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Abstract—We present an accurate, efficient numerical analysis for
vector modes of dielectric optical waveguide structures with an
arbitrary refractive index profile using a quadratic spline collocation
method (QSCM). The unknown weights of the polynomials are
determined by forcing the errors at the collocation points to be
zero. Consequently, the original second order differential equation
is converted to a set of algebraic equations which can be solved
by matrix techniques. The proposed QSCM method demonstrates
better performance than the standard finite-difference method of the
same convergence rate in terms of grid size with the same degree of
computational complexity.

1. INTRODUCTION

Mode analysis for optical waveguides is usually the starting point for
design and simulation of guided-wave photonic devices and integrated
circuits. For most practical waveguide structures, analytical or even
semi-analytical methods are rather limited in applicability [1]. In
the past decades, researchers have proposed and developed various
numerical methods; among which the finite-difference method (FDM)
and the finite element method (FEM) are two of the most popular
approaches [2–11]. The finite difference method (FDM) gains its
popularity owing to its simplicity and effectiveness [4–11]. On the
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other hand, the finite element method (FEM) is more adaptive for
complex waveguide structures with irregular interfaces [2, 3]. Some
other methods which utilize global basis functions for representing the
mode solutions have been reported in the literature though they are
not as popular as FDM and FEM [12, 13].

As an optical mode solver, the ability to accurately simulate the
vectorial properties of the optical field is critical in dealing with those
strongly guided structures. This is of particular interest in silicon
photonics due to the large index contrast in SOI (Silicon on Insulator)
waveguides [14, 15].

Both FDM and FEM are built on localized unknown values, which
naturally possess the flexibility to tackle the interfaces. With a small
enough grid size, FDM and FEM will reach a certain required accuracy.
On the opposite, due to their lacking of local treatment, those
numerical mode solvers built on global bases or variables generally
don’t work for optical waveguides with high index contrast at interfaces
or corners, unless the whole domain is divided into sub-domains, each
of which will be approximated by its own whole-domain basis functions
and interface conditions that are later imposed across adjacent sub-
domains [16].

In this paper, we present a quadratic spline collocation method
(QSCM), which uses a set of localized piecewise quadratic polynomials
to approximate the exact mode solution. The unknown weights
of the polynomials are then determined by forcing the errors at a
set of points, called collocation points, to be zero. The original
second order differential equation is therefore transferred to a set
of algebraic equations, which can be solved by matrix techniques.
Spline collocation method is considered as one of finite element
methods (FEM) [17], as it utilizes finite element, namely, localized
basis functions which can become infinitely small when the grid
size of the computation window is decreased. However, the spline
collocation method uses the weights of the basis-functions as the
undetermined values and forces the approximation functions to exactly
match the unknown functions at a set of points. Such approach is quite
different from the traditional FEM, which chooses element nodes as the
undetermined variables that can be solved by the variational principles
or the Galerkin method [13].

Though the idea of collocation is not new in optics [18–22],
the spline collocation based on the piecewise polynomials is rarely
examined. Most of the available collocation approaches are based
on orthogonal collocation [18–22], which use global basis functions
that are nonzero throughout the whole computation domain. Such
global collocation methods have difficulties in dealing with dielectric
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interfaces where the field or the first-order derivative is discontinuous.
Improvements on global collocation method have been reported when
the computation domain is divided into sub-regions according to the
position of the dielectric interfaces, and each sub-region is applied
with global collocation, and finally, interface and boundary conditions
are forced [16]. However, the increased complexity may impede its
popularization.

The paper is structured as follow. We will brief the basic idea
and the formulation of QSCM for boundary value problems, and will
implement QSCM in the uniform region and dielectric interfaces in
Section 2. In Section 3, various waveguide structures are evaluated
with QSCM followed by comparison with the standard FDM result.
We finally summarize our work in Section 4.

2. STRUCTURE AND WORKING PRINCIPLE

For a general two-point second-order boundary value problem, the
computation domain (a, b) is divided into M uniform intervals with a
grid size h, the middle points of which τi (i = 1, 2, . . . ,M) are chosen
as the collocation points. The quadratic basis functions are chosen
as [17]

si(x) ≡ 2
3
ψ

(
x− a

h
− i + 2

)
i = 0, . . . , M + 1 (1)

where

ψ(x) ≡





0 x > 3 or x < 0

x2 0 ≤ x ≤ 1

−3 + 6x− 2x2 1 ≤ x ≤ 2

9− 6x + x2 2 ≤ x ≤ 3

(2)

-2 -1
0.0

0.5

1.0

0 1 2 3 4 5

Figure 1. The quadratic spline collocation method basis functions
example.



100 Mu et al.

Figure 1 shows an example set of quadratic basis functions with
computation domain (0, 3) and grid size 1.0. The collocation points
are 0.5, 1.5, and 2.5. The boundary points are 0 and 3. Each of the
piecewise quadratic basis functions have nonzero values only across
three intervals as shown in Figure 1. This localization feature gives
QSC flexibility for easy implementation for various boundary condition
and discontinuity as discussed later.

The summation of the weighted basis functions [17]

φ(x) =
M+1∑

i=0

θisi (x) i = 0, . . . ,M + 1, (3)

is formed as the approximate solution with unknown weights θj , which
are determined by substituting Eq. (3) into the second order partial
differential equation and the boundary conditions. For a longitudinally
invariant waveguide, the full vector governing equations in magnetic
field are given by

n2 ∂

∂x

(
1
n2

∂Hy

∂x

)
+

∂2Hy

∂y2
+n2k2Hy−n2 ∂

∂x

(
1
n2

∂Hx

∂y

)
+

∂2Hx

∂x∂y
=β2Hy (4)

n2 ∂

∂y

(
1
n2

∂Hx

∂y

)
+

∂2Hx

∂x2
+n2k2Hx−n2 ∂

∂y

(
1
n2

∂Hy

∂x

)
+

∂2Hy

∂x∂y
=β2Hx (5)

The boundary conditions used in this work are given by: for
the discontinuity along y direction, Hx, Hy, d(Hy)/dy, d(Hy)/dx are
continuous; for the discontinuity along x direction, Hy, Hx, d(Hx)/dx,
d(Hx)/dy are continuous. It is worthy of noting that higher order
boundary conditions will improve the accuracy. However, in this letter,
we were trying to start with the simple boundary conditions to show
the feasibility of the QSCM in mode solvers, the improved version
incorporated with the higher order boundary conditions and the related
applications such as beam propagation method are in development and
will be presented in future publications. Substituting Eq. (3) into the
Eq. (4) and Eq. (5), we have

Y1θ̄
Hy + X1θ̄

Hx = B1θ̄
Hy (6)

Y2θ̄
Hy + X2θ̄

Hx = B2θ̄
HX (7)

here
Y1 = Dx′

2 ⊗Dy
0 + Dx

0 ⊗Dy
2 + k2

0NDx
0 ⊗Dy

0

B1 = β2Dx
0 ⊗Dy

0

X2 = Dx
2 ⊗Dy

0 + Dx
0 ⊗Dy′

2 + k2
0NDx

0 ⊗Dy
0

Y2 = −Dx′
1 ⊗Dy

1 + Dx
1 ⊗Dy

1

Y2 = −Dx′
1 ⊗Dy

1 + Dx
1 ⊗Dy

1
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Here N is the distribution matrix for the permittivity (n2), and the
coefficient matrix for the zero-order, the first-order, and the second-
order derivatives are given by [17]:

Dx,y
2 =

4
3h2

x,y




−3 1
1 −2 1

. . .
1 −2 1

1 −3


 (8)

Dx,y
1 =

2
3hx,y




1 1
−1 0 1

. . .
−1 0 1

−1 −1


 (9)

Dx,y
0 =

1
6




5 1
1 6 1

. . .
1 6 1

1 5


 (10)

Dy′
0 , Dy′

1 , Dy′
2 are the modified coefficient matrices for the zero-order,

the first-order and second-order derivative operators, respectively.
Those modified coefficient matrices are obtained by modifying the
basis function and imposing the boundary conditions. Assuming there
are discontinuities at jth and (j + 1)th points along y direction, the
elements have to be modified as

Dy′
0 (j, j) =

1
6

(
n2

j+1 − n2
j

n2
j+1 + n2

j

+ 6

)
Dy

0(j, j)
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2n2
j

n2
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j

Dy
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Dy′
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2n2
j+1
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j

Dy
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Dy′
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1
6

(
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j
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)
Dy
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for the zero-order derivative operators, and
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Dy′
1 (j + 1, j) =
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1
2
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j

)
Dy
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for the second-order derivative operators. Similarly, with the exchange
of j to i and y to x, we can obtain the modified coefficient matrices Dx′

0 ,
Dx′

1 , Dx′
2 , assuming there are discontinuities between ith and (i + 1)th

points along x direction. Finally we have Aθ̄ = β2Bθ̄, which is a
standard eigen-value problem in which the matrices are defined as

A =
(

Y1 X1

Y2 X2

)
, B =

(
B1 0
0 B2

)
(11)

For a two-dimensional waveguide structure, e.g., slab waveguide
structures, Eqs. (4) and (5) become decoupled for the TM and TE
modes, respectively.

n2 ∂

∂x

(
1
n2

∂Hy

∂x

)
+ n2k2Hy = β2

TMHy (12a)

∂2Hx

∂x2
+ n2k2Hx = β2

TEHx (12b)

In matrix form, we have
YTM θ̄Hy = BTM θ̄Hy (13a)

XTE θ̄Hx = BTE θ̄HX (13b)
Here

YTM = Dx′
2 + k2

0NDx
0

BTM = β2
TMDx

0

XTE = Dy′
2 + k2

0NDy
0
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BTE = β2
TEDy

0

It should be noted that, unlike in the FDM scheme where the
(unknown) function is determined at a series of discrete points, the
(unknown) function in the QSCM scheme is not only determined
at a set of discrete points (i.e., the collocation points), but is also
smoothed out by the local quadratic functions among the collocation
points. Therefore, in a homogenous region where no abrupt change can
possibly happen to the (unknown) function, the QSCM should be more
accurate comparing to the FDM with a same set of discrete points.
At the boundary of two different homogenous materials, however,
the (unknown) function can have an abrupt change that cannot be
described by a finite set of smooth functions. To solve this problem,
we’ve modified the basis functions to explicitly represent the possible
discontinuity in the (unknown) function. Such induced extra degree
of freedom is then utilized to force the (unknown) function to satisfy
the boundary condition embedded in the Maxwell equations. Hence
the accuracy of the (unknown) function is ensured, not only inside the
homogenous region, but also at the boundaries.

3. VERIFICATION OF QSC METHOD

To evaluate the QSCM mode solver performance, we compare it
directly with a standard O(h2) finite difference (FD) mode solver. For
a same grid size, a three-point scheme FD mode solver will result in the
same tri-diagonal matrix as QSC. So the computation effort is roughly
the same. The first structure we investigate is a three-layer asymmetric
slab waveguide with a refractive index profile (nclad = 1.0, ncore = 3.5,
nsubstrate = 1.5). The waveguide width is 0.6µm, and the wavelength is
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Figure 2. QSC and FD comparison with same grid size and
computation effort.
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1.55µm. The slab waveguide structure is a good benchmark since it has
analytical solutions. For the structure mentioned above, it supports
three guided TE modes (Neff: 3.3457572/2.8514373/1.8943529) and
two guided TM modes (Neff: 3.2707248/2.493801). The computation
window is set to 5 micron meters and terminated with zero boundary
condition. The results of the first two guided modes from FDM and
QSC are shown in Figure 2 and it is observed that QSC has a better
convergence rate.

Next we investigate two three-dimensional waveguides by
calculating the normalized propagation constant and comparing results
with those obtained by the finite difference method. For the rib
waveguide in Figure 3(a), the thickness of the guiding layer d is 0.2 µm,
and the height of the cladding h is 1.0µm, the ridge width W is 2.4µm.
The other parameters have been shown in Figure 3. For purpose
of comparison with the published results, we use the normalized
propagation constant B = (N2

eff − n2
s)/(n2

g − n2
s) for rib waveguide and

the effective propagation constant for the channel waveguide.
The comparison of the current method with the published finite

difference methods is shown in Figure 4. We also plot the field
patterns of both rib and channel waveguide structures in Figure 5.
With the decrease of the mesh size, both QSCM and FDM show
the increased computation accuracy (Figure 4(a)). Since the decrease
of the mesh size is equivalent to the increase of the number of the
mesh points, it is reasonable that we see a convergence of the effective
index with the increase of the mesh points (Figure 4(b)). Moreover,
it is observed that QSCM and FDM mode solver have the same
convergence rate. However, with the same grid size, namely the same
amount of computation effort, QSCM mode solver is more accurate
than conventional FDM mode solver [4, 5], however, it should be
addressed that the current QSCM loses the advantage comparing to
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Figure 3. waveguide structures. (a) Rib waveguide [5]. (b) Channel
waveguide [7].
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Figure 5. Field patterns calculated by QSC. (a) Rib waveguide
(t = 0.2). (b) Channel waveguide.

the improved finite difference method [7, 10, 11] where higher order
boundary conditions are applied. The improved QSCM with higher
order boundary conditions will be our future work.

4. CONCLUSIONS

We have introduced a numerical mode solver based on the quadratic
spline collocation method which employs piecewise second-order
polynomials. The piecewise property of spline collocation method
allows us to easily integrate the discontinuity of the dielectric interfaces
into our formulation. The resulted QSCM mode solver performs
well when it is compared with the standard finite difference method.
This general method may find its applications of studying the optical
characteristics of the photonic devices and applications in various
eigen-modes associated methods such as beam propagation method,
coupled mode theory, and mode expansion methods, etc.
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