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Abstract—Fractal arrays are used to increase the bandwidth of the
antenna and to reduce grating lobes. The frequency range from 3.1
to 10.6 GHz is specially allocated for the UWB applications. In this
paper, a novel antenna based on fractal concepts for ultra wideband
(UWB) applications is analyzed, designed, fabricated and tested.
Further the antenna is analyzed using the emerging fractal concepts
and transmission line method (TLM). The proposed antenna has a
good gain bandwidth with broadside radiation pattern. This design
is suitable for 3D IC inter-chip and intra-chip communication, and
medical imaging applications. This is called Levy’s antenna.

1. INTRODUCTION

Microstrip antennas in general consist of a radiating patch on one side
of a dielectric substrate (εr ≤ 10) and has a ground plane on the other.
The patch conductors, normally of copper or gold, can assume virtually
any shape, but conventional and symmetrical shapes are generally used
to simplify analysis and performance prediction. Ideally, the dielectric
constant of the substrate should be low (εr ∼ 2.5), so as to enhance
the fringe fields which account for the radiation [1, 2]. Various types of
substrates having a large range of dielectric constants and loss tangents
have been developed. Flexible substrates are also available which make
it possible to fabricate simple conformal wraparound antennas.

Antenna arrays are commonly used in the design of apertures,
which provide benefits such as high gain and agile beam steering
capabilities. When designing an antenna array to operate over a wide
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bandwidth and over a large scan volume, the conventional approach is
to use a lattice where the elements are placed close together in terms
of electrical spacing. Because of this, the mutual coupling between
the individual radiating elements becomes significant and must be
considered during the design of the array. The most robust and
effective way to design a dense array is to treat the radiating elements
as if they were in an infinite array environment. Radiating elements
are typically modeled using some types of full wave computational
electromagnetic CAD tools; however the boundary conditions of the
model are assumed to be periodic. In this manner, the fields on one
side of the model are assumed to be equal to the fields on the other,
plus some phase offset associated with the scan of the array. Effective
dense UWB array designs include the connected array and the Vivaldi
array. In these arrays, the currents are shared between individual
apertures, leading to the high levels of mutual coupling in the array.
However, there are some difficulties associated with the design of these
dense arrays [4–6]. Fractal array design, to an extent, can help solve
these problems. Fractal array design is used in this paper to achieve a
novel ultra wideband antenna. Recent literature survey [3–27] shows
that excellent research results are presented and novel slits and novel
structure variations are used to improve the performance of existing
antennas and promising results are obtained but the proposed method
uses an entirely new concept of fractal design [28] in ultra wideband
antenna.

The paper is organized subsequently as follows. Section 2
introduces the fractal concept and discusses on the mathematical
prerequisites. Section 3 focuses on the graphical analysis of the
array factor and directivity plots for the proposed fractal antenna.
Section 4 throws some light on the mathematical analysis of the
proposed antenna. Section 5 discusses on the mathematical analysis of
the circular disk geometry. Section 6 deals with the Iterated function
systems used in the fractal array geometry predominantly for ultra
wideband application. Section 7 highlights the novel fractal antenna
called Levy’s antenna, its analysis and design, fabrication and test
results. The paper concludes with Section 8 giving the scope for future
work.

2. MATHEMATICAL BACKGROUND FOR FRACTAL
ANTENNA

A fractal is a recursively generated object having a fractional
dimension. Many objects, including antennas, can be designed using
the recursive nature of a fractal. The important properties of fractal
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arrays are frequency independent multi band characteristic schemes for
realizing low side-lobe designs, systematic approaches to thinning, and
the ability to develop rapid beam-forming algorithms by exploiting the
recursive nature of fractals. These arrays have fractional dimensions
that are found from generating sub array used to recursively create the
fractal array [29].

Repetitive application of a generating sub array can form a rich
class of fractal array. A generating sub array is a small array at scale
one (P = 1) where P is the scale factor, and is used to construct larger
arrays of higher scales (P > 1). The generating sub array elements are
turned on and off in a particular pattern in many cases. A set formula
for copying, scaling, and translation of the generating sub array is then
followed in order to produce the fractal array. Hence, fractal arrays
that are created in this manner will compose of a sequence of self-
similar sub arrays. In other words, this may be conveniently considered
as an array of arrays [29].

The array factor for a fractal array [29] of this type may be
expressed in the general form:

AFP (ψ) =
P∏

i=1

ĜA
(
δi−1ψ

)
(1)

where GA (ψ) represents the array factor associated with the
generating sub array. The parameter δ is a scale or expansion
factor that governs how large the array grows with each recursive
application of the generating sub array. The expression for the fractal
array factor given in Equation (1) is simply the product of scaled
versions of a generating sub array factor. Therefore, Equation (1)
may be regarded as representing a formal statement of the pattern
multiplication theorem for fractal arrays.

One of the more intriguing attributes of fractal arrays is the
possibility for developing algorithms, based on the compact product
representation of Equation (1), which are capable of performing
extremely rapid pattern computations. For example consider a linear
array of isotropic elements, uniformly spaced at a distance d apart. The
array factor corresponding to this linear array [29] may be expressed
in the form:

AF (ψ) = Io + 2
N∑

n=1

In cos {nψ} (2)

for odd number of elements [29] and,

AF (ψ) = 2
N∑

n=1

In cos
{(

n− 1
2

)
ψ

}
(3)
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for even number of elements where n is the total number of elements
where,

N =
(

n− 1
2

)
(4)

ψ = kd {cos θ − cos θo} (5)

k =
2π

λ
(6)

where N is the summation factor, ψ the progressive phase shift, and k
the phase constant.

The directivity for fractal array antenna [29] is given by:

DP (u) =
ÂF 2

P

(
π
2 u

)
1
2

∫ 1
−1 ÂF 2

P

(
π
2 u

)
du

(7)

where,

ψ =
π

2
u (8)

and,

u = cos θ (9)

3. GRAPHICAL ANALYSIS OF ARRAY-FACTOR AND
DIRECTIVITY OF FRACTAL ARRAYS

The antenna arrays, as discussed in Section 2, become fractal-like
when appropriate elements are turned off, such that, antenna current
function varies as:

In = 1, if element n is turned ON, &
In = 0, if element n is turned OFF.

Hence, fractal arrays produced by following this procedure belong
to a special category of thinned arrays. If the above equations are
used to calculate the array factor for an odd number of elements, then
N cosine functions must be evaluated and N additions performed, for
each angle. One of the simplest schemes for constructing a fractal
linear array follows the recipe of the Cantor set. Cantor linear arrays
were first proposed and studied in [30] for their great potential use in
the design of low-side lobe arrays.

Starting with a three element generating sub-array, the basic
triadic Cantor array may be created by applying it repeatedly over
P scales of growth. The generating sub-array in this case has three
uniformly spaced elements, with the center element turned off or
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removed, i.e., 101. The triadic Cantor array is generated recursively
by replacing 1 by 101 and 0 by 000 at each stage of the construction.
For example, at the second stage of construction (P = 2), the array
pattern would look like:

1 0 1 0 0 0 1 0 1

In this fashion, the different stages of fractal pattern is grown. The
antenna array grows rapidly in size with increment in stage number,
and its final pattern depends on the initial stage pattern. The same
case can be applied for planar construction also. Current research and
investigations on three dimensional fractal arrays is in progress to refine
and tailor the pattern of the required beam. Non-linear fractal arrays
with non-uniform amplitude and unequal spacing also find application
to obtain desired radiation patterns. However with the current example
in hand, at the third stage (P = 3), we would have:

1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1

The array factor of the three-element generating sub-array with
the representation 101 is:

GA (ψ) = 2 cos {ψ} (10)

which may be derived from the array factor equation by setting N = 1,
Io = 0 and I1 = 1. Substituting this equation into Equation (1) and
choosing an expansion factor of 3, results in an expression for the
Cantor array factor given by:

ÂFP (ψ) =
P∏

i=1

ĜA
(
3i−1ψ

)
=

P∏

i=1

cos
{
3i−1ψ

}
(11)

Here the hat notation indicates that the quantities have been
normalized. The array factor pattern and the directivity pattern for
P ∈ {1, 2, 3, 4} and δ = 3 are shown in Figures 1 to 10.

As both values increases the plot shows improvement in
characteristics, the directivity increases and the pattern becomes
narrower. Another fantastic advantage is the Equation (11) only

Table 1. Tabulation of the variation of P and δ.

P = 1 P = 2 P = 3 P = 4 P = 5
δ = 3 1 2 4 10 24
δ = 5 2 6 20 78 312
δ = 7 3 12 57 300 1680
δ = 9 4 20 121 820 5904



374 Levy et al.

requires P cosine–function evaluations and P−1 multiplication. In the
case of an 81 element triadic cantor array, the fractal array factor is at
least N/P = 40/4 = 10 times faster to calculate than the conventional
discrete Fourier transform. The multiband characteristics of linear
fractal array are discussed in [31] and [32]. The same procedure
can be applied for the Sierpinski carpet arrays for developing efficient
algorithms which can be used in planar smart antennas. The multiband
characteristics of Sierpinski carpet array is discussed in [31]. More
about fractal arrays are discussed in [32]. Details of antenna design
techniques are discussed in [33], and particularly about printed antenna
design in [34]. The application of these algorithms for rapid beam
forming in smart antennas is discussed in [35, 36].

Table 1 shows the increase in speed factor as the values of P and
δ varies. As the value of P and δ increases the speed factor increases
enormously. For example, with for P = 4 & δ = 7 the fractal array

Figure 1. Fractal array factor
pattern for P = 1; δ = 3.

Figure 2. Directivity pattern for
P = 1; δ = 3.

Figure 3. Fractal array factor
pattern for P = 2; δ = 3.

Figure 4. Directivity pattern for
P = 2; δ = 3.
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Figure 5. Fractal array factor
pattern for P = 3; δ = 3.

Figure 6. Directivity pattern for
P = 3; δ = 3.

Figure 7. Fractal array pattern
for P = 4; δ = 3.

Figure 8. Directivity pattern for
P = 4; δ = 3.

Figure 9. Combined array factor
pattern for comparison.

Figure 10. Combined directivity
pattern for comparison.
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factor is 300 times faster to calculate than the conventional case. This
property can be utilized in smart antennas to produce rabid beam
forming algorithms [35, 36].

4. MATHEMATICAL ANALYSIS USING FRACTAL
CONCEPTS AND TRANSMISSION LINE METHOD
(TLM)

The UWB antenna designed uses the fractal concepts and it can be
analysed using transmission line method (TLM). The signal emitted
from the kth user in impulse radio consists of a large number of sub-
nanosecond pulses [37], expressed as:

s(k)(t) =
∞∑

j=−∞
w

(
t− jTf − c

(k)
j Tc − δd

(k)
bj/Nsc

)
(12)

where w(t) is referred to as the monocycle pulse shape, Tf is the pulse
repetition period, {c(k)

j } is the time hopping sequence associated with

user k, c
(k)
j Tc corresponds the time shift to the jth pulse, Tc is the

duration of addressable time delay bins. The data sequence {d(k)
j }

changes the delay via the modulation index δ, which should be chosen
to optimise the performance, Ns monocycles are modulated by a data
symbol, and hence the data rate [37] is expressed as:

Rs =
1

NsTf
(13)

A typical pulse shape for the monocycle is the Gaussian doublet, given
by [37], as:

w (t) =

[
1− 4π

(
t

τm

)2
]

e−2π

(
t

τm

)2

(14)

where τm is the parameter to determine the frequency characteristic
of the Gaussian doublet. Alternatively an ultra-wideband can be
created by multicarrier modulation with a large number of carriers.
In multi-carrier modulation, the original data sequence is split into
many data streams, each of them modulating different parallel carriers,
i.e., subcarrier. One of the main requirements for UWB antennas is
efficiency and matching which is given by [37], and expressed as:

ηrad(%) =

∫∞
0 Pt (ω)

(
1− |Γt(ω)|2

)
dω

∫∞
0 Pt (ω)dω

× 100% (15)
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where Pt is the power at the terminals of the transmitting antenna
and Γt(ω) the reflection coefficient normalised to the characteristic
impedance Zo.

The second important requirement for UWB antenna is signal
distortion and dispersion (ringing) effect. The UWB antenna deforms
the transmitted signal. The antenna response to a pulse of very short
duration (as is typical in UWB) is seen as a ripple after the pulse,
which is called the ringing effect [37], and expressed as:

vn (t) =
dn

dtn
·exp

[
−

(
t

σ

)2
]

(16)

ṽn (ω) = (jω)nσ
√

π exp
[
−

(ωσ

2

)2
]

(17)

where vn(t) in Equation (16) refers to the ripple function in time
domain and ṽn (ω) in Equation (17) gives the normaized spectrum.
σ is the standard deviation of the Gaussian pulse.

The relative bandwidth BW r [37] is defined as:

BWr = 2
(fh − fl)
(fh + fl)

(18)

where fl is the band’s lowest frequency, and fh is the band’s highest
frequency.

In this case, it is desirable for the antenna’s transfer fuction to be
as constant as possible over the desired frequency, so that it does not
affect the pulse. Due to their unique properties of time and spectrum,
the Rayleigh family of pulses (derivatives of different orders of the
Gaussian pulse) is widely used as signal sources for UWB systems.
The corresponding equations in the time and frequency domains are
given by [37], as:

υn(t) = square of the nth derivative of
d

dt
exp

[
−

(
t

σ

)]
(19)

5. ANALYSIS OF CIRCULAR DISC MONOPOLE UWB
ANTENNA USED IN LEVY’S ANTENNA

For circular disc monopole, the ground plane serves as an impedance
matching circuit. Consequently it tunes the input impedance and
hence the 10 dB return loss bandwidth by changing the feed gap h.
Another two important design parameters that affect the antenna
performance are the width of the ground plane W , and the dimension
of the disc. The effects of these two parameters can be well explained
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by investigating the current distributions of the antenna. Circular
geometries offer performance at par to that of rectangular geometries.
In some applications circular geometries offer certain advantages over
other configurations. Recent experimental results [38] have shown that
circular disk microstrip elements may be easily modified to produce
arranged impedances, radiation patterns, and frequencies of operation.

The basic disk antenna geometry comprises of a thin, conducting
circular patch on a dielectric substrate backed by ground plane. The
electric field within the substrate has essentially only a z-component,
and the magnetic field has essentially x and y components. Because
h ¿ λo, the fields do not vary along the z direction, and the component
of the current normal to the edge of the microstrip approaches zero at
the edge. This implies that the tangential component of the magnetic
field at the edge is vanishingly small. With these assumptions, the
micro strip disk can be modeled as a cylindrical cavity, bounded at
its top and bottom by electric walls and on its sides by a magnetic
wall. Thus the fields within the dielectric region of the micro strip,
corresponding to TMnm modes, may be determined by solving a cavity
problem. The simple cavity model may be extended to include the
feed source. The considerations for the cavity itself are the same as
those discussed for the simple cavity model. In modal expansion model
the total field of a probe-excited cavity is expanded in terms of mode
vectors. The orthonormal electric field mode vectors corresponding to
TM modes for non-radiating circular cavity equations are solved. The
wire grid model consists of selecting a grid configuration compatible
with the currents on the micro strip element. This method is
cumbersome and excessively demanding in terms of computing time.
By the Green’s function method [42], the input impedance of a circular
disk micro strip antenna is calculated and the equivalent impedance
boundary conditions. The closed form expression of input impedance is
convenient for optimizing various design parameters such as impedance
matching and the bandwidth. Consider a circular disk antenna fed by a
line source Io(z′) located at (ρo, ϕo) in a cylindrical coordinate system
(ρ, φ, z). The input impedance Zin may be expressed as [39]

Zin =
−1

Io (0) I∗o (0)

∫∫
Ez

(
r′

)
J∗

(
r′

)
ds (20)

where J (r′) is the surface current on the center conductor of a coaxial
line feed, and integration is over the feed surface. The asterisk signifies
complex conjugation. To a first order approximation [40], the effect of
the diameter of the center conductor may be ignored and equation
reduces to:

Zin =
−1

Io (0) I∗o (0)

∫ h

0
E

(
z′

)
I∗o (z′)dz′ (21)
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The electric field for the TMnm modes with no variation of fields
in the z direction, may be written [41] as:

Ez = jωµIo (0) G(ρ, ϕ; ρ0,ϕ0) (22)

where G is Green’s function given by [42]:

G =
∞∑

n=1

cosnϕ cosnϕo

π

y1 (ρ) y2(ρo)
ρo [y1 (ρ) y′2 (ρ)− y′1 (ρ) y2 (ρ)]

(23)

and y1 = Jn (kρ), y2 = Jn (kρ) + AnYn(kρ). The prime sign in the
denominator of equation signifies the derivative. The constant An is
chosen to satisfy the boundary conditions.

Ez = 0 at ρ = 0 (24)

−ηo

Hϕ

Ez
=

ηo

Zr
= p at ρ = a (25)

where Zr represents the impedance boundary condition, and ρ is the
normalized admittance. After applying the above boundary conditions,
the expression for the input impedance equation [42] reduces to:

Zin =
−jωhµ

2

∞∑

n=1

[
J2

n(kρo)
An

+ Jn (kρo) + Yn(kρo)
]

(26)

where

An = −pJn (ka)− jJ ′n(ka)
pYn (ka)− jY ′

n(ka)
(27)

and

p = ηo(Ga + jBa) (28)

Ga =
2PT

h2E2
oJ2

n(Ka)
(29)

Ba =
εωπa2

h

[{
1 +

2h

πaεr

(
ln

(πa

2h

)
+ 1.7726

)} 1
2

− 1

]
(30)

This method provides reasonably good agreement between
calculated and measured input impedances.

The annular antenna geometry comprises of a ring shaped strip
conductor on one side of a dielectric substrate backed by a ground
plane. The solutions for the fields can be obtained by using the cavity
model in which the annulus is surrounded by magnetic walls. Since
h ¿ λo, there is no variation of electric field in the z direction and
the fields can be assumed to be TM. For TMnm modes the electric
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and magnetic field distributions for a ring resonator in the cylindrical
coordinate system (ρ, φ, z) are given by [43], as:

Ez = Eo

[
Jn (kρ) + Y ′

n (ka)− J ′n (ka) + Yn (kρ)
]
cosnφ (31)

Hρ =
jωε

k2ρ

∂Ez

∂φ
(32)

Hφ =
−jωε

k2

∂Ez

∂ρ
(33)

where Jn and Yn are Bessel functions of the first and second kind and of
order n, respectively. The prime sign signifies derivatives of the Bessel
functions, ε is the permittivity of the dielectric and k = 2π

√
εr/λo

where εr is the relative permittivity and λo is the free space wavelength.
The integer n denotes the azimuth mode number, and the integer m
denotes the variation of the fields across the width of the ring.

A circular disk operating in the dominant mode is the most
prevalent circular micro strip antenna configuration. The first design
step is to select a suitable substrate of appropriate thickness. While
bandwidth and radiation efficiency increases with substrate thickness,
excess thickness is also undesirable, especially when it is desirous for
the antenna to have a low profile and be conformal. The three most
commonly used substrate materials are FR4, RT/duroid and Rexolite.
For a known dielectric substrate at a specified operating frequency the
radius of the micro strip disk element is given by [44]:

a =
K[{

1 + 2h
πKεr

(
ln

(
πK
2h

)
+ 1.7726

)} 1
2

] (34)

where
K =

8.794
fr
√

εr

(35)

and fr is in GHz. The effect of substrate thickness is insignificant for
frequencies less than 2 GHz. A reasonably accurate evaluation of the
input impedance of a micro strip antenna is necessary to provide a good
match between the radiating element and the feed point. Equation (26)
provides a reasonably simple basis for calculating the input impedance
of a disk antenna for any coaxial feed location. For a micro strip fed
element this relation may be used with XL = 0.

The antenna efficiency, defined as the ratio of the radiated power
to the input power may be expressed as

η% =
Pr

PT
X100 (36)
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In this case [45], it is:

η% =
100(akoh)2I1

(akoh)2I1 + 0.953X−106f−3/2 + 0.452h tan δ/f
(37)

where f is in GHz and h is in meters. The efficiency increases with
increasing substrate thickness and decreasing dielectric constant. In an
advanced wireless system, an antenna is usually required to enhance
the radiation energy in some direction and suppress it in others at
certain frequencies. Thus the antenna must also be directional in
addition to being a transition device.

The bandwidth of a microstrip antenna is defined as the frequency
range over which the value of the input VSWR increases from unity
to a tolerable limit value, s. the bandwidth of such antennas may be
expressed as:

BW =
s− 1
QT
√

s
(38)

where QT is the quality factor.
The greater bandwidth is possible by choosing a thicker substrate

of low dielectric constant material. The directivity of an antenna is
defined as the ratio of the power density in the main beam to the
average power density. The directivity of a circular disk antenna
excited in the dominant mode (n = 1) may be expressed as [46]:

D =
1
2Re(EθH

∗
ϕ −EϕH∗

θ

∣∣
θ=0

Pr/4πr2
(39)

Hϕ =
Eθ

ηo
(40)

A disk antenna on an alumina substrate has a directivity of about
3.5, which is almost independent of substrate thickness h of 0.1275 cm
and operating at resonant frequency. A disk antenna designed using
RT/duroid substrate has a maximum directivity of about 5.3 which
decreases with increasing resonant frequency and dielectric thickness.
The effective gain of the antenna may be calculated from:

Ge = ηD (41)

The polarization of a disk element is linear, as is the case
for rectangular microstrip antennas. Much of the work about
microwave antenna analysis, design and fabrication is available in the
textbooks [45–58].
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6. ITERATED FUNCTION SYSTEMS (IFS) IN
FRACTAL ANTENNAS

IFS are powerful mathematical toolsets that are used to construct a
broad spectrum of fractal geometries. These IFS are constructed from
a finite set of contraction mappings, each based on an affine linear
transformation performed in the Euclidean plane. The most general
representation of an affine linear transformation ωn consists of six real
parameters (an, bn, cn, dn, en, fn) [28] and is defined as:

(
x′
y′

)
= ωn

(
x
y

)
=

(
an

cn

bn

dn

)(
x
y

)
+

(
en

fn

)
(42)

wn (x, y) = (anx + bny + en, cnx + dny + fn) (43)

The parameters of the IFS are often expressed using the compact
notation: (

an

cn

bn

dn
|| en

fn

)
(44)

where coordinates x and y represent a point belonging to an initial
object, and coordinates x′ and y′ represent a point belonging to
the transformed object. This general transformation can be used to
scale rotate, shear, reflect and translate any arbitrary object. The
parameters an, bn, cn and dn control rotation and scaling while en

and fn control linear translation. Consider a set of N affine linear
transformations ω1, ω2, ω3, ω4 . . . ωN . This set of transformations
forms an IFS that can be used to construct a fractal of stage ` + 1
from a fractal of stage `, given by [28], as:

Fl+1 = W (Fl) = ∪N
n=1wn(Fl) (45)

where W is the Hutchinson operator and Fl is the Fractal of stage `.
The pattern produced by the Hutchinson operator is referred to as the
generator of the fractal structure. If each transformation reduces the
size of the previous object, then the Hutchinson operator can be applied
an infinite number of times to generate the final fractal geometry, F∞.
For example, if set F0 represents the initial geometry, then this iterative
process would yield a sequence of Hutchinson operators that converge
upon the final fractal geometry F∞.

F1 = W (F0) , F2 = W (F1) , . . . , Fk+1 = W (Fk) , . . . (46)

and,
F∞ = W (F∞) (47)

If the IFS is truncated at a finite number of stages L, then the
object generated is said to be a pre-fractal image, which is often
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described as a fractal of stage L. The IFS code for generating an
inverted Sierpinski Gasket is shown in Table 2 and the IFS code
and associated connection factors for Sierpinski-Based Poly-fractal
Geometries is shown in Table 3.

The IFS approach is the most common method used to construct
deterministic fractal array geometries; however, deterministic fractals
may not resemble natural objects very closely because of their perfect
symmetry and order. On the other hand random fractals more
closely resemble natural objects because their objects are often created
using purely stochastic means. However these objects are difficult
to work with especially in the context of optimization, because
their structures cannot be recreated with exact precision. In an
effort to bridge the gap between deterministic and random fractals
a specialized type of fractal geometry called a fractal random tree
was developed. This new construct combines together properties
of both deterministic and random fractal geometries. Therefore a
more generalized expansion of deterministic fractal based geometry
is introduced, called poly-fractal geometry. In order to construct a
poly-fractal the IFS technique introduced must be expanded to handle
multiple generators. Poly-fractal arrays are constructed from multiple
generators, 1, 2, . . . ,M , each of which is having a corresponding

Table 2. IFS code for generating an inverted Sierpinski Gasket.

w a b c d e f

1 1/2 0 0 1/2 0
√

3/4
2 1/2 0 0 1/2 1/2

√
3/4

3 1/2 0 0 1/2 1/4 0

Table 3. IFS code and associated connection factors for Sierpinski-
Based Poly-fractal Geometries.

w a b c d e f : κ

Generator 1
1 1/2 0 0 1/2 0

√
3/4 : 1

2 1/2 0 0 1/2 1/2
√

3/4 : 1
3 1/2 0 0 1/2 1/4 0 : 2

Generator 2

1 1/2 0 0 1/2 0
√

3/4 : 2
2 1/2 0 0 1/2 1/2

√
3/4 : 1

3 1/2 0 0 1/2 1/4 0 : 2
4 1/2 0 0 −1/2 1/4

√
3/2 : 1
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Hutchinson operator W1, W2, W3, . . . ,WM . Each Hutchinson operator
Wm in turn contains Nm affine linear transformations,

Wm ∈ ωm,1, ωm,,2, ωm,3, . . . , ωm,, Nm (48)

The classic theory of solving linear radiating elements involves the
study of current distribution. These studies often assume a sinusoidal
current distribution. One of the ways to increase bandwidth, which
is an absolute requirement for UWB technology, is to widen the
conductor. In order to understand how any changes in the geometry of
the antenna will affect its behavior, knowledge of current distribution
in this situation is vitally important [28].

7. LEVY’S ANTENNA

Using the above concepts and principles, the antenna is analyzed,
designed, constructed and tested. Latest research development in
UWB antennas focuses on introducing some novel structures and slits
in the existing structures to get some improvement by introducing
certain changes in design parameters. However, Levy’s antenna, as
shown in Figure 11, completely implements the new concept of fractal
array structure for UWB antenna design. The design parameters are
not explicitly discussed as the design may go through patent filing.
The antenna is simulated using CST microwave studio CAD tool and
all the aspects showed promising results for UWB applications. The
conventional fractal approach uses the same basic cell or structure,
while the number of cell or elements and the stages of growth are varied,

Figure 11. Levy’s antenna analyzed and designed using Fractal
Concepts.
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Figure 12. The antenna PCB Layout in EAGLE (Easily Applicable
Graphics Layout Editor).

Figure 13. Input/Output relation obtained in CST Microwave studio.

as shown in Figure 12. However, the introduced novel method utilizes
the variation in the basic structure or cell as the stages of growth are
increased. This is a new approach which is not found in the recent
literature surveys and not reported in literatures so far, to the best of
the author’s knowledge. The antenna is fabricated and tested in the
laboratory and the practical results and simulation results are verified.

The input output relation obtained from CST Microwave studio
simulation is shown in Figure 13. There is a small variation in time
delay between input and output due to the propagation delay of the
phase center. The single structure can be viewed as three elements
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in the fractal concept with stages of growth along with incremental
element size and the analysis can be done using the formulas reported
for fractal antennas. The circular array generator concept can be used
in this technique but along with increase in the stage, the element size
also has to be increased. The first element radius is R and the second
element radius is 2R, the third element size is 3R and so on. As long
as the stage increases the element radius also increases. The elements
can be thought of fed from successive series feed one element behind
the other or it can be thought of as three elements fed parallely and
connected to a single source at the feed point.

The impedance variation is shown in the smith chart in Figure 14.
The larger the circle implies higher the variation. Research can be
done in the direction of getting a small impedance variation circle.
Novel metamaterial structures can be used to achieve this purpose.
The fabricated antenna is shown in Figure 15.

Figure 14. Smith chart Impedance pattern obtained in CST
Microwave Studio.

Figure 15. Levy’s antenna
front view, constructed with finite
ground plane.

Figure 16. S11 parameter
view in the HP agilent network
analyzer 8722ES 50 MHz–40 GHz.
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Figure 17. S11 parameter from CST Microwave Studio.

Figure 18. Measured S11 parameter from Network analyzer.

Figure 19. The designed antennas broadside radiation pattern
obtained from CST microwave studio.
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However, for the example in discussion, the antenna is constructed
in two stages, first one with single element and the second with multiple
elements in order to achieve arraying. Also finite ground structure
and infinite ground structures are constructed but the analyzing and
design formulas are different for both structures. The input impedance,
feed point, feed method are carefully analyzed and fixed to get the
maximum desirable performance. The network analyzer is calibrated
using the standard tool kit and then the antenna under test is
connected and analyzed. Anechoic chamber is preferred for antenna
measurements to avoid reflections. However, the antenna is tested
in normal operating conditions to get realistic performance. All the
required parameters are analyzed and satisfactory results are obtained,
as depicted in Figures 16, 17, 18, and 19.

8. CONCLUSION

A novel printed circular monopole antenna using fractal concepts
is analyzed, designed, constructed and tested for ultra wideband
(UWB) applications. The characteristics obtained are suited for UWB
applications. The theoretical and practical results coincide well and
the antenna is radiating in broadside direction. Promising bandwidth
impedance matching is obtained over the desired frequency range. The
antenna is small in size compared to existing antennas reported in
recent literatures. The results obtained are promising and the antenna
can be used in applications such as 3D IC wireless communication and
medical imaging. The mathematical analysis is performed using fractal
concepts and Transmission Line Method (TLM). The theoretical and
practical results are verified for their consistency with each other.
Further research is elicited towards the reduction of antenna size,
including novel materials while improving the desired parameters and
performances.
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