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Abstract—This paper is concerned with the theory of wave
propagation in biaxial anisotropic media. Consider a multilayered
planar structure composed of media with electric and magnetic
anisotropy, surrounded by two half spaces. Exat relations for reflection
coefficient from this structure can be useful for arriving at the intended
applications. In this paper, by matching of transverse field components
at the bounderies, we will arrive at exact recursive relations for
reflection coefficient of the structure. In the previous works, the
magnetic and electric anisotropy were not taken into consideration
at the same time, or complex relations were arrived. But using this
novel method, those complexities will not appear and both electric
and magnetic anisotropy are take into consideration. Moreover, we
will not set any limits on the right half-space so the right most half-
space may be a PEC, PMC, PEMC, surface impedance, dielectric or
a metamaterial. Finally, the last section of the paper confirms the
validity of the relations arrived at and as an interesting application;
the zero reflection condition will be obtained.

1. INTRODUCTION

In recent years, more and more attention has been paid to the
interaction of fields and waves with composite materials, especially
anisotropic ones. This is because of the extensive use of these materials
in designing and analyzing antennas, angle filters, polarizers and high
efficiency microwave and millimeter wave instruments, and also their
use in the propagation of radio frequency waves and in reduction of
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the radar cross section. Moreover, developments in polymer synthesis
techniques for manufacturing chiral materials, in addition to the
artificial manufacturing of composite materials, have employed these
usages in practice.

“Anisotropic materials” refers to a group of complex media in
which constitutive relations are not as simple as those used in the
conventional materials, and the electric displacement vector (D̄) and
the magnetic flux density vector (B̄), in the most general case, are
related to the electric and the magnetic fields by four tensors. In
recent years, numerous researches have been done in this area [1–7].

Initial works on the subject were based on 4 × 4 characteristic
matrix of a single anisotropic slab [8, 9]. Later efforts include
generalization of the problem for stratified structures by different
methods [10–12]. Morgan et al. paid attention to a numerical solution,
and introduced an efficient and simple algorithm for this case [13].
Others proposed various techniques based on eigenvalue computation,
Ricatti differential equation and transmission line method [14–18]
which are more complex. The characteristic matrix algorithm [8, 9] had
a serious drawback and showed instability for thick layers compared to
wavelength. To avoid this instability which was due to the numerical
finite difference algorithm, the use of hybrid matrix of the structure is
suggested [19].

The above mentioned methods are complex or cannot be used for
all of the problems. In this paper, we propose an exact analytical
method which is simple and accurate.

Orfanidis in [20] has proposed a simple method for the case in
which only one of the electric and the magnetic biaxial anisotropy
exists, but we aim to study the propagation of waves in anisotropic
media in which both the electric and the magnetic biaxial anisotropy
exist at the same time.

The structure that is considered here is a multilayer planar
structure composed of anisotropic materials and surrounded by two
half spaces. We will write the field components in each layer, and, by
matching the transverse field components with one another, we will
arrive at recursive relations for reflection and transmission coefficients.
We will also not set any limits on the right half-space throughout this
procedure.

At last, validity of the relations has been verified through a
numerical example and as an interesting application — the zero
reflection condition — has been provided using these relation.
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2. FORMULATING THE PROBLEM AND DERIVING
THE RELATIONS

Consider a plane wave with the single frequency ω, composed of
TE and TM polarizations, propagating in z direction. The wave is
incident, from left half-space in Figure 1, on a multilayer structure
composed of biaxial anisotropic materials.

The waves in this half-plane — region 0 — are sum of incident
and reflected waves.

For TE mode:




E0
yl =

(
E0e

−jkz0z + C0e
+jkz0z

)
e−jkxx

H0
xl = − kz0

ωµ0

(
E0e

−jkz0z − C0e
+jkz0z

)
e−jkxx

H0
zl =

kx

ωµ0

(
E0e

−jkz0z + C0e
+jkz0z

)
e−jkxx

(1)

For TM mode:



H0
yl =

(
H0e

−jkz0z + D0e
+jkz0z

)
e−jkxx

E0
xl =

kz0

ωε0

(
H0e

−jkz0z −D0e
+jkz0z

)
e−jkxx

E0
zl = − kx

ωε0

(
H0e

−jkz0z + D0e
+jkz0z

)
e−jkxx

(2)

In the above relations e+jkz0z is for incident wave and e+jkz0z is for
reflected wave.

The dispersion relation in this area is:

k2
z0 + k2

x = k2
0 (3)

All layers are without sources and are composed of lossless
linear anisotropic materials with constitutive parameters similar to the
following:

εl = ε0

[
εlx 0 0
0 εly 0
0 0 εlz

]
(4)

µl = µ0

[
µlx 0 0
0 µly 0
0 0 µlz

]
(5)

The medium N + 1 may be a PEC, PMC, PEMC, surface
impedance, dielectric, or metamaterials. All of these possibilities are
taken into consideration throughout this paper.
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Figure 1. The structure of the multilayer anisotropic problem.

Supposing e+jωt, the solution of the wave equation in layer l, which
would be some of two waves with orthogonal TE and TM polarizations,
is thus [5]:

TE mode:



Eyl =
(
Ale

−jkI
zlz + Cle

+jkI
zlz

)
e−jkxx

Hxl = − kI
zl

ωµ0µlx

(
Ale

−jkI
zlz − Cle

+jkI
zl

z
)

e−jkxx

Hzl =
kx

ωµ0µlz

(
Ale

−jkI
zlz + Cle

+jkzl
z
)

e−jkxx

(6)

For TM mode:



Hyl =
(
Ble

−jkII
zl z + Dle

+jkII
zl z

)
e−jkxx

Exl =
kII

zl

ωε0εlx

(
Ble

−jkII
zl z −Dle

+jkII
zl

z
)

e−jkxx

Ezl = − kx

ωε0εlz

(
Ble

−jkII
zl z + Dle

+jkII
zl

z
)

e−jkxx

(7)

In which the subscripts kI
zl and kII

zl refer to wave numbers for TE and
TM mode, respectively. e−jkxx, in the above relations, is obtained
from phases matching and is identical for all layers.

From the dispersion relation [5] for each layer, we have:

kI2
zl +

µlx

µlz
k2

x = k2
0εlyµlx (8)

kII2
zl +

εlx

εlz
k2

x = k2
0εlxµly (9)

In the region l = 0 we have the following:
A0 = E0 (10)
B0 = H0 (11)
C0 = RTE · E0 (12)
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D0 = RTM ·H0 (13)
In which RTE and RTM are reflection coefficient for TE and TM
polarization in the right most half-space, respectively.

And in the region l = N + 1 we have:
AN+1 = TTE · E0 (14)
BN+1 = TTM ·H0 (15)
CN+1 = 0 (16)
DN+1 = 0 (17)

In which TTE and TTM are transmission coefficient for TE and
TM polarization in the left most half-space, respectively.

The problem we are concerned with has N + 1 boundaries, and
according to the relations above, we have 4N +4 unknown parameters.
Therefore, we need 4N + 4 equations for solving them, which are
obtained from the boundary conditions- at each boundary we obtain 4
equations.

We write down the boundary condition at z = dl — the boundary
between the regions l and l + 1:

Ale
−jkI

zldl +Cle
+jkI

zldl = A(l+1)e
−jkI

z(l+1)
dl +C(l+1)e

+jkI
z(l+1)

dl (18)

kI
zl

µlx

(
Ale

−jkI
zldl−Cle

+jkI
zldl

)

=
kI

z(l+1)

µ(l+1)x

(
A(l+1)e

−jkI
z(l+1)

dl −C(l+1)e
+jkI

z(l+1)
dl

)
(19)

Ble
−jkII

zl dl +Dle
+jkII

zl dl = B(l+1)e
−jkII

z(l+1)
dl +D(l+1)e

+jkII
z(l+1)

dl (20)

kII
zl

εlx

(
Ble

−jkII
zl dl −Dle

+jkII
zl dl

)

=
kII

z(l+1)

ε(l+1)x

(
B(l+1)e

−jkII
z(l+1)

dl −D(l+1)e
+jkII

z(l+1)
dl

)
(21)

The boundary condition at z = 0 — the boundary between the regions
0 and 1 — will be:

E0 + RTEE0 = A1 + C1 (22)
kz0

µ0
(E0 −RTEE0) =

kI
zl

µ0µ1x
(A1 − C1) (23)

H0 + RTMH0 = B1 + D1 (24)
kz0

ε0
(H0 −RTMH0) =

kII
zl

ε0ε1x
(B1 −D1) (25)
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We write down the boundary condition at z = dN — the boundary
between the regions N and N + 1:

ANe−jkI
zNdN + CNe+jkI

zNdN = TTE · E0e
−jkI

z(N+1)
dN (26)

kI
zN

µNx

(
ANe−jkI

zNdN−CNe+jkI
zNdN

)
=

KI
z(N+1)

µ(N+1)x

(
TTE ·E0e

−jkI
z(N+1)

dN

)
(27)

BNe−jkII
zNdN + DNe+jkII

zNdN = TTM ·H0e
−jkII

z(N+1)
dN (28)

kII
zN

εNx

(
BNe−jkII

zNdN−DNe+jkII
zNdN

)
=

KII
z(N+1)

ε(N+1)x

(
TTM ·H0e

−jkII
z(N+1)

dN

)
(29)

In the above equations kI
z and kII

z can be derived from Equations (8)
and (9).

To find the unknown parameters, we solve the obtained equations
using two methods.

The first method is to turn the equations into matrix form, which
can be seen below.


RTE

RTM

A1

C1

B1

D1

. . .
AN

CN

BN

DN

TTE

TTM




=




E0 0 −1 −1 0 0 . . .

−E0 0 −pI
01 pI

01 0 0
0 H0 0 0 −1 −1 . . .

0 −H0 0 0 −pII
01 pII

01

. . . . . . . . .




−1

·




−E0

−E0

−H0

−H0

0
. . .

0




(30)

where:

pI
l(l+1) =

µlx

kI
zl

·
kI

z(l+1)

µ(l+1)x
(31)

pll
l(l+1) =

εlx

kII
zl

·
kII

z(l+1)

ε(l+1)x
(32)

The second method for finding the values of the variables is
to use recursive relations, which is more suitable for being used in
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programming.

Cl

Al
=

RI
l(l+1)e

−j2kI
z(l+1)

dl + C(l+1)

A(l+1)

e
−j2kI

z(l+1)
dl + RI

l(l+1)

C(l+1)

A(l+1)

· e−j2kI
zldl (33)

Dl

Bl
=

RII
l(l+1)e

−j2kII
z(l+1)

dl + D(l+1)

B(l+1)

e
−j2kII

z(l+1)
dl + RII

l(l+1)

D(l+1)

B(l+1)

· e−j2kII
zl dl (34)

Therefore, we have:

RI
l(l+1) =

1− pI
l(l+1)

1 + pI
l(l+1)

(35)

RII
l(l+1) =

1− pII
l(l+1)

1 + pII
l(l+1)

(36)

In which the subscripts I and II are for TE and TM mode,
respectively.

The initial value that is used in the above recursive relations is
obtained from the boundary condition at the boundary between the
regions N and N + 1, which we will examine in five different cases.
(I) If we have a dielectric or a metamaterial half-space in the last

layer, the boundary condition at the last boundary will be applied
to the above relations thus:

C(N+1)

A(N+1)
= 0 (37)

D(N+1)

B(N+1)
= 0 (38)

(II) If the last layer is a PEC, we should apply the condition in the
following way:

CN

AN
= −e−j2kI

zNdN (39)

DN

BN
= e−j2kII

zNdN (40)

(III) And if it is a PMC, we apply the condition as below:
CN

AN
= e−j2kI

zNdN (41)

DN

BN
= −e−j2kII

zNdN (42)
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(IV) In case the last layer is a PEMC, CN
AN

and DN
BN

will be related to
each other through the relations below:

kI
zN

µ0µNx

(
ANe−jkI

zNdN − CNe+jkI
zNdN

)

+M ·
{

kII
zN

ε0εNx

(
BNe−jkII

zNdN −DNe+jkII
zNdN

)}
= 0 (43)

(
BNe−jkII

zNdN+DNe+jkII
zNdN

)
+M·

(
ANe−jkI

zNdN+CNe+jkI
zNdN

)
=0 (44)

(
BNe−jkII

zNdN+DNe+jkII
zNdN

)
+M

(
ANe−jkI

zNdN+CNe+jkI
zNdN

)
= 0 (45)

(V) And in case the last layer has the surface impedance ηs, the
relations below hold true:

kII
zN

ε0εNx

(
BNe−jkII

zNdN −DNe+jkII
zNdN

)

= −ηs ·
(
BNe−jkII

zNdN + DNe+jkII
zNdN

)
(46)

(
ANe−jkI

zNdN + CNe+jkI
zNdN

)

= ηs · kI
zN

µ0µNx

(
ANe−jkI

zNdN − CNe+jkI
zNdN

)
(47)

Now, we have relations with which we can analyze multilayer
structures which are composed of electric and magnetic anisotropic
materials and the last layer of which is a PEC, PMC, PEMC, surface
impedance, or a dielectric.

3. NUMERICAL EXAMPLES AND VALIDATION

To test the validity of the relations that were presented in the previous
section, we solve a problem, as an example, by the program written on
the basis of our recursive relations, and compare the results with those
of the program using the state space method [18, 19]. These programs
are written using Matlab software.

In this example, we present a multilayer structure with N = 4
layers and the left half-space is a free space.

The structure of this problem is in the form n0|nHnLnHnL|nS , in
which n0 = 1, nH = 2.32, nL = 1.46 and nS = 1.6. The thicknesses of
the layers are:

dH = dL = λ0/2 (48)

λ0 indicates the wave length of the free space at the central frequency.
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Respectively, the layers have the constitutive parameters below in
a periodic form:

εH = ε0




n2
H 0 0
0 n2

H 0
0 0 1


 (49)

µH = µ0

[ 1 0 0
0 1 0
0 0 1

]
(50)

εL = ε0




n2
L 0 0
0 n2

L 0
0 0 1


 (51)

µL = µ0

[ 1 0 0
0 1 0
0 0 1

]
(52)

The central frequency is f0 = 12 GHz, and the angle of the incidence
is θ = 45◦.

The results can be observed below. The answer arrived at through
the state space method can be compared with the one arrived at
through our recursive relations in Figure 2. Excellent agreement is
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Figure 2. The results obtained from the state space relations and the
derived relations.
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observed from the curves in Figure 2 which confirms the validity of our
relations.

4. ACHIEVING ZERO REFLECTION

In this section, as an application, we use the relations arrived at,
for considering one of the important problems concerning radar cross
section, i.e., zero reflection.

The above mentioned quality can be employed in different
applications. As an example for the visible light spectrum, sturdy
structures can be built that are transparent against visible light and
can be used in buildings with transparent walls. And as an example for
the electromagnetic spectrum, machines can be manufactured that are
transparent against electromagnetic waves, such as military tools and
vehicles made, instead of metal, of sturdy multilayer materials that are
transparent against radar waves.

Now, using the relations arrived at, if we wish to design a single
layer slab of thickness d which, by being placed in free space, will
enable us to achieve zero reflection in both polarizations, we should
assign the following to recursive relations (33) and (34):

l = 0, 1,
C2

A2
=

D2

B2
= 0,

C0

A0
=

D0

B0
= 0 (53)

which will lead to relations below:
C1

A1
= RI

12e
−j2kI

z1d (54)

D1

B1
= RII

12e
−j2kII

z1d (55)

C0

A0
=

RI
01 + RI

12e
−j2kI

z1d

1 + RI
01R

I
12e

−j2kI
z1d

= 0 (56)

D0

B0
=

RII
01 + RI

12e
−j2kII

z1d

1 + RII
01R

I
12e

−j2kII
z1d

= 0 (57)

Therefore, we must have:

RI
01 + RI

12e
−j2kI

z1d = 0 (58)

RII
01 + RII

12e
−j2kII

z1d = 0 (59)

Or:

RI
01 = −RI

12 cos
(
2kI

z1d
)
, 0 = −RI

12 sin
(
2kI

z1d
)

(60)

RII
01 = −RII

12 cos
(
2kII

z1d
)
, 0 = −RII

12 sin
(
2kII

z1d
)

(61)
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For the relations above to hold for all angles of incidence, we must
have:

RI
01 = RI

12 = 0 (62)

RII
01 = RII

12 = 0 (63)

From relations (35), (36), (31), and (32), we have:

RI
12 =

1− pI
12

1 + pI
12

, RII
12 =

1− pII
12

1 + pII
12

,

RI
01 =

1− pI
01

1 + pI
01

, RII
01 =

1− pII
01

1 + pII
01

(64)

pI
12 =

µ1x

kI
z1

· kz2

µ2
, pII

12 =
ε1x

kII
z1

· kz2

ε2
,

pI
01 =

1
kz0

· kI
z1

µ1x
, pII

01 =
1

kz0
· kII

z1

ε1x
(65)

And from relations (8) and (9), we know that:

kz2 = k0

(
ε2µ2 − sin2(θ)

)1/2 (66)

kz0 = k0 cos(θ) (67)

kI
z1 = k0

(
ε1yµ1x − µ1x

µ1y
sin2(θ)

)1/2

(68)

kII
z1 = k0

(
ε1xµ1y − ε1x

ε1z
sin2(θ)

)1/2

(69)

After doing some calculations, we arrive at:

RI
12 =

µ2

(
µ1zε1y−sin2(θ)

)1/2−(µ1zµ1x)1/2
(
ε2µ2−sin2(θ)

)1/2

µ2

(
µ1zε1y−sin2(θ)

)1/2+(µ1zµ1x)1/2
(
ε2µ2−sin2(θ)

)1/2
(70)

RII
12 =

ε2

(
ε1zµ1y−sin2(θ)

)1/2−(ε1zε1x)1/2
(
µ2ε2−sin2(θ)

)1/2

ε2

(
ε1zµ1y−sin2(θ)

)1/2+(ε1zε1x)1/2
(
µ2ε2−sin2(θ)

)1/2
(71)

RI
01 =

cos(θ)(µ1zµ1x)1/2 − (
µ1zε1y − sin2(θ)

)1/2

cos(θ)(µ1zµ1x)1/2 +
(
µ1zε1y − sin2(θ)

)1/2
(72)

RII
01 =

cos(θ)(ε1zε1x)1/2 − (
ε1zµ1y − sin2(θ)

)1/2

cos(θ)(ε1zε1x)1/2 +
(
ε1zµ1y − sin2(θ)

)1/2
(73)
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To meet the relations (62) and (63), we must have:

RI
12 = 0 → (µ2)2(µ1zε1y−sin2(θ))=(µ1zµ1x)(ε2µ2−sin2(θ)) (74)

RII
12 = 0 → (ε2)2

(
ε1zµ1y−sin2(θ)

)
=(ε1zε1x)

(
µ2ε2−sin2(θ)

)
(75)

RI
01 = 0 → µ1xµ1z cos2(θ)=µ1zε1y−sin2(θ) (76)

RII
01 = 0 → ε1xε1z cos2(θ)=ε1zµ1y−sin2(θ) (77)

Or more concisely: (
µ2

2 − 1
)
cos2(θ) = ε2µ2 − 1 (78)

(
ε2
2 − 1

)
cos2(θ) = µ2ε2 − 1 (79)

(µ1xµ1z − 1) cos2(θ) = µ1zε1y − 1 (80)

(ε1xε1z − 1) cos2(θ) = ε1zµ1y − 1 (81)

For relations (78), (79), (80), and (81) to hold for all angles, we must
have:

µ2
2 − 1 = ε2

2 − 1 = ε2µ2 − 1 = 0 (82)
µ1xµ1z − 1 = µ1zε1y − 1 = ε1xε1z − 1 = ε1zµ1y − 1 = 0 (83)

Or:

µ2 = ε2 = ±1 (84)

ε1x = µ1y =
1

ε1z
(85)

µ1x = ε1y =
1

µ1z
(86)

This means that the matrix of the constitutive parameters of the
slab must be thus:

ε = ε0




1
ε1z

0 0

0 1
µ1z

0
0 0 ε1z


 (87)

µ = µ0




1
µ1z

0 0

0 1
ε1z

0
0 0 µ1z


 (88)

In order to have no limitations for the incident waves in the plane
ZX, the tensors must stay the same after the rotation of the axes
around the z axis; therefore, the values of x and y must be equal in
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the tensors. So the single layer structure which has no reflection in any
incidence has the parameters below:

ε = ε0

[
p 0 0
0 p 0
0 0 1/p

]
(89)

µ = µ0

[
p 0 0
0 p 0
0 0 1/p

]
(90)

In which P can have any value and in principle there is nothing
to limit it. It is, however, possible to find practical limitations for it,
which should be considered in examining the realization of anisotropic
media.

Assuming p = 2, the following demonstrates the result obtained
from the recursive relations which show zero reflection.

Figure 3. Reaching zero reflection in all frequencies.

As it can be observed in Figure 3 we have reached zero reflection
in all frequencies for both polarizations.

5. CONCLUSIONS

One of the issues that arise in dealing with anisotropic media is the
complex relations resulting from the tensor notation of parameters; in
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this paper an exact recursive formulation has been represented for the
computation of fields in media with electric and magnetic anisotropy
backed by PEC, PMC, PEMC, surface impedance, dielectric, or
metamaterial, which can make the computations related to these media
much easier.

At last, validity of the relations has been verified and an interesting
application — the zero reflection condition — has been provided.
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