
Progress In Electromagnetics Research, Vol. 134, 151–168, 2013

SCALAR POTENTIAL DEPOLARIZING DYAD
ARTIFACT FOR A UNIAXIAL MEDIUM

Michael John Havrilla*

Department of Electrical and Computer Engineering, Air Force
Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, USA

Abstract—A scalar potential formulation for a uniaxial anisotropic
medium is succinctly derived through the exclusive use of Helmholtz’s
theorem and subsequent identification of operator orthogonality. The
resulting formulation is shown to be identical to prior published
research, with the notable exception that certain scalar potential fields
not considered in previous work are rigorously demonstrated to be
unimportant in the field recovery process, thus ensuring uniqueness. In
addition, it is revealed that both a physically expected and unexpected
depolarizing dyad contribution appears in the development. Using
a Green’s function spectral domain analysis and subsequent careful
application of Leibnitz’s rule it is shown that, for an unbounded
homogeneous uniaxial medium, the unexpected depolarizing dyad term
is canceled, leading to a mathematically and physically consistent and
correct theory.

1. INTRODUCTION

Vector potentials are often employed to aid the solution of
electromagnetic problems involving simple (i.e., linear, homogeneous,
and isotropic) media [1–4]. In the past couple decades, new scalar
and vector potential formulations have been heavily investigated and
utilized in the electromagnetic analysis of complex media [5–16] such
as anisotropic and bianisotropic materials [17–20]. This recent interest
has been greatly renewed by significant developments in material
fabrication capability and the phenomena exclusively associated with
complex media [21–23]. One of the many pioneers to investigate
scalar potential techniques for complex media was Weiglhofer [6–
13, 15, 19]. Weiglhofer’s analysis in [11], involving the scalar potential
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formulation for uniaxial anisotropic media, is especially interesting
from an application viewpoint due to the relative ease of manufacturing
this type of material [24].

The goal of this paper is to first briefly review the pioneering
uniaxial anisotropic scalar potential work in [11]. This review is
important because it allows identification of a scalar field contribution
that was not considered in the method of derivation but influences the
uniqueness of the field recovery process, and it reveals an expected
and unexpected depolarizing dyad contribution. The next objective
here is to offer an alternative scalar potential derivation for uniaxial
anisotropic media exclusively based upon Helmholtz’s theorem and
subsequent identification of operator orthogonality. The end result is
identical to [11]; however, it is definitively shown in this alternative
derivation that the scalar field contribution not previously considered
does not influence field calculation, and thus ensures uniqueness.
The final goal is to demonstrate that, using a Green’s function
spectral domain analysis, the unexpected depolarizing dyad term is
removable for a homogeneous uniaxial anisotropic medium, resulting
in a mathematically and physically consistent theory.

2. UNIAXIAL ANISOTROPIC SCALAR POTENTIAL
FORMULATION

The first objective of this section is to briefly review the uniaxial
anisotropic scalar potential derivation [11] in order to identify a
scalar field contribution not previously considered and to identify both
an expected and unexpected depolarizing dyad contribution. The
second objective is to offer an alternative derivation that rigorously
demonstrates the scalar field contribution (not previously considered)
does not impact field uniqueness. Removal of the unexpected
depolarizing dyad for a homogeneous uniaxial anisotropic medium is
demonstrated in Section 3.

2.1. Prior Uniaxial Anisotropic Scalar Potential Formulation

Following the analysis in [11], Maxwell’s equations for a linear,
inhomogeneous (in z), uniaxial electric and magnetic anisotropic
medium are (with exp (jωt) assumed and suppressed)

∇× ~E(~ρ, z) = − ~Jh(~ρ, z)− jω
↔
µ(z) · ~H(~ρ, z)

∇× ~H(~ρ, z) = ~Je(~ρ, z) + jω
↔
ε(z) · ~E(~ρ, z)

(1)
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where the z axis is the principal axis, ↔
ε = x̂εtx̂ + ŷεtŷ + ẑεz ẑ the

dyadic permittivity, ↔µ = x̂µtx̂ + ŷµtŷ + ẑµz ẑ the dyadic permeability,
and ~ρ = x̂x + ŷy. Decomposing (1) into transverse and longitudinal
components and subsequent equating leads to the following relations
for Ampere’s and Faraday’s laws, respectively

∇t × ẑEz + ẑ × ∂ ~Et
∂z = − ~Jht − jωµt

~Ht (2)

∇t × ~Et = −ẑJhz − ẑjωµzHz (3)

∇t × ẑHz + ẑ × ∂ ~Ht
∂z = ~Jet + jωεt

~Et (4)

∇t × ~Ht = ẑJez + ẑjωεzEz (5)

where ∇t = x̂ ∂
∂x + ŷ ∂

∂y is the transverse del operator. The two-
dimensional form of Helmholtz’s theorem [11], which states that a
vector field is completely specified by the superposition of curl-free and
divergence-free contributions, is now used to represent the transverse
fields and currents, namely

~Et = ∇tΦ +∇t × ẑθ = ∇tΦ− ẑ ×∇tθ (6)
~Ht = ∇tπ +∇t × ẑψ = ∇tπ − ẑ ×∇tψ (7)
~Jet = ∇tue +∇t × ẑve = ∇tue − ẑ ×∇tve (8)
~Jht = ∇tuh +∇t × ẑvh = ∇tuh − ẑ ×∇tvh (9)

where Φ, θ, π, ψ are field-based scalar potentials and ue, ve, uh, vh are
current-based scalar potentials. Insertion of (7) into (5) and (6) into (3)
and use of standard vector calculus identities leads to the following
relations

Ez = − 1
jωεz

(∇2
t ψ + Jez

)
(10)

Hz = 1
jωµz

(∇2
t θ − Jhz

)
(11)

where ∇2
t = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian operator. Thus, the
fields are recovered from the potentials via (6), (7), (10) and (11).

Prompted by Helmholtz’s theorem and analysis in [11], the first
step in obtaining the governing wave equations for the potentials is to
take the transverse divergence and transverse curl of (2) and (4) and
substituting in (6)–(9), leading to the preliminary result

∇2
t

(
∂θ
∂z + uh + jωµtπ

)
= 0 (12)

∇2
t

(−Ez + ∂Φ
∂z − vh − jωµtψ

)
= 0 (13)

∇2
t

(
∂ψ
∂z − ue − jωεtΦ

)
= 0 (14)

∇2
t

(−Hz + ∂π
∂z + ve + jωεtθ

)
= 0 (15)
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It is subsequently inferred in [11] that, based on (12)–(15), the following
relations prevail;

∂θ
∂z + uh + jωµtπ = 0 → π = − 1

jωµt

(
∂θ
∂z + uh

)
(16)

−Ez + ∂Φ
∂z − vh − jωµtψ = 0 → Ez = ∂Φ

∂z − vh − jωµtψ (17)
∂ψ
∂z − ue − jωεtΦ = 0 → Φ = 1

jωεt

(
∂ψ
∂z − ue

)
(18)

−Hz + ∂π
∂z + ve + jωεtθ = 0 → Hz = ∂π

∂z + ve + jωεtθ. (19)

Insertion of (10) and (18) into (17), and (11) and (16) into (19) leads
to the desired scalar potential wave equations

− εt
εz
∇2

t ψ−εt
∂
∂z

(
1
εt

∂ψ
∂z

)
−k2

t ψ =−εt
∂
∂z

(
1
εt

ue

)
+ εt

εz
Jez−jωεtvh (20)

− µt

µz
∇2

t θ−µt
∂
∂z

(
1
µt

∂θ
∂z

)
−k2

t θ = µt
∂
∂z

(
1
µt

uh

)
− µt

µz
Jhz−jωµtve (21)

where εt, εz, µt, µz are, in general, functions of z and k2
t = ω2εtµt.

Summarizing, the scalar potentials ψ and θ are first solved using (20)
and (21). Next, π and Φ are computed using (16) and (18). Finally,
the field recovery process is completed via (6), (7), (10) and (11).

The above brief review is important in order to bring out three
salient points. First, an examination of (10) and (11) readily shows
that

~Ez = ẑEz =−ẑ 1
jωεz

∇2
t ψ−ẑ 1

jωεz
ẑ · ~Je =−ẑ 1

jωεz
∇2

t ψ+
↔
Le

zz · ~Je (22)

~Hz = ẑHz = ẑ 1
jωµz

∇2
t θ − ẑ 1

jωµz
ẑ · ~Jh = ẑ 1

jωµz
∇2

t θ +
↔
Lh

zz · ~Jh (23)

where the relations Jez = ẑ · ~Je and Jhz = ẑ · ~Jh have been used. The

terms
↔
Le

zz = −ẑ 1
jωεz

ẑ and
↔
Lh

zz = −ẑ 1
jωµz

ẑ are the well-known electric
and magnetic field depolarizing dyads resulting from the longitudinal
current densities and are mathematically and physically consistent
with prior well-documented findings [25–35]. In these findings, it is
discussed that the source region of volume V is split into two subregions
V −Vδ and Vδ, where Vδ is a small cavity excavated around the source
point (in the limit as δ → 0). This method is used in order to
carefully handle the source point singularity. However, in doing this,
the excavated region disrupts the current flow causing surface charges
to accumulate, which subsequently causes gap (i.e., cavity) fields to
exist that are not there in the original continuous volume region V . It
is subsequently discussed in these findings that the contribution from
the Vδ region, which depends on its shape, produces depolarization
fields that cancel the gap fields. In the work considered here in
which the z axis is the principal axis, the source excluding region is a
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Figure 1. Source region gap and depolarizing fields.

slice gap as shown in Figure 1. Also shown are the expected electric
and magnetic surface charges due to the longitudinal (i.e., z-directed)
current densities Jez, Jhz and the corresponding gap fields ~Eg, ~Hg and

depolarizing fields ~Ed =
↔
Le

zz · ~Je and ~Hd =
↔
Lh

zz · ~Jh, which are in
agreement with the prior findings.

In a similar manner, an examination of (6) and (7) in conjunction
with (16) and (18) reveals that

~Et = ∇tΦ +∇t × ẑθ = 1
jωεt

∇t
∂ψ
∂z − 1

jωεt
∇tue +∇t × ẑθ (24)

~Ht = ∇tπ +∇t × ẑψ = − 1
jωµt

∇t
∂θ
∂z − 1

jωµt
∇tuh +∇t × ẑψ (25)

where ∇tue and ∇tuh are identified as, with the aid of (8) and (9),
the curl-free contributions of the transverse electric and magnetic
current densities, respectively. Analogous with the previous results
in (22) and (23), it appears that based on (24) and (25), there
exists transverse electric and magnetic depolarizing dyad fields
implicated by the transverse current densities, namely − 1

jωεt
∇tue

and − 1
jωµt

∇tuh. Based on prior findings in the research literature,
these transverse depolarizing dyads are completely unexpected both
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mathematically and physically. Figure 1, for example, clearly shows
that transverse current densities ~Jet, ~Jht which travel parallel to the
gap region Vδ do not cause surface charge buildup at the boundaries
z − δ and z + δ. Thus gap and depolarizing fields are not anticipated.
Note, it is this physical picture that prompted the author to explore
the mathematical derivation that demonstrates the cancelation of
the apparent transverse depolarizing dyad fields in (24)–(25). This
observation, which represents the second salient point, will be further
discussed in Section 3.

The third crucial point to discuss here in the reviewed analysis
of [11] involves Equations (12)–(15) and the relations subsequently
inferred in (16)–(19). As an example, consider Equation (12) and the
subsequent inferred result in (16). Due to the transverse Laplacian
operator in (12), it is more mathematically precise to infer in (16) that

∂θ
∂z + uh + jωµtπ = C1(z) + C2(z)f(x, y)

⇒ π = − 1
jωµt

(
∂θ
∂z + uh

)
+ 1

jωµt
[C1(z) + C2(z)f(x, y)] (26)

where C1(z), C2(z) are functions of z and f(x, y) is a function of x, y
which must satisfy the condition ∇2

t f(x, y) = 0. In order to see the
ramifications of this observation on the field recovery process, consider
an example case where C1(z) = 3z, C2(z) = 2 and f(x, y) = x + y.
The transverse Laplacian of C1(z) + C2(z)f(x, y) is clearly zero and is
thus consistent with (12), as expected. However, for the field recovery
in (7) which involves ∇tπ, one obtains the result

∇tπ = − 1
jωµt

∇t

(
∂θ
∂z + uh

)
+ 1

jωµt
∇t [3z + 2(x + y)]

= − 1
jωµt

∇t

(
∂θ
∂z + uh

)
+ 1

jωµt
[2(x̂ + ŷ)] . (27)

Since ∇tC1(z) = 0, it does not impact the field recovery process.
However, notice the additional contribution 1

jωµt
[2(x̂ + ŷ)] in (27) due

to the factor ∇t[C2(z)f(x, y)]. Since C2 and f are, in general, arbitrary
terms, they have important implications, namely, the field recovery is
not unique — it can take on any arbitrary value! In the next section, an
alternative scalar potential derivation will be presented that rigorously
demonstrates the unimportance of any such scalars in the field recovery
process, and thus ensures uniqueness of the field.

2.2. Alternative Uniaxial Anisotropic Scalar Potential
Formulation

In this alternative uniaxial anisotropic scalar potential derivation,
calculation of Ez and Hz follows in the exact same manner as in the
prior derivation. Namely, (7) is inserted into (5), and (6) is inserted
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into (3) to obtain (10) and (11). Next, in contrast to the prior scalar
potential derivation, the transverse divergence and transverse curl are
not performed on (2) and (4). Instead, the second representation of the
transverse fields and sources in (6)–(9) are directly substituted into (2)
and (4), resulting in

−ẑ ×∇tEz + ẑ ×∇t
∂Φ
∂z +∇t

∂θ
∂z

= −∇tuh + ẑ ×∇tvh −∇tjωµtπ + ẑ ×∇tjωµtψ (28)

−ẑ ×∇tHz + ẑ ×∇t
∂π
∂z +∇t

∂ψ
∂z

= ∇tue − ẑ ×∇tve +∇tjωεtΦ− ẑ ×∇tjωεtθ (29)
where standard vector calculus identities have been utilized. It is
important here to recognize that the operators ∇t and ẑ × ∇t are
orthogonal (i.e., ∇t · ẑ × ∇t = 0) and are thus linearly independent.
Note, a Fourier transform on the transverse spatial variables, in which
∇t gets mapped into j~λρ = j(x̂λx + ŷλy), may also be employed as
an alternative proof of orthogonality of the operators since ∇t · ẑ×∇t

transforms to j~λρ · ẑ × j~λρ = ~λρ × ~λρ · ẑ = 0. Therefore, the ∇t terms
and the ẑ ×∇t terms can be respectively equated in (28) and in (29),
leading to the rigorous result

∇t

(
∂θ
∂z + uh + jωµtπ

)
= 0 ⇒

∂θ
∂z + uh + jωµtπ = C1(z) (30)

ẑ ×∇t

(−Ez + ∂Φ
∂z − vh − jωµtψ

)
= 0 ⇒

−Ez + ∂Φ
∂z − vh − jωµtψ = C2(z) (31)

∇t

(
∂ψ
∂z − ue − jωεtΦ

)
= 0 ⇒

∂ψ
∂z − ue − jωεtΦ = C3(z) (32)

ẑ ×∇t

(−Hz + ∂π
∂z + ve + jωεtθ

)
= 0 ⇒

−Hz + ∂π
∂z + ve + jωεtθ = C4(z) (33)

where Cn (n = 1, 2, 3, 4) are scalar fields that can, in general, be
functions of z. Note that the derived relations in (30)–(33) only involve
the transverse del operator ∇t, whereas derived relations (12)–(15) in
the previous section involved the transverse Laplacian operator ∇2

t .
Since the field recovery process for the transverse fields involves ∇t

and the longitudinal fields involves ∇2
t , it is clear upon differentiating

that the Cn in (30)–(33) do not influence the fields (i.e., ∇tCn(z) = 0).
Thus, without loss of generality or uniqueness, the Cn may be set equal
to zero, definitively leading to the desired potential relations

π = − 1
jωµt

(
∂θ
∂z + uh

)
(34)

Ez = ∂Φ
∂z − vh − jωµtψ (35)
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Φ = 1
jωεt

(
∂ψ
∂z − ue

)
(36)

Hz = ∂π
∂z + ve + jωεtθ (37)

which are identical to relations (16)–(19) inferred in the previous
section. The final wave equations (20)–(21) follow in the exact same
manner as discussed in the previous section. Thus, it has been
rigorously shown for the first time in this manner (to the author’s
knowledge) that the scalars Cn appearing in the potential formulation
do not contribute to the fields and consequently ensures a unique field
representation.

3. TRANSVERSE FIELD DEPOLARIZING DYAD
ARTIFACTS

Based on the uniaxial anisotropic scalar potential formulation
previously discussed, it appears that there exists transverse electric and
magnetic field depolarizing dyads, namely − 1

jωεt
∇tue and − 1

jωµt
∇tuh.

These apparent terms originate from (6) and (7) and from the potential
fields Φ and π,

Φ = 1
jωεt

(
∂ψ
∂z − ue

)
(38)

π = − 1
jωµt

(
∂θ
∂z + uh

)
(39)

where ue and uh are related to the transverse electric and magnetic
current densities ~Jet and ~Jht via (8) and (9), respectively. It
was previously mentioned that this result was both mathematically
and physically unexpected in lieu of the research literature and
Figure 1. The goal of this section is to demonstrate that, via a
Green’s function spectral domain approach and careful application of
Leibnitz’s rule, the apparent depolarizing dyads are removable for an
unbounded homogeneous uniaxial anisotropic medium, leading to a
mathematically and physically consistent theory. Thus, the equivalent
goal here is to show that the terms ue and uh in (38) and (39)
get canceled, which subsequently eliminates the apparent electric and
magnetic field depolarizing dyads.

The first step in showing the apparent depolarizing dyads are
removable is to seek solutions to the wave equations. The scalar
potential wave Equations (20) and (21) for a homogeneous uniaxial
anisotropic medium simplify to

− εt
εz
∇2

t ψ − ∂2ψ
∂z2 − k2

t ψ = −∂ue
∂z + εt

εz
Jez − jωεtvh (40)

− µt

µz
∇2

t θ − ∂2θ
∂z2 − k2

t θ = ∂uh
∂z − µt

µz
Jhz − jωµtve (41)
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where the functional dependence of the potentials and current densities
on x, y, z has been dropped for notational convenience. Since the
medium is unbounded, Fourier transformation is prompted on x, y, z.
The principal axis is the z axis, thus it is convenient to first transform
on the transverse variables x, y followed by transformation on the
longitudinal variable z using the respective generic transform pairs

f̃
(
~λρ, z

)
=

∞∫

−∞

∞∫

−∞
f (~ρ, z) e−j~λρ·~ρdxdy

f (~ρ, z) = 1
(2π)2

∞∫

−∞

∞∫

−∞
f̃

(
~λρ, z

)
ej~λρ·~ρdλxdλy

(42)

˜̃
f

(
~λρ, λz

)
=

∞∫

−∞
f̃

(
~λρ, z

)
e−jλzzdz

f̃
(
~λρ, z

)
= 1

2π

∞∫

−∞

˜̃
f

(
~λρ, λz

)
ejλzzdλz

(43)

where ~λρ = x̂λx + ŷλy. Upon consecutively performing these Fourier
transformations, the wave equations in the ~λρ, λz domain become

(
λ2

z − λ2
zψ

) ˜̃
ψ = −jλz

˜̃ue + εt
εz

˜̃Jez − jωεt
˜̃vh (44)

(
λ2

z − λ2
zθ

) ˜̃
θ = jλz

˜̃uh − µt

µz

˜̃Jhz − jωµt
˜̃ve (45)

where λ2
zψ = k2

t − εt
εz

λ2
ρ, λ2

zθ = k2
t − µt

µz
λ2

ρ, λ2
ρ = λ2

x+λ2
y, and k2

t = ω2εtµt.

Solving for ˜̃
ψ(~λρ, λz) and ˜̃

θ(~λρ, λz) produces

˜̃
ψ =

−jλz
˜̃ue + εt

εz

˜̃Jez − jωεt
˜̃vh

(λz + λzψ)(λz − λzψ)
(46)

˜̃
θ =

jλz
˜̃uh − µt

µz

˜̃Jhz − jωµt
˜̃ve

(λz + λzθ)(λz − λzθ)
(47)

where the poles of (46)–(47) physically represent the propagation
factors λz = ∓λzψ,∓λzθ of up-going and down-going waves along the
z direction, respectively. Note, the poles +λzψ, +λzθ are located in
the lower-half complex λz plane and the poles −λzψ, −λzθ are located
in the upper-half complex λz plane. Also, an examination of Ez,Hz
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in (10), (11) reveals that ˜̃
ψ is associated with TMz fields and ˜̃

θ is
associated with TEz fields.

Expressions for ˜̃ue, ˜̃ve and ˜̃uh, ˜̃vh in terms of
~̃̃
Jet,

~̃̃
Jht

and ultimately
~̃̃
Je,

~̃̃
Jh (leading to the identification of spectral-

domain potential-based Green’s functions) can be found via Fourier
transforming the divergence and curl of both (8) and (9), respectively,
leading to

j~λρ ·
~̃̃
Jet = −λ2

ρ
˜̃ue ⇒ ˜̃ue = − j~λρ·

~̃̃
Jet

λ2
ρ

= − j~λρ·
~̃̃
Je

λ2
ρ

(48)

j~λρ ×
~̃̃
Jet = ẑλ2

ρ
˜̃ve ⇒ ˜̃ve = jẑ·~λρ×

~̃̃
Jet

λ2
ρ

= jẑ×~λρ·
~̃̃
Jet

λ2
ρ

= jẑ×~λρ·
~̃̃
Je

λ2
ρ

(49)

j~λρ ·
~̃̃
Jht = −λ2

ρ
˜̃uh ⇒ ˜̃uh = − j~λρ·

~̃̃
Jht

λ2
ρ

= − j~λρ·
~̃̃
Jh

λ2
ρ

(50)

j~λρ ×
~̃̃
Jht = ẑλ2

ρ
˜̃vh ⇒ ˜̃vh = jẑ·~λρ×

~̃̃
Jht

λ2
ρ

= jẑ×~λρ·
~̃̃
Jht

λ2
ρ

= jẑ×~λρ·
~̃̃
Jh

λ2
ρ

(51)

where the vector calculus identity ~a·~b×~c = ~a×~b·~c has been used in (49)

and (51). Note, ~λρ ·
~̃̃
Jet,ht = ~λρ ·

~̃̃
Je,h and ẑ × ~λρ ·

~̃̃
Jet,ht = ẑ × ~λρ ·

~̃̃
Je,h

since ~λρ and ẑ × ~λρ are purely transverse vectors. Thus, upon

substituting (48)–(51) into (46)–(47) and using ˜̃Jez,hz = ẑ · ~̃̃
Je,h allows

˜̃
ψ and ˜̃

θ to be written as

˜̃
ψ(~λρ, λz) =

~̃̃
Gψe(~λρ, λz) ·

~̃̃
Je(~λρ, λz) +

~̃̃
Gψh(~λρ, λz) ·

~̃̃
Jh(~λρ, λz) (52)

˜̃
θ(~λρ, λz) =

~̃̃
Gθe(~λρ, λz) ·

~̃̃
Je(~λρ, λz) +

~̃̃
Gθh(~λρ, λz) ·

~̃̃
Jh(~λρ, λz) (53)

~̃̃
Gψe(~λρ, λz) =

−λz
λ2

ρ

~λρ + εt
εz

ẑ

(λz + λzψ)(λz − λzψ)
(54)

~̃̃
Gψh(~λρ, λz) =

ωεt
λ2

ρ
ẑ × ~λρ

(λz + λzψ)(λz − λzψ)
(55)

~̃̃
Gθe(~λρ, λz) =

ωµt

λ2
ρ

ẑ × ~λρ

(λz + λzθ)(λz − λzθ)
(56)

~̃̃
Gθh(~λρ, λz) =

λz
λ2

ρ

~λρ − µt

µz
ẑ

(λz + λzθ)(λz − λzθ)
(57)

where
~̃̃
Gψe,

~̃̃
Gψh and

~̃̃
Gθe,

~̃̃
Gθh are the spectral domain vector Green’s
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functions for ˜̃
ψ and ˜̃

θ due to electric and magnetic current densities
~̃̃
Je and

~̃̃
Jh. Note, a more traditional dyadic Green’s function

interpretation for the potentials can be readily identified by observing

in (6) and (7) that
~̃̃
ψ = ẑ

˜̃
ψ and

~̃̃
θ = ẑ

˜̃
θ, leading to the dyadic

Green’s functions
↔
˜̃Gψe = ẑ

~̃̃
Gψe,

↔
˜̃Gψh = ẑ

~̃̃
Gψh,

↔
˜̃Gθe = ẑ

~̃̃
Gθe and

↔
˜̃Gθh =

ẑ
~̃̃
Gθh. Inverse transforming (52) and (53) using (43) and Cauchy’s

integral theorem [32, 33], one obtains for ψ̃(~λρ, z) and θ̃(~λρ, z) (upon
considering the cases of z > z′ and z < z′) the result

ψ̃
(
~λρ, z

)
=

b∫

a

~̃Gψe

(
~λρ; z − z′

)
· ~̃Je

(
~λρ, z

′
)

dz′

+

b∫

a

~̃Gψh

(
~λρ; z − z′

)
· ~̃Jh

(
~λρ, z

′
)

dz′

(58)

θ̃
(
~λρ, z

)
=

b∫

a

~̃Gθe

(
~λρ; z − z′

)
· ~̃Je

(
~λρ, z

′
)

dz′

+

b∫

a

~̃Gθh

(
~λρ; z − z′

)
· ~̃Jh

(
~λρ, z

′
)

dz′

(59)

where the source currents in the z variable are assumed to exist in the
localized region a 6 z 6 b and

~̃Gψe

(
~λp; z − z′

)
= −

jλzψ

λ2
ρ

sgn (z − z′)~λρ + jεt

εz
ẑ

2λzψ
e−jλzψ |z−z′| (60)

~̃Gψh

(
~λp; z − z′

)
= −

jωεt

λ2
ρ

ẑ × ~λρ

2λzψ
e−jλzψ |z−z′| (61)

~̃Gθe

(
~λp; z − z′

)
= −

jωµt

λ2
ρ

ẑ × ~λρ

2λzθ
e−jλzθ|z−z′| (62)

~̃Gθh

(
~λp; z − z′

)
=

jλzθ

λ2
ρ

sgn (z − z′)~λρ + jµt

µz
ẑ

2λzθ
e−jλzθ|z−z′| (63)

with λzψ =
√

k2
t − εt

εz
λ2

ρ, λzθ =
√

k2
t − µt

µz
λ2

ρ and sgn(z − z′) = +1,−1

for z > z′, z < z′.
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Now that the solutions to the wave equations for potentials ψ̃ and
θ̃ have been found, it is shown next that the current terms ue and
uh in (38) and (39) are canceled via careful application of Leibnitz’s
rule [36, 37]:

∂
∂z

d(z)∫

c(z)

f(z, z′)dz′ =

d(z)∫

c(z)

∂f(z,z′)
∂z dz′+ ∂d(z)

∂z f [z, d(z)]− ∂c(z)
∂z f [z, c(z)] (64)

where c, d and f must be continuous and have continuous derivatives
in the domain of existence. This analysis is more easily accomplished
in the ~λρ domain since ψ̃ and θ̃ are readily available in (58)–(63), thus
Fourier transforming (38) and (39) using (42) produces

Φ̃(~λρ, z) = 1
jωεt

[
∂ψ̃(~λρ,z)

∂z − ũe(~λρ, z)
]

(65)

π̃(~λρ, z) = − 1
jωµt

[
∂θ̃(~λρ,z)

∂z + ũh(~λρ, z)
]

(66)

where ũe, ũh are easily obtained from (48) and (50) via the inverse
Fourier transform (43), resulting in

ũe(~λρ, z) = − j~λρ

λ2
ρ
· ~̃Je(~λρ, z) (67)

ũh(~λρ, z) = − j~λρ

λ2
ρ
· ~̃Jh(~λρ, z) (68)

In (65), the derivative with respect to z of the potential ψ̃(~λρ, z) must
be performed, namely

∂ψ̃(~λρ,z)
∂z = ∂

∂z

b∫

a

~̃Gψe

(
~λρ; z − z′

)
· ~̃Je

(
~λρ, z

′
)

dz′

+ ∂
∂z

b∫

a

~̃Gψh

(
~λρ; z − z′

)
· ~̃Jh

(
~λρ, z

′
)

dz′

(69)

where Equation (58) has been implicated. Here, it is assumed that
the current densities are continuous and have continuous derivatives.
However, careful examination of ~̃Gψe reveals it is discontinuous and

its derivative is discontinuous at z′ = z, and ~̃Gψh has a discontinuous
derivative at the point z′ = z (if the observation point z is inside the
source region). Thus, the integrals in (69) must be separated into two
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continuously differentiable subintervals [a, z) and (z, b] to ensure (60)–
(61) adhere to the requirements of Leibnitz’s rule, leading to

∂ψ̃(z)
∂z = ∂

∂z

z−δ∫

a

~̃Gψe

(
z − z′

) · ~̃Je(z′)dz′ + ∂
∂z

b∫

z+δ

~̃Gψe

(
z − z′

) · ~̃Je(z′)dz′

+ ∂
∂z

z−δ∫

a

~̃Gψh

(
z−z′

) · ~̃Jh(z′)dz′+ ∂
∂z

b∫

z+δ

~̃Gψh

(
z−z′

)· ~̃Jh(z′)dz′(70)

where the ~λρ functional dependence and lim δ → 0 symbol have been
dropped for notational convenience. It is critical to observe in (70)
that the limits of integration involving the terms z − δ and z + δ are
now functions of the variable z, and thus great care must be taken
when applying Leibnitz’s rule.

The derivatives in (70) are now taken in a straight-forward manner
via (64), producing the results

∂
∂z

z−δ∫

a

~̃Gψe

(
z − z′

) · ~̃Je

(
z′

)
dz′

=

z−δ∫

a

∂
∂z

~̃Gψe

(
z − z′

) · ~̃Je

(
z′

)
dz′ + ~̃Gψe

(
z − z′

) · ~̃Je

(
z′

)∣∣∣
z′=z−δ

(71)

∂
∂z

b∫

z+δ

~̃Gψe

(
z − z′

) · ~̃Je

(
z′

)
dz′

=

b∫

z+δ

∂
∂z

~̃Gψe

(
z − z′

) · ~̃Je

(
z′

)
dz′ − ~̃Gψe

(
z − z′

) · ~̃Je

(
z′

)∣∣∣
z′=z+δ

(72)

∂
∂z

z−δ∫

a

~̃Gψh

(
z − z′

) · ~̃Jh

(
z′

)
dz′

=

z−δ∫

a

∂
∂z

~̃Gψh

(
z − z′

) · ~̃Jh

(
z′

)
dz′ + ~̃Gψh

(
z − z′

) · ~̃Jh

(
z′

)∣∣∣
z′=z−δ

(73)

∂
∂z

b∫

z+δ

~̃Gψh

(
z − z′

) · ~̃Jh

(
z′

)
dz′
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=

b∫

z+δ

∂
∂z

~̃Gψh

(
z − z′

) · ~̃Jh

(
z′

)
dz′ − ~̃Gψh

(
z − z′

) · ~̃Jh

(
z′

)∣∣∣
z′=z+δ

(74)

and, upon combining (71) with (72) and (73) with (74) in the lim δ → 0,
leads to

∂ψ̃(z)
∂z =

b∫

a

∂
∂z

~̃Gψe

(
z − z′

) · ~̃Je

(
z′

)
dz′

+ lim
δ→0

[
~̃Gψe

(
z − z′

)∣∣∣
z′=z−δ

− ~̃Gψe

(
z − z′

)∣∣∣
z′=z+δ

]
· ~̃Je (z)

+

b∫

a

∂
∂z

~̃Gψh

(
z − z′

) · ~̃Jh

(
z′

)
dz′

+lim
δ→0

[
~̃Gψh

(
z−z′

)∣∣∣
z′=z−δ

− ~̃Gψh

(
z−z′

)∣∣∣
z′=z+δ

]
· ~̃Jh (z) (75)

where the continuity of the current densities has been used.
Substitution of (60)–(61) into (75) and careful handling of the
sgn (z − z′) function reveals that

lim
δ→0

[
~̃Gψe

(
z − z′

)∣∣∣
z′=z−δ

− ~̃Gψe

(
z − z′

)∣∣∣
z′=z+δ

]
· ~̃Je (z)

= − j
λ2

ρ

~λρ · ~̃Je (z) = ũe(~λρ, z) (76)

lim
δ→0

[
~̃Gψh

(
z−z′

)∣∣∣
z′=z−δ

− ~̃Gψh

(
z−z′

)∣∣∣
z′=z+δ

]
· ~̃Jh (z)=0 (77)

where the functional dependence on ~λρ in ũe has been reintroduced
for the sake of comparison with (65). The result in (76) is remarkable
because it clearly demonstrates that a careful handling of Leibnitz’s
rule when differentiating ψ̃ with respect to z produces an additional
term ũe (~λρ, z) that exactly cancels the −ũe (~λρ, z) term in (65).
Thus, as a consequence, the unexpected electric field depolarizing
dyad artifact is indeed canceled, leading to a mathematically and
physically consistent/correct theory! For completeness, the potential
Φ̃ is calculated using (65) and the results in (76)–(77), leading to

Φ̃(~λρ, z) = 1
jωεt

b∫

a

∂
∂z

~̃Gψe(~λρ; z − z′) · ~̃Je(~λρ, z
′)dz′
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+ 1
jωεt

b∫

a

∂
∂z

~̃Gψh(~λρ; z − z′) · ~̃Jh(~λρ, z
′)dz′ (78)

Inverse Fourier transforming (58) with respect to ψ̃, (59) with respect
to θ̃, and (78) with respect to Φ̃ via (42) and subsequent insertion
into (6) and (10) allows correct calculation of the spatial-domain
electric field and corresponding field-based Green’s functions due
to electric and magnetic current densities. In a similar procedure
involving (66), it can be shown that the magnetic field depolarizing
dyad is also removable and that the correct spatial magnetic field and
corresponding Green’s functions subsequently follows, the details of
which are not shown for the sake of brevity.

4. CONCLUSION

A scalar potential formulation for a uniaxial anisotropic medium
was derived through the exclusive use of Helmholtz’s theorem and
subsequent identification of operator orthogonality. The resulting
formulation was shown to be identical to prior published research,
with the notable exception that certain scalar fields not considered
in previous work were identified to not impact the field recovery
process. This derivation is new to the author’s knowledge and
constitutes an important contribution since it ensures field uniqueness.
In addition, it was discussed that both a physically expected and
unexpected depolarizing dyad appeared in the development. Based on
a Green’s function spectral domain analysis, it was shown that, for a
homogeneous uniaxial medium, the unexpected depolarizing dyad term
is removable (i.e., gets canceled) via careful application of Leibnitz’s
rule. Demonstrating the removal of the depolarizing dyad artifacts
constitutes a crucial contribution since it leads to a mathematically and
physically consistent theory and leads to the correct calculation of fields
and corresponding Green’s functions both externally and internally
to the source region. Future work will investigate depolarizing dyad
artifacts in gyrotropic media and will explore a possible proof of
whether the depolarizing dyad artifacts are generally removable for
inhomogeneous media.
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