) =
µ

4π

∫

S

j (r′, τ)
|r− r′|dr

′ (2)

the vector potential;

ψ (r, t) = − 1
4πε

∫

S

∇′ · j (r′, τ)
|r− r′| dr′ (3)

the scalar potential, and

τ = t− |r− r′|
c

(4)

the delay between source point r′ on S = ST ∪ SW , and the generic
observation point r. Finally ei (r, t) is the impressed incident electric
field. The wire current distributions j (r′, t) are assumed concentrated
on the wire axis and directed only along it, while planar current
distributions are constrained on ST . The unknown current distribution
is then discretized exploiting two set of bases: a set of time bases Th (t)
and a set of space bases fk (r)

j(r, t) =
NT−1∑

k=0

M−1∑

h=0

Jh
k Th (t) fT

k (r)
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+
NW−1∑

k=0

M−1∑

h=0

Jh
k Th (t) fW

k (r) +
NA−1∑

k=0

M−1∑

h=0

Jh
k Th (t) fA

k (r) (5)

where fT
k , fW

k and fA
k are the space basis functions defined on inner

edges (triangular patches), inner nodes (wires) and attachments,
respectively, and NT , NW and NA are their respective total number
and M the number of time steps on which the simulation is performed.
Jh

k are the unknown current distribution coefficients to be determined.
While space basis functions are the same than in frequency

domain [5], time basis Th (t) might need to be detailed. Given the
discretization ∆t of the time axis, time basis are defined as a single
function T (t) translated along the time axis, according to:

Th (t) = T (t− h∆t) (6)
The time basis Th (t) is usually selected as a C0 (continuous) or more
regular (C1, continuous and differentiable) function whose value is 1
for t = 0 and zero for t = n∆t for non-zero integer values of n. The
choice of these interpolation functions is far from being trivial because
it deeply affects both accuracy and stability, as analyzed in [9].

To complete the weighted residual scheme, a set of test functions,
mw (r), and a suitable inner product, 〈·, ·〉, must be defined. It is then
possible to project Equation (1) in the inner product definition space
and evaluate the solution coefficients. Equation (1) becomes:〈

∂2a (r, t)
∂t2

,m w
〉

+ 〈∇ψ (r, t) ,m w〉 =
〈

∂ei (r, t)
∂t

,m w
〉

(7)

where the inner product projection implicitly select the tangential
component of (1). By discretizing the second time derivative of the
unknown potential with backward differences one obtains:

〈an (r) ,m w〉 − 2
〈
an−1 (r) ,m w

〉
+

〈
an−2 (r) ,m w

〉

+∆t2 〈∇ψn (r) ,m w〉 = ∆t2
〈
ėi(r, t),m w

〉
(8)

where superscript n indicates the n-th time sample of a given function
(i.e., an (r) = a(r, n∆t)) and ėi(r, t) is the time derivative of the
impressed field.

The choice of a backward second order finite difference
approximation has been preferred of a conventional central finite
difference because, as it has been shown in [9] the use of backward
instead of central finite difference schemes does not influence the
accuracy, but has a very important positive impact on the numerical
stability of the algorithm.

Note that subscripts and superscripts are placed at the right of
the symbol when they refer to the basis, as in (5), and to the left when
they refer to the test functions, as in (8).
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The expressions of the scalar and vector potential at a given time
step appearing in (8), can be immediately obtained by casting (5)
into (2) and (3). With this consideration, and by rearranging (8) so
that all terms at current time step n are in the left-side term and all the
terms in n−1 and n−2 are on the right-side term, a marching-in-time
scheme is obtained [9, 10].

3. SPATIAL BASES

In this work, without loss of generality, the attachment of a single
wire to an arbitrary number of triangles, non necessarily co-planar,
will be considered. For coherence with the definitions in [10] the
superscript + conventionally indicates surface part of the domain while
the superscript − indicates the wire part. Referring to the structure
shown in Figure 2 the symbols used in this section are:

k: index of the generic attachment;
Lk: total number of triangles forming the surface part;
Tki: ith triangle of the kth attachment;
Wk: wire attached at the common node;
ρ+

ki = (r− rk): local vector from the junction vertex to a generic
point on Tki; no subscript i is present in rk since it is the common
vertex to all triangles belonging to the attachment;
ρ−k =

(
r−k − r

)
: local vector in wire Wk;

ρ 
k

ρ+
ki

ki

h
+
ki

h
k

r
k

r

r

rk

Wk

lki

O

−

−

−

α
ki

Figure 2. Attachment domain: triangles defining the surface domain
and a segment defining its wire domain of a basis/test function.
Triangles do not need to be co-planar.
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h+
ki: the height of triangle i, associated with the edge opposite to

the junction vertex;
h−k : length of the wire Wk;
lki: length of the edge opposite to the attachment node in
triangle i;
αki: angle at the junction vertex for triangle i;
αt

k: sum of the angles αki;
Kki: current spreading factor; Kki = αki

lki
∑Lk

i=1 αki

= αki

lkiα
t
k
.

The analytic form of the spatial basis chosen for the attachment
modes introduced in [11–15] for the frequency domain MoM will be
here applied to the time domain MoM:

fk (r) =





Kki

[
1− (h+

ki)
2

(ρ+
ki·ĥ+

ki)
2

]
ρ+

ki

h+
ki

r ∈ Tki

ρ−k
h−k

r ∈ Wk

0 elsewhere

(9)

In a weight residual framework, a suitable set of test functions
mw (r) must be also defined on the scattering body geometry. In a
Galerkin approach, these can be chosen equal to the basis functions,
and for the attachment modes, (9) can be used, being m the index of
the attachment domain where the test function is defined.

The first three terms in (8), containing vector potential a (r) differ
from each other only for the time step index n; while the right hand side
term contains the electric field rather than the vector potential, but is
formally identical to the others, hence just one need to be investigated:

〈an (r) ,m w (r)〉 =
∫

±
mD

an (r) ·m w (r) dr (10)

where ±
mD is a formal expression to indicate that the integration is

carried out on the domain of the test mw function, comprising two
parts, conventionally indicated as +

mD and −
mD . The actual domain for

each model is given in Table 1 (see also Figure 3).
Expanding the test function domain ±

mD for the attachment, (10)
can be recast in:

〈an (r) ,m w (r)〉 =
Lm∑

l=1

{
an(+c

mlr) ·
∫∫

mlT

m+w (r) dS

}
+ an(−c

m r)

·
∫

mW

−
mw (r) dl =

Lm∑

l=1

an(+c
mlr) ·

[
+
mlW

]
+ an(−c

m r) · [−mW
]

(11)
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Table 1. Generic to particular domain mappings.
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Figure 3. Test and base functions spatial domain. (a) Thin wire
domain. (b) Surface patch domain. (c) Attachment domain.

where +c
mlr is the central point of +

mlT , and −c
m r is the central point of

−
mW . In (11), the vector potential an (r) is considered uniform on each
subdomain and hence can be extracted from the integral, leading to
values

[±
mlW

]
, which can be computed only once for a given geometry.

This approximation corresponds to a first-order Gaussian quadrature
and it is acceptable if the maximum dimension of the sub-domains is
much smaller than the minimum wavelength of the excitation signal.
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With a similar procedure, the term relative to the scalar potential
is approximated by applying the vector Green’s identity and the
properties of test functions:

〈∇ψn (r) ,m w〉 = −
∫

±
mD

ψn (r)∇ ·m w (r) dr

=−
Lm∑

l=1

{
ψn(+c

mlr) ·
∫∫

mlT

∇ · +
mw (r) dS

}
−ψn(−c

m r) ·
∫

mW

∇ · −mw (r) dl

=
Lm∑

l=1

ψn
(
+c
mlr

) [
+
mlM

]
+ ψn

(−c
m r

) [−
mM

]
(12)

the divergence of the test functions — which in a Galerkin approach
are equal to the basis functions — can be analytically computed, and
no singularity arise [12, 13, 17]:

∇ ·m w (r) =
∂

∂ρ
(mw (r) · ρ̂) =





2mlK
+
mlh

r ∈ mlT

− 1
−
mh

r ∈m W

0 elsewhere

(13)

Expression (11) and (12), can be used for SPM and WGM if one
assumes Lm = 1, or for attachment, with the pertinent Lm value, if:

±
mlW =





±
mρ for WGM
ml
2
±
mρ for SPM{

mlK mlQ case +
−
mρ case −

}
for ATT

(14)

being

mlQ = mll

2 mlρ−+
mlh

2

[
(tanφb − tanφa) û +

1
2

(
1

cos2 φb
− 1

cos2 φa

)
v̂
]

(15)
and being the quantities herein defined as in [13, 15] and in Figure 4.

With a similar procedure, the term relative to the scalar potential
can be written as:

±
mlM =





±1 for WGM
±ml for SPM{
−mlα

mtα case +

1 case −

}
for ATT

(16)
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Figure 4. Local Cartesian coordinates system (u, v, w) and the local
cylindrical coordinate system (ρ, φ, w).

To perform the calculation of current coefficients for the iterative
solver, it is necessary to evaluate scalar and vector potential in all the
central points of every elementary subdomain an(±c

mlr) and ψn(±c
mlr).

This can be done by substituting the geometrical and temporal
discretization for the density current (5) in the expressions for the
scalar and vector potentials, calculated at the nth time step and at
point ±c

mlr, obtaining:

an
(±c
mlr

)
=

µ

4π

N−1∑

k=0

n∑

h=0

∫

D±k

Jh
k Th

(±
mlτ

n
k

)
fk (r′)

|±c
mlr− r′| dr′

=
µ

4π

N−1∑

k=0

n∑

h=0

Jh
k

{
Th

(±
mlτ

n−
k

) [±
mlK

−
k

]
+

Lk∑

i=1

Th

(±
mlτ

n+
ki

) [±
mlK

+
ki

]
}

(17)

being
±
mK±

k =
∫

D±k

f±k (r′)∣∣±c
m r− r′

∣∣dr
′ (18)

and being
±
mlτ

n±
ki = tn −

∣∣±c
mlr− r±ki

∣∣
c

(19)

the time delay between the source point and the observation point.
It is important to note that the potentials are computed and

stored only at discrete time instants tn, but their value is needed at
generic time instants according to the delay ±

mlτ
n±
ki , from here stems

the necessity of an interpolating time basis Th.
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The differential scalar potential it is:

ψn
(±c
mlr

)
=
−1
4πε

N−1∑

k=0

n∑

h=0

∫

D±k

Jh
k Th

(±
mlτ

n
k

)∇′ · fk (r′)∣∣±c
mlr− r′

∣∣ dr′

=
−1
4πε

N−1∑

k=0

n∑

h=0

Jh
k

{
Th

(±
mlτ

n−
k

) [±
mlS

−
k

]
+

Lk∑

i=1

Th

(±
mlτ

n+
ki

) [±
mlS

+
ki

]
}

(20)

being
±
mS±k =

∫

D±k

∇′ · f±k (r′)
|m±cr− r′| dr

′ (21)

As it was for (11) and (12), also (17) and (20) are applicable to
SPM and WGM if Lk = 1 and to an attachment if Lk ≥ 1.

Computation of ±
mK±

k and ±
mS±k integrals may be performed

analytically over wires, but must be performed numerically over
triangles. This is an important point because an exact analytic solution
is no source of additional numerical instability, whereas numerical
integrals are approximated and can lead to an increased instability [10].

In both cases integrals are considered between geometrical
primitives (wires and triangles) and not between single bases or
weights [16]. Indeed every geometrical primitive may belong to the
domain of several bases and test, hence computing the integral on the
geometrical primitive allows for the evaluation of the basis/test integral
as a summation of these latter, as shown in (17) and (20). This implies
that the vector integral functions like (18) and (21) are decomposed
into 2×2 scalar integrals for SPM-SPM, SPM-WGM, WGM-SPM and
WGM-WGM evaluation, into 2× (Lm + 1) for SPM-ATT and WGM-
ATT evaluation, 2× (Lk + 1) for ATT-SPM and ATT-WGM and into
(Lm + 1)× (Lk + 1) for ATT-ATT evaluation.

Finally, substituting the potential expansion in (8), an implicit
iterative operator is obtained as in [10]:

[Z]Jn
k =

n∑

h=1

[F]h Jn−h
k + V n

k (22)

4. RADIATED FIELD

Once the transient currents on the scatter body have been determined,
is possible to calculate the electric and magnetic fields anywhere and
at any time outside the scatter [18, 19]. The scattered magnetic field
Hs(r, t), at a point r is related to the vector potential, and hence
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inducted currents by:

Hs (r, t) =
1
µ0
∇× a (r, t) (23)

From (2), and exploiting well known vector identities it is:

Hs (r, t) =
∫

S

[
∇× j

(
r′, t− R

c

)

4πR
− ûR

4πR2
× j

(
r′, t− R

c

)]
dS′ (24)

where ûR is a unit vector directed as r − r′. If the far field is sought
for, the second term in the integral (24) can be neglected.

By recalling that

∇× j
(
r′, t− R

c

)
=

1
c

∂j (r′, t)
∂t

∣∣∣∣
t−R

c

× ûR (25)

and by indicating for brevity tR = t − R
c , and its corresponding

discretization with tnR = tn− R
c , by using (5) for expanding the current

densities, without any explicit differentiation between SPM, TWA and
ATT, and by exchanging the summation and the integral the magnetic
field can be written as:

Hs (r, tn) ≈ 1
4πc

N−1∑

k=0

n∑

h=0

∫

D±k

Jh
k

∂Th(t)
∂t

∣∣∣∣
tnR

· fk (r′)× ûR

R
dS′ (26)

The time instant tnR is related to the local position r′ on the scatter
body. Anyway, as it has already been done in the previous section, the
spatial extension of each elementary sub domain is considered small
compared to the shortest wavelength, hence we can assume the time
variable tnR constant on the single subdomain and equal to the value
relative to the central point of the subdomain itself. This way, the
time first derivative is not related to the local vector r′ any more and
can be carried out of the integral.

In a far field approach, the distance R from the source to the
observation point (Figure 5) can be approximated with the distance
from the origin r, provided that the scatterer is close to the origin
and the unit vectors ûR and ûr can be considered parallel. For the
time delay, on the other hand the distance is better approximated by
R ≈ r − r′ · ûr, and hence:

tn
Rc±

ki

= tn − r

c
+

rc±
ki · ûr

c
(27)

To efficiently evaluate and the far-scattered fields we need to define
a time window in which the far field is non zero and restrict the
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Figure 5. Far field time normalization problem.

computation to such window. Indeed in (26) the time summation in
h = 0, . . . , n comprises several terms which are null a priori current
samples which are relative to time instants h not far enough in the
past cannot contribute to the field in the observation point at time tn.

If t̄(r′) is the time at which a signal originated in r′ at t = 0
arrives at the observation point, and rmax is the radius of the smallest
sphere centered in the origin and containing the scattering object then,
as a generic rule, no signal can reach the observation point before
t̄(O)− rmax/c, being t̄(O) = r/c.

With these considerations and defining n̄ = b(t̄(O)− rmax/c)/∆tc
(26) becomes

Hs (r, tn) ≈ 1
4πc

N−1∑

k=0

(n−n̄)∑

h=0

Jh
k





Lk∑

i=1


 ∂Th(t)

∂t

∣∣∣∣
tn
Rc+

ki

· 1
r

∫

D+
ki

f+
k (r′)dS′




+
∂Th(t)

∂t

∣∣∣∣
tn
Rc−

k

· 1
r

∫

D−k

f−k (r′)dS′




× ûr (28)

Basis function integrals in (28) are not dependent on the far field
observation point direction or time instant, so they can be evaluated
once for all and stored for later use. Whether they are linear, planar
or attachment integrals, we can define:

F+
ki =

∫

D+
ki

f+
k

(
r′

)
dS′ F−k =

∫

D−k

f−k
(
r′

)
dS′ (29)

In evaluating the far-scattered field as a post-processing step,
the time interpolating functions need to be derived. The analytic
evaluation of time derivative of time base functions is not always
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possible, or univocally determined as the time basis functions are
peicewise continuous but can be non-differentiable on a finite discrete
number of points [9, 10]. Only few interpolating time base functions
that are continuous and with first derivative continuous are presented
in literature as the exponential one [20] and the risen cosine defined
in [7]. Anyway, the time derivative of time basis function can be
analytically approximated at the discontinuity points, if the need
arises, as a mean of the two left and right derivatives, which are
guaranteed to exist as in [1]. The discontinuity in the time derivative
is not a major issue since it actually appears in the scattered field only
if the time delay between the observation point and the source is an
integer number of ∆t. This is statistically uncommon. Furthermore,
since only a very reduced number of spatial basis of the whole domain
can be at a delay which is an integer number of ∆t, its effect is negligible
with respect to the contribution of the whole body. By defining

Ṫh(t) =
∂Th(t)

∂t
(30)

the following relation is obtained

rHs (r, tn) ≈ 1
4πc

N−1∑

k=0

(n−n̄)∑

h=0

Jh
k

{
Lk∑

i=1

[
Ṫh

(
tn
Rc+

ki

)
F+

ki

]

+Ṫh

(
tn
Rc−

k

)
F−k

}
× ûr (31)

In (31), to obtain an evaluation of the scattered field independent
from the distance r, the quantity Hs (r, tn) is normalized as rHs (r, tn).

After the magnetic far-scattered field evaluation, the electric
one can be recast as in (32), where ζ is the medium characteristic
impedance.

Es (r, tn) = ζHs (r, tn)× ûr (32)

5. NUMERICAL RESULTS

The first test case analyzed is a scatter consisting of both wires
and surface metal parts electrically connected. In particular, a
0.5m long wire of radius a = 5 mm radius is connected to the
center of a 0.5 × 0.5 m2 square horizontal plate. To show the
advantages of the attachment modes also in time domain, the object is
analyzed with different approaches: the first exploiting the attachment
implementation presented here, and meshing the wire via WGM and
the plate via SPM; the second exploiting only SPM, also for the wire
part (Figure 6).
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In the attachment case, the wire part is subdivided into 5 segments
0.1m long each, while the surface part is subdivided into a regular mesh
grid comprising 32 triangle patches, basis and test functions are piece-
wise linear for the WGM [9] and RWG for the SPM [5, 10], plus the
attachment mode described in this paper.

In the SPM only case, the mesh structure composed by only
planar parts common in literature for frequency domain analysis is
used [18, 21, 22]. The wire is hence approximated as a strip and
modeled by triangular patches and only RWG base/test functions are
used. Modeling the wire part as SPM require a densest mesh, as it is
evident in Figure 6.

The complete model of WGM-SPM-ATT (Figure 6(a)) requires
45 base/test functions (40 for the plate, 4 for the wires, 1 for
the attachment), the SPM only (Figure 6(b)) requires for the same
geometry 153 base/test functions. The second case solving system has
hence more than three times the unknowns, and the equations, with
respect to the first case. The use of a mixed mesh reduce the solving
system dimensions, and hence reduce the computing resources and
times. Furthermore, using the SPM model for the wire part introduces
an asymmetry in the structure and results will present a dependency on
the impinging plane wave direction, whereas, using the WGM model,
the rotational symmetry of the wire is preserved.

The excitation used in the simulations is an unmodulated
Gaussian pulse plane wave as in [10]:

ei(r, t) =
A

T
√

π
E0e

−
[

Bc
T

(
t−t0− r·k̂

c

)]2

(33)
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Figure 6. Wire and plate problem. (a) Presented model. (b) Makarov
model [18].
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with: E0 = 120π/
√

2 (ŷ − ẑ)V/m the amplitude and direction of
the incident electric field, T = 2 LM the time length of the impulse
expressed in light meters (LM) and t0 = 6LM an appropriate delay
of the pulse with respect to the starting time t = 0 of the simulation
(used in (33) as the corresponding time expressed in seconds for units
coherence). c is the speed of light and A = 4 LM and B = 4 LMm−1 are
appropriate coefficients to maintain the correct physical dimensions.
In the simulations the plane wave direction is (θ = 45◦, φ = 90◦).
The time basis is exponential as defined in [20] witch is a continuous
function with a first time derivative continuous. The total simulated
time span is 20 LM and the time discretization is ∆t = 0.7 ns
(corresponds to about 0–700MHz frequency range).

The time wave form for the current in the wire 0.1m above the
planar part is shown in Figure 7 for both models. Comparable results
are obtained in both cases, even if memory and time requirements
are much higher in the second case. Noticeable differences between
the two models are due to the intrinsic anisotropy of the SPM-only
approximation, where the wire, which is rotationally symmetric, is
approximated via an infinitely thin strip. Furthermore, while the ATT
model comprises, in this case, a wire and six triangular patches, the
SPM-only model comprises just two patches on the plate and one in the
strip modeling the wire [23], further worsening the anisotropic behavior
since only y-directed currents on the plate (Figure 6(b)) do interact
with the strip.

As a second example, a set up comprising a box 20× 10× 2.5 cm
with two wires 10 cm long each, connected over the box is considered
(Figure 8). The box itself is divided into a regular mesh grid comprising
112 triangles, while the two wires are divided into 8 segments each.
Wire radius is 1.25 mm.
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Figure 9. Time domain current in the first node to the second
wire (W2) and nearer to the box. (a) Without using the attachment
model. (b) Considering the attachment model here presented. Symbols
are relative to a simulation with commercial frequency domain MoM
software (FEKO) on the connected structure (b).

Excitation is an unmodulated Gaussian pulse plane wave with:
E0 = 1θ̂ V/m, T = 0.25LM and t0 = 0.5LM, the other parameters
being the same as in the previous example. k̂ = − (

x̂ + ŷ +
√

2ẑ
)
/2

is the unit vector of the plane wave propagation (corresponding to
θ = 45◦, φ = 45◦ in a spherical reference). The time basis is
exponential [20] hence continuous with continuous first time derivative.
The total simulated time span is 2 LM (6.667 ns), and the time
discretization is ∆t = 50ps.

Two cases are analyzed for the geometry: a) the wires have no
electrical connection to the box, as in [10], where the attachment space
basis/test function were not available; b) the wires are electrically
connected to the box and the attachment space basis/test function
described in the present paper are exploited. Both results are reported
in Figure 9. As expected, introducing the attachment space basis
function, the current flow between the box and the wire is evident
as the current on the same wire node has a grater amplitude.

To validate the results, on the same graph the results obtained via
a commercial MoM code in frequency domain (FEKO) on the structure
with connected wires are superimposed. These results are obtained via
inverse Fourier transform of frequency domain data. The noticeable
difference between FEKO results and curve b), especially at the late
time response, are entirely due to the spectrum discretization of the
impinging Gaussian pulse, which is necessary to implement the series of
frequency domain analyses and subsequent inverse Fourier transform,
which cannot be done arbitrarily accurate without having to refine the
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spatial discretization, which would in turn rise computing time. Hence
the difference in amplitude of late time oscillations.

To have a better understanding the induced current on the scatter
body are sampled on both wires and reported in Figure 10. A time
shift on the current on W2 is evident as the incident field impinges first
with W1.

The mutual interaction between the two wires and the box causes
a noticeable difference between the late time responses of the two wires.
If these were two antennas, the knowledge of the signal distortion
provided by the MoM-TD would be valuable. The backscattered
(θ = 45◦, φ = 45◦) electric field is computed via (32) and (31).
The electric field components, in spherical coordinates, are plotted
in Figure 11. To better appreciate the amplitude of the backscattered
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Table 2. Computing times.

Test case 1 Test case 2 Test case 3

(Figure 6(a)) (Figure 6(b)) (Figure 8)

No. of basis/weight functions 45 135 172

No. of time steps 95 95 133

Computing time (seconds) 96 176 808

field, and the presence of cross-polarization components, the data are
plotted also in semi-logarithmic scale in Figure 12. The time scale on
the far-field plots is shifted as described in Section 4.

Finally Table 2 reports the computing times for the three
examples, relative to a desktop PC with an Intel core 2 duo processor
at 1.83 GHz with 2 GB of RAM. Anyway, by trying different solvers
as in [24], differences in computation time and also in numerical
stability can be obtained. A deep research for the best solver choice
vs. computation time is needed, but this is outside the scope of this
paper.

6. CONCLUSIONS

The wire-to-plate attachment problem in a time domain method of
moment framework has been addressed. A set of bases/weights
applied and their validity assessed. Some results over simple test
cases illuminated by a wide band pulse shows the accuracy and
effectiveness of the method. Results shows how a given structure can
be more efficiently and accurately simulated if TWA and SPM are used
together and with the proposed attachment model; the same structure
discretized either with only TWA or only SPM gives less accurate
results. Results are compared with a commercial code (FEKO) in
frequency domain by performing several harmonic simulations and
applying an IFT, while results match, the frequency domain + IFT
procedure is much more lengthy and complex than the direct time
domain analysis. The capability of the MoM-TD procedure of handling
large bandwidth signals and transient is very valuable in antenna and
microwave devices analysis and design.
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