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Abstract—A simple and effective double-thresholding strategy based
on energy estimation is proposed to choose the optimal boundary
between the signal subspace and noise subspace in TR-MUSIC
algorithm for microwave imaging of extended targets. Simulations
and imaging results are given to demonstrate its strong noise rejection
and super-resolution capability. In the new method, the shape details
of extended targets can be obtained from single frequency or multi-
frequency scattering data.

1. INTRODUCTION

According to the American Cancer Society, breast cancer has become
the first cancer killer for women, compared with other kinds of cancers
in females [1]. Traditional techniques, such as X-ray mammography,
magnetic resonance imaging (MRI) and Ultrasound (US), limit
themselves in sensitivity, specificity and accuracy in the detection
and diagnostic of malignant tumor. Thus many new methods and
modalities, including electromagnetic techniques such as electrical
impedance tomography (EIT) and microwave imaging techniques [2],
have been proposed to overcome these limitations.

Motivated by the high contrast between malignant tumor tissue
and the normal surrounding breast tissue in electrical properties (such
as permittivity and conductivity), microwave imaging technology has
attracted much attention because it is non-ionizing, more comfortable,
more accurate and less expensive [3]. Except for common hardware
components, such as signal generator, antenna array and data
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sampling equipments (for example, vector network analyser (VNA)
or oscilloscope), imaging algorithm and software play a very important
role on the performance and detection capability of microwave imaging
system.

There are two main modalities for microwave imaging the
interior of the breast: (i) microwave tomography (MWT) and (ii)
radar-based imaging. In MWT, a reconstruction of the electrical
properties of the breast at each pixel is calculated iteratively by
optimizing a cost function after a regularization procedure to solve
the inherently ill-posed and nonlinear inverse electromagnetic problem,
so it is time and resource-consuming. On the other hand, in radar-
based imaging, signal processing techniques are employed to identify
only the regions with stronger backscattering, which indicate the
presence of a contrast in electrical properties. Many signal processing
methods have been adopted to complete this task, including wavefront
reconstruction [4], delay and sum (DAS) beamformer or confocal
microwave imaging (CMI) [5–7], microwave imaging via space-time
(MIST) beamforming [8], multi-input multi-output (MIMO) radar
processing techniques [9], and subspace-based Time-reversal MUtiple
SIgnal Classification (TR-MUSIC) algorithm [10–17].

Because of its super-resolution capability [17], subspace-based TR-
MUSIC algorithm has obtained more attentions in point and extended
targets imaging. In Ref. [10], H. Lev-Ari and A. J. Devaney related the
time-reversal field and subspace-based signal processing of multi-static
data together at the first time and proposed a subspace-based method,
later called TR-MUSIC algorithm, for point targets location within
the framework of the Born approximation. F. K. Gruber et al. further
showed that TR-MUSIC algorithm can be used to locate point targets
even if considering the multiple scattering between them [11, 12].
S. Hou et al. applied this method to extended targets and concluded
that the imaging function would peak not only on the illuminated
boundary parts, but also peak inside the domain, and proposed a
new explanation of imagine peak points [13]. E. A. Marengo et al.
developed TR-MUSIC-based imaging theory of extended scatters and
proposed the concepts of “effective signal subspace” and “effective
noise subspace” for extended targets [14]. These achievements revealed
that TR-MUSIC can be applied to extended targets as same as
point targets and the shape details can be obtained. Furthermore,
TR-MUSIC algorithm can be used to other applications, such as
through-the-wall imaging (TWI) [15] and surveillance in wireless sensor
network [16].

In general, the malignant tumor tissue and the normal surrounding
breast tissue exhibit as extended targets to microwave frequency
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band due to their electrical dimension and heterogeneity feature.
Due to distributed scattering and measurement noise, the multi-
static response matrix of extended targets is full rank, but not rank-
deficient as point targets. Because there is no obvious boundary
between signal subspace and noise subspace, TR-MUSIC can’t be
executed directly. To resolve this problem for extended target imaging,
E. A. Marengo et al. took the “knee” of the singular value spectrum
in logarithmic scale as the boundary point to pick the principal
components out from the noised signal subspace [14]. And S. Hou
et al. proposed a more complicated resolution and noise level based
thresholding strategy for regularization, but multiple-frequency data
is needed [13].

According to our numerical tests using the scattered data of simple
extended targets from FDTD simulation, the above two methods
can’t obtain the best imaging results. We find that the acceptable
imaging results happen at multiple boundary points but not at one
specific point and that at most time these boundary points are not the
“knee” of the singular value spectrum. The super-resolution property
of TR-MUSIC can guarantee a good imaging even only from single
frequency data. Therefore, we propose a new double-thresholding
strategy based on energy estimation to decide the best boundary region
between effective signal subspace and noise subspace and combine all
the effective boundary points together to obtain a more distinct image
of illuminated area. Although only the 2D scenarios are simulated, the
algorithm itself is suitable for 3D imaging.

This paper is organized as follows. In Section 2, the energy
estimation based TR-MSIC algorithm is deduced in detail under the
condition of imaging geometry and configuration and the final imaging
function formula is obtained. Then the simulations and imaging
results for point targets, rectangle metal cylinder and irregular metal
cylinder are presented in Section 3, respectively, with the analysis
and discussion about noise rejecting performance, super-resolution
capability and multi-frequency data fusion imaging. Section 4 is
devoted to the conclusions.

2. ENERGY ESTIMATION BASED TR-MUSIC
ALGORITHM

The imaging geometry and configuration is demonstrated in Figure 1.
The object is located inside the imaging region X × Y , which is
surrounded by a uniform circular N -element array with radius R.
Each element antenna transmits in turn electromagnetic wave towards
the imaging region and all the element antennas receive the scattered
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Figure 1. Imaging geometry and configuration.

wavefront. This means that each antenna is a transducer. The
obtained scattering data matrix is then processed to reconstruct the
position and shape of the object located in the imaging region.

2.1. Time-reversal (TR) Principle

As stated in Ref. [15], in lossless and stationary medium, the
electromagnetic field component E (x, t) satisfies the following scalar
wave equation

∇2E(x, t)− µε
∂2

∂2t
E(x, t) = 0 (1)

where x denotes the space position vector, t the time, and µ and ε
the permeability and permittivity of the medium, respectively. The
quadratic differential relationship between field strength and time in
Eq. (1) keeps the invariance to the sign of time, upon which the concept
of time-reversal is based. That is, if E (x, t) is the solution to Eq. (1),
its time-reversal field E (x,−t) is also a solution to the same equation.

The wave propagation process means that E (x,−t) would
precisely retrace the path of the original wave E (x, t). If E (x, t) is the
divergent scattered field, then E(x,−t) is the convergent wave which
will focus on the source with TR process. In frequency domain, TR
process can be implemented by using the phase conjugation E∗(x, ω)
to replace E (x, ω), where the superscript star denotes the complex
conjugation and E (x, ω) is the Fourier transform of E (x, t).
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2.2. Multi-static Frequency Response Matrix (MFRM) and
TR-MUSIC Algorithm for Point Targets

For the array of N transducers in Figure 1, define the inter-element
impulse response hij(t) to be the signal received at the ith transducer
with an impulse sent out from the jth transducer, i, j = 1, 2, . . . , N ,
the matrix

H (t) = [hij(t)]N×N (2)

is called the multi-static response matrix in time domain. Due to
the space reciprocity of stationary medium, H(t) is symmetric, i.e.,
hij(t) = hji(t).

For an exciting source signal vector

S (t) = [s1 (t) , s2 (t) , . . . , sN (t)]T (3)

where superscript T denotes transpose, and the received signal vector
of the array is

R (t) = [r1 (t) , r2 (t) , . . . , rN (t)]T = H (t)⊗ S (t) (4)

where the sign ⊗ denotes convolution in time domain. In the frequency
domain, it becomes

R (ω) = H (ω) S (ω) (5)

where H(ω) is the Fourier transform of H(t) and called multi-static
frequency response matrix (MFRM).

If the exciting signal is a single frequency signal, i.e., ω0, the
MFRM H(ω0), denoted by H since now, has the following singular
value decomposition (SVD)

H = UΣV† (6)

with Q non-zero singular values σ1 ≥ σ2 ≥ . . . σQ ≥ 0, where
Q = rank(H), Σ = diag{σ1, σ2, . . . σQ, 0, . . . , 0} is a N × N diagonal
matrix, the superscript † denotes complex conjugation transpose. U
and V are unitary matrices and their columns are called left singular
vectors and right singular vectors, respectively. The first Q columns
and the last N −Q columns of V span the row space and nullspace of
H, respectively. The first Q columns and the last N − Q columns of
U span the row space and nullspace of HT , respectively [18]. That is

null (H) = span {νQ+1, . . . , νN} , VN−Q

range
(
HT

)
= span {ν1, . . . , νQ} , VQ

range (H) = span {µ1, . . . , µQ} , UQ

null
(
HT

)
= span {µQ+1, . . . , µN} , UN−Q

(7)
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where µk and νk is the kth column vector of U and V, respectively.
Because H =HT and null(H)⊥ = range(HT ), it can be shown that
UQ is the orthogonal complement of VN−Q and VQ is the orthogonal
complement of UN−Q, respectively.

The electromagnetic wave propagation is dominated by the
Green’s function g0 (x1, x2) of the background medium, where x1

denotes the field point and x2 the source point. Due to spatial
reciprocity, x1 and x2 can be exchanged, that is, g0 (x1, x2) =
g0 (x2, x1).

Assume that there are M point scatterers located at
x1, x2, . . ., xM in the imaging region with isotropic reflectivity τm,
m = 1, 2, . . . , M , and the array element antennas locate at ξ1, ξ2,
. . . , ξN , respectively. If Born approximation is applied, i.e., neglecting
the multiple scattering between the point scatterers, H can be written
as

H=




M∑
m=1

g0(ξ1,xm)τmg0 (xm,ξ1) . . .
M∑

m=1
g0(ξ1,xm) τmg0 (xm,ξN )

...
. . .

...
M∑

m=1
g0(ξN,xm)τmg0 (xm,ξ1) . . .

M∑
m=1

g0(ξN,xm)τmg0 (xm,ξN )




=
M∑

m=1

τmG0 (xm)GT
0 (xm) (8)

where G0 (xm) is called illumination vector for xm, m = 1, 2, . . . , M ,
defined by

G0 (xm) = [g0 (ξ1,xm) , g0 (ξ2,xm) , . . . ,g0 (ξN ,xm)]T (9)

According to Eq. (8), it is clear that H is a linear
combination of M illumination vectors G0 (x1), G0 (x2), . . . , G0 (xM ),
and furthermore, rank(H) = M if M < N .

For the case of M < N , UM is called the signal subspace VS

and VN−M is called the noise subspace VN in MUSIC algorithm.
According to Eq. (7), VN spans the nullspace of H and is the
orthogonal complement of VS . For arbitrary search point x in the
imaging region, its illumination vector is G0 (x). if x collocates with
any point among x1, x2, . . ., xM , then G0 (x) belongs to VS and
its projection length to VN , ‖PV N G0(x)‖2, equals to zero, otherwise
‖PV N G0(x)‖2 is finite, where ‖ ‖2 denotes Euclidean norm. A pseudo-
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Figure 2. Multiple point targets imaging.

spectral imaging function can be constructed as

I(x)=
1

‖PV N G0(x)‖2
2

=

[
N∑

k=M+1

∣∣∣ν†kG0 (x)
∣∣∣
2
]−1

=
1

‖G0 (x)‖2
2−‖PV SG0 (x)‖2

2

=

[
‖G0 (x)‖2

2−
M∑

k=1

∣∣∣µ†kG0 (x)
∣∣∣
2
]−1

(10)

This is called subspace-based MUSIC algorithm. When x
collocates with the point target position, I (x) will be great rather than
theoretical infinity because of measurement noise or computation error.
Therefore, I (x) will peak greatly at the positions of point targets and
super-resolution characteristic can be expected, which is demonstrated
in Figure 2.

In the history of MUSIC algorithm, the Hermitian operator
Kt = H†H is also called transmit-mode time-reversal operator, and
Kr = HH† is called receive-mode time-reversal operator [20]. Because
KtS(ω) = H†HS(ω) = H†R(ω) means the received signals are back
propagated after phase conjugated, toward the source positions where
they come from, according to the TR principle mentioned above. And
the eigenvectors of matrix Kt can be shown to correspond to the point
targets in a one-to-one manner [10]. On the other hand, it can be
shown that the orthonormal columns of U and V are the eigenvectors
of Kr and Kt, respectively. Therefore, the singular vectors of H play
the same role as the eigenvectors of Kr or Kt. Because subspace-
based MUSIC blends ideas of standard MUSIC with the eigenvalue
decomposition of the time-reversal operator, it is also called TR-
MUSIC method [14, 15].

Mathematically and practically, SVD of H is preferred to
eigenvalue decomposition (ED) of Kr or Kt, because: (i) SVD uses
orthonormal bases whereas ED uses a basis that generally is not
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orthonormal; (ii) All matrices (even rectangular ones) have a SVD
and not all matrices (even square ones) have an ED [19].

If the array consists of two different sets of transmitters and
receivers, e.g., there are Nt transmitters located at ξ1, ξ2, . . ., ξNt

and there are Nr receivers located at η1, η2, . . ., ηNr . The response
matrix for M point targets located at x1, x2, . . ., xM with reflectivity
τ1, . . ., τM becomes

H =
∑M

m=1
τmG0T (xm) GT

0R (xm) (11)

where

G0R (xm) = [g0 (ξ1,xm) , g0 (ξ2,xm) , . . . , g0 (ξNr,xm)]T

and

G0T (xm) =
[
g0 (xm, ξ1) , g0 (xm, ξ2) , . . . , g0

(
xm, ξNt

)]T

where m = 1, 2, . . . ,M , are illumination vectors for the receiver
and transmitter arrays respectively. It can be shown that G0T (xm),
m = 1, 2, . . . , M , are the left singular vectors for H and span the
column signal subspace V S

C . Similarly, G0R (xm), m = 1, 2, . . . , M ,
are the right singular vectors for H and span the row signal subspace
V S

R . The MUSIC imaging function can be constructed using both of
them [17, 20]

I (x) =
[∥∥∥PV N

C
G0T (x)

∥∥∥
2

2
+

∥∥∥PV N
R

G0R (x)
∥∥∥

2

2

]−1

=




min(Nt,Nr)∑

k=M+1

(∣∣µT
k G0T (x)

∣∣2 +
∣∣∣ν†kG0R (x)

∣∣∣
2
)


−1

(12)

In Eq. (12), the two parts besides the sum sign are also called
transmitting mode and receiving mode respectively. Thus, Eq. (10)
for transducer array can be replaced by

I (x) =
[∥∥∥PV N

C
G0 (x)

∥∥∥
2

2
+

∥∥∥PV N
R

G0 (x)
∥∥∥

2

2

]−1

=

[
N∑

k=M+1

(∣∣µT
k G0 (x)

∣∣2 +
∣∣∣ν†kG0 (x)

∣∣∣
2
)]−1

(13)

because the receiver and transmitter arrays are the same and so are
their illumination vectors.
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2.3. TR-MUSIC Algorithm for Extended Targets

As mentioned above, for point targets with M < N , H ∈ CN×N is
rank deficient and the number of singular values and singular vectors
of H will equal to the number of targets M in a one-by-one manner.
TR-MUSIC imaging function will work very well. But when the
object is penetrable or its size compares to the wavelength, it cannot
be seen as a point target but an extended target. This is true in
practical circumstances such as breast cancer detection and diagnostic
application.

For extended targets, generally H is a matrix with full rank.
This means Q = N , and the imaging function I (x) cannot be
calculated directly from Eq. (10) or Eq. (13). At this time, the singular
value spectrum curve no longer drops sharply at certain point but
decreases much slowly. Each singular value indicates an independent
contribution to the total scattered energy from a scattering centre or
bright spot. Furthermore, as Hou et al. presented in [13], the peaks of
the imaging function maybe exist on the target boundary or inside of
the object due to physical resonance. There is no distinct boundary
between signal subspace and noise subspace. But the TR-MUSIC
method can be still applied to extended target imaging with degraded
performance [13, 14] and can be used to sketch the shape of extended
targets, which will be demonstrated in the simulation examples later.

To apply TR-MUSIC for extended targets, the key issue is how to
decide the best boundary between signal subspace and noise subspace,
i.e., optimal value of M , to obtain the best imaging result if the array
element number is big enough. To resolve this problem, Marengo et
al. took the “knee” of the singular values spectrum in logarithmic
scale as the boundary point to pick the principal components out
from the noised signal subspace [14]. And Hou et al. proposed a
more complicated thresholding strategy for regularization based on
resolution and noise level, but multiple-frequency data is needed.

According to our numerical tests using the scattered data of simple
extended targets from FDTD simulations, the acceptable imaging
results happen at multiple boundary points rather than only at one
specific point, and that at the most times these boundary points are
not the “knee” of the singular value spectrum. The super-resolution
property of TR-MUSIC can guarantee a good imaging even only
from single-frequency data. Therefore, we propose a new double-
thresholding strategy based on energy estimation to decide the best
boundary region between effective signal subspace and noise subspace,
and combine all the effective boundary points together to obtain a
clearer imaging of illuminated region.

The total energy involved in H can be estimated by the square of
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its Frobenius norm, defined by

‖H‖2
F =

N∑

i=1

N∑

j=1

|hij |2 = trace
(
HH†

)
=

N∑

i=1

σ2
i (14)

As Hou et al. did in Ref. [13], define the signal subspace part of
H = UΣV† by

Hsignal = UMΣMV†
M (15)

where M is the supposed estimation of the boundary between signal
subspace and noise subspace, UM and VM denoting the first M
columns of U and V, respectively. The energy ratio (ER) of the signal
subspace to the total energy of H is

ER =
‖Hsignal‖2

F

‖H‖2
F

=
∑M

i=1 σ2
i∑N

i=1 σ2
i

(16)

The parameter ER can be used to judge the performance of the
estimated M value. The fact that ER is too low shows that M value
is too small to extract all the dominating contribution of main bright
spots on the target from H. On the other hand, The fact that ER
is too high shows that M value is too big to reject the numerical or
background noise in H. Double-thresholding strategy for ER is an
acceptable choice

ERmin ≤ ER ≤ ERmax (17)

where ERmin denotes the lower thresholding and ERmax the higher
thresholding. All the M values satisfying Eq. (17) consist a acceptable
zone called B. Combining all the acceptable M values, the imaging
function becomes

I (x) =
∑

b∈B

[
N∑

k=b+1

(∣∣∣ν†kG0 (x)
∣∣∣
2
+

∣∣µT
k G0 (x)

∣∣2
)]−1

(18)

This is called the double-thresholding strategy based on energy
estimation for TR-MUSIC imaging algorithm. The values of two
thresholding can be decided by the noise performance of the imaging
system. This imaging function can give clearer image than that in
Eq. (13) which only utilizes one M value. If the raw data includes
multiple frequencies or broad band, the extra information can be
combined together by

I (x) =
∑

f

∑

b∈B

[
N∑

k=b+1

(∣∣∣ν†kG0 (x)
∣∣∣
2
+

∣∣µT
k G0 (x)

∣∣2
)]−1

(19)
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3. SIMULATIONS AND DISCUSSIONS

All the following simulations resolve the electromagnetic scattering
of 2D objects with air as the background media for clearness and
simplicity although the TR-MUSIC algorithm can be applied to 3D
targets. The scattering data is obtained from 2D FDTD codes except
the multiple point targets which are calculated directly from Green’s
function. In the 2D FDTD simulation, space step size is ∆x = ∆y =
0.5 cm, simulated space is 200×200, time step size is ∆t = 5×10−12 s,
and simulated time steps are 1024. The exciting signal is Gaussian
modulated continuous wave, whose center frequency is 3 GHz and
pulse half width is 10∆t. To avoid the receiving antenna’s effect on
the imaging algorithm, the scattered fields on observation points are
directly taken as the received waveforms. The frequency domain data
is obtained by the DFT of the scattered time domain waveforms.

3.1. Multiple Point Targets

In this example, the five point targets locate at (−10, 0), (−1, 0), (1, 0),
(−10, −10) and (0, −10), respectively, as shown in Fig. 2. The imaging
region is 30 cm × 30 cm and the number of array elements N = 14.
The distance from the centre of imaging region to the circle antenna
array element is R = 30 cm. H is calculated directly by 2D Green’s
function H

(2)
0 (βρ), i.e., the zero order Hankel function of the second

kind, where β = 2π/λ is the wave number of free space, ρ denotes
the distance between field point and source point. The frequency is
3GHz, wavelength λ = 10 cm and M = 5. The normalized singular
value distribution spectrum and the imaging function I(x) in 2D and
3D views are displayed in Figure 2, respectively. Obviously the number
of point targets equals to the number of non-zero singular values if
the numerical error lower than −350 dB is neglected. It can also be
observed that the TR-MUSIC algorithm can resolve the five point
targets completely even when the smallest distance, 2 cm, is less than
λ/4. This super-resolution is obtained only from the single frequency
scattering data, and better resolution can be expected from multiple
frequencies or wide-band data.

3.2. Rectangle Metal Cylinder

The first extended target is a rectangle metal cylinder whose dimension
is 20 cm× 10 cm, i.e., 2λ× λ for 3 GHz frequency. The imaging region
is 30 cm×30 cm and the number of array elements N = 14. The size of
the circle antenna array keeps the same, R = 30 cm. The normalized
singular value spectrum and imaging results for different M values are



118 Zhang, Wang, and Wang

Singular value spectrum M=2 M=4 

M=8 M=10 M=12 

Figure 3. Singular value spectrum and imaging results of rectangle
metal cylinder (N = 14, f = 3 GHz).

shown in Figure 3. Comparing with that of point targets in Figure 2(a),
the singular value spectrum for extended targets decreases slower and
imaging bright spots don’t correspond to the “bigger” singular values
one-to-one again. The imaging results for M = 2, 4, 8, 10 and 12 are
given from top middle to bottom right, respectively. It can be seen that
the imaging results vary with M values and the image peaks or bright
spots locate on the boundary of or inside the metal. Therefore, the
correct choice for M value, the boundary between signal subspace and
noise subspace, is very important to a good TR-MUSIC image of an
extended target and it can sketch the shape of the illuminated objects
because “large” targets can be represented by their main scattering
centres as radar target characteristics.

When the number of array elements changes to 40, i.e., N = 40,
the normalized singular value spectra and imaging results of the same
rectangle metal cylinder with frequency = 2, 3 and 4 GHz are shown
in Figure 4, Figure 5 and Figure 6, respectively. When the number
of antennas is greater than that of distinguishable bright spots on the
target, the slow decreasing characteristics of singular value spectrum
for extended targets becomes clearer. Furthermore, the higher the
detecting frequency, the more the distinguishable bright spots. This
means that the smaller the wavelength, the higher the resolution of
TR-MUSIC algorithm. From these imaging results it can be concluded
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Singular value spectrum M=5 M=10

M=15 M=20 M=25 

Figure 4. Singular value spectrum and imaging results of rectangle
metal cylinder (N = 40, f = 2 GHz).

Singular value spectrum   M=5 M=10 

M=15  M=20 M=25 

Figure 5. Singular value spectrum and imaging results of rectangle
metal cylinder (N = 40, f = 3 GHz).
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Singular value spectrum M=5 M=10 

M=15 M=20 M=25

Figure 6. Singular value spectrum and imaging results of rectangle
metal cylinder (N = 40, f = 4 GHz).

 

Figure 7. Double-thresholding strategy.

that the choice of M value is very important for a good imaging.
To illustrate our double-thresholding strategy for the choice of

optimal M values, taking the data with N = 40 and f = 4 GHz as an
example, its normalized singular value spectrum and corresponding ER
curve are given in the left part of Figure 7. By choosing ERmin = 0.8
and ERmax = 0.95, they correspond Mmin and Mmax on the ER
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curve, respectively. The interval between Mmin and Mmax is called
acceptable zone. All the M values in this zone are used as the optimal
boundary of signal subspace and noise subspace respectively and all
the obtained images are combined to get the optimal imaging as does
in Eq. (18). For the data of 2 GHz, the optimal M values are 5 and
6. For 3 GHz data, the M values are 7, 8 and 9. And for 4 GHz
data, the M values are 10, 11 and 12. It can be seen that the ratio
of the first optimal M value to the frequency almost keep invariant
as S. Hou et al. have figured out in [13]. The optimal imaging results
are given in Figure 8 for these single frequencies and multi-frequency,
respectively. In Figure 8, the last imaging from multi-frequency data
of 2GHz, 3 GHz and 4 GHz is constructed using Eq. (19), which shows
that the multi-frequency or broadband data fusion can get more shape
details about the illuminated targets because of more information and
increased resolution.

In practical applications, there is always error or noise in the raw
simulated or sampled data. To test the imaging capability against
noise of this energy estimation based TR-MUSIC algorithm, artificial
amplitude and phase noise are gradually added on to the raw simulated

f=2 GHz, M=5~6  

f=4 GHz, M=10~12 
     

 f=3 GHz, M=7~9  

multi-frequency imaging 
 

Figure 8. Optimal imaging results for rectangle metal cylinder based
on double-thresholding strategy.
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Figure 9. Noise impact on singular value spectrum (f = 4 GHz).

20%, M=10~13   50%, M=11~17   100%, M=14~22 

Figure 10. Amplitude noise impact on the imaging results.

data of f = 4 GHz and N = 40. The added amplitude noise is random
Gaussian noise with a zero mean and deviations of 20%, 50% and
100%, respectively. And the added phase noise is random uniform
distribution noise with interval 30◦, 90◦, 120◦ and 180◦, respectively.
The impact of noise on the normalized singular value spectrum is
shown in Figure 9. It can be seen that the noise mainly increases
the last part of the singular value spectrum and makes the curve
smoother. That is, the noise plays more impact on the noise subspace
but not on the signal subspace. Keeping the double-thresholding the
same as before, i.e., ERmin = 0.8 and ERmax = 0.95, the imaging
results under these amplitude noise and phase noise are listed in
Figure 10 and Figure 11, respectively. Comparing to the noise-free
imaging of f = 4GHz in Figure 8, these imaging results deteriorate
gradually as the noise increases and the optimal M values increase
accordingly. But the TR-MUSIC algorithm based on energy estimation
can give recognizable imaging results even with 100% amplitude noise
or 180◦ phase deviation. This proves its super-resolution imaging and
outstanding noise rejection capability.
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30 °, M=10~13  90 °, M=11~18 

120 °, M=12~20    180 °, M=15~23 

Figure 11. Phase noise impact on the imaging results.
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Figure 12. Irregular metal cylinder and its singular value spectrum.

3.3. Irregular Metal Cylinder

The second extended target is an irregular metal cylinder whose shape
detail is sketched in the left part of Figure 12. All the other parameters
are the same as the rectangle metal cylinder discussed in the previous
example, i.e., N = 40, R = 30 cm, ERmin = 0.8 and ERmax = 0.95. Its
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f=2 GHz, M=4~5  f=3 GHz, M=6~7 

f=4 GHz, M=8~9  multi-frequency imaging

Figure 13. Optimal imaging results for irregular metal cylinder based
on double-thresholding strategy.

singular value spectrum is shown in the right part of Figure 12 and the
optimal imaging results at each single frequency and mutli-frequency
are given in Figure 13. The phenomena and conclusions mentioned
above are demonstrated once more and no further explanation is
needed.

4. CONCLUSIONS

From the above simulations and demonstrations above, it can be
concluded that the proposed double-thresholding strategy based on
energy estimation is a simple and effective method in terms of choosing
the accurate boundary between the signal subspace and noise subspace
in the TR-MUSIC algorithm for microwave imaging of extended
targets. The new TR-MUSIC algorithm based on energy estimation
can give recognizable imaging results even with 100% Gaussian
amplitude noise or uniform distribution 180◦ phase deviation.This
algorithm accompanies with strong noise rejection and super-resolution
capability and can be used to microwave imaging for extended targets
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in many practical applications such as medical diagnostics and port
security check. Further work is needed to focus on 3D and dielectric
targets imaging using this algorithm and experimental system building-
up.
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