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Abstract—This paper presents a Monte-Carlo multidomain pseu-
dospectral time-domain (MPSTD) algorithm developed for the analy-
sis of scattering from a three dimensional (3D) object buried below a
random rough surface separating two half spaces. In the development,
special attention is paid to the 3D computation domain decomposition
and subdomain mapping involving the random rough surface as well
as the subdomain patching along the rough surface. The Mote-Carlo
MPSTD algorithm is then employed to determine the scattering of 3D
objects of various shapes and electromagnetic properties; embedded
in the lower half space with different permittivity and the roughness
of the random rough surface may vary. Sample numerical results are
presented, validated, and analyzed. Through the analysis, it is ob-
served that the roughness of the random rough surface and the elec-
tromagnetic properties of the lower half space can significantly affect
the scattered signature of the buried object.

1. INTRODUCTION

Analysis of electromagnetic scattering of buried objects has been
widely used in subsurface investigations. Since the earth surface is
a random rough surface in reality, it is important to incorporate
the roughness of the surface into the analysis. In the past, analytic
methods including the Kirchhoff approximation (KA) [1], the small
perturbation method (SPM) [2], and the small slope approximation
(SSA) [3], have been employed for studying the scattering from a
random rough surface alone in absence of buried objects, based on
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certain approximations. For analyzing the scattering of objects near
a random rough surface, analytic methods, numerical and hybrid
techniques have been developed. SPM was employed to study
scattering by a cylinder buried beneath a slightly rough surface
in frequency domain [4, 5]. As pointed out in [4], “Analytical
solutions, unlike numerical techniques, are unfortunately limited to
canonical geometries or small perturbations from a canonical geometry.
Nevertheless, analytical solutions are valuable in that they do not
require a discretization of the geometry and can provide a benchmark
for comparison with numerical solutions.” Surface integral equations
were formulated and solved by the method of moments (MoM) for the
two-dimensional (2D) [6], and three-dimensional (3D) [7, 8] scattering
problems. As a method to improve the calculation efficiency, steepest
descent fast multipole method (SDFMM) has been implemented
together with MoM to study the electromagnetic scattering by 3D
objects near a rough surface [9, 10]. Also, various hybrid techniques
have been formulated for studying the 3D scattering problems,
including a hybrid MoM and sparse matrix canonical grid (SMCG)
method [11], a hybrid MoM and modified PO algorithm [12], and
a hybrid Kirchhoff approximation and MoM [13–15]. All of these
numerical and hybrid techniques are developed and employed for
solving the scattering problems in frequency domain.

As an effective time-domain algorithm, the Monte-Carlo finite
difference time-domain method (FDTD) method has been developed
for determining the scattering from a moderately rough surface
alone [16] and the bistatic scattering from a 3D object over a random
rough surface [17, 18]. In contrast to the surface integral equation
formulation, the FDTD approach is more effective for modeling
complex inhomogeneous geometries. In addition, either pulsed or
continuous wave illumination can be used in the FDTD approach and
propagation of the fields can be observed in the time domain. However,
this approach has its drawbacks. As indicated in [19, 20], the FDTD
method based on the classical Yee scheme introduces the “staircase
nature”; and this method requires a grid density of 10 to 20 cells per
minimum wavelength to ensure its accuracy [21].

In recent years, the pseudospectral time-domain (PSTD)
method [22] has been developed and successfully applied to solve
various problems of practical interest. It has been used for the
analysis of scattering of 2D and 3D objects in an open space [23–
28]. In addition, the scattering of objects buried below a planar
surface has been studied by a Fourier PSTD approach [21, 29, 30],
and a multidomain PSTD (MPSTD) algorithm has been developed
for the analysis of scattering of 2D objects buried below a planar
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or undulating surface [31]. As illustrated by a number of numerical
experiment results reported in the literature [21, 26], the PSTD
algorithm requires significantly less CPU time and core memory for the
same or even higher accuracy, being compared with the FDTD method.
Furthermore, in the MPSTD formulation, the computation domain is
divided into non-overlapping subdomains conformal to the problem
geometry [26, 31], which enables one to treat complex geometry with
great flexibility. This nature warrants a high potential of application
of the MPSTD method in the analysis of scattering involving random
rough surfaces, the geometry of which is apparently complex and needs
special attention. But to the best knowledge of the authors, the
MPSTD method that is more effective than the classic FDTD approach
had not been applied in combination with the Monte-Carlo method
for determining the scattering of objects buried below a random rough
surface, which may better simulate media interfaces in reality and is
of practical interest, until most recent time.

Most recently, a Monte-Carlo MPSTD algorithm has been
developed for investigating the scattering of a cylinder buried below
a random rough surface [32]. But the investigation was limited to a
2D configuration.

However, in reality, most of the buried objects are three
dimensional. Therefore, in this paper, the 2D Monte-Carlo MPSTD
algorithm presented in the authors’ previous work [32] is further
developed for studying the scattering of 3D objects buried below a
random rough surface. The rest of this paper is organized as the follows.
In Section 2, we formulate the 3D Monte-Carlo MPSTD algorithm, in
which special attention is paid to the treatment of the random rough
surface. Then, employing the 3D Monte-Carlo MPSTD numerical
technique developed, numerical results are obtained, presented, and
analyzed in Section 3. Finally, conclusions are drawn in Section 4.

2. FORMULATION OF THE 3D MONTE-CARLO
MPSTD TECHNIQUE

Figure 1 shows a dielectric sphere, as an example of a 3D object of
arbitrary shape, buried below a random rough surface that separates
two homogeneous spaces. The upper half-space is characterized by
(µ0, εr1ε0) and the lower half-space is characterized by (µ0, εr2ε0).
The buried object is illuminated by a plane wave incidence. Under
these conditions, the electromagnetic fields must satisfy the Maxwell’s
equation,

∇×⇀
E = −µ

∂⇀
H

∂t
, (1)
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Figure 1. A 3D object buried below a random rough surface.

∇×⇀
H = ε

∂⇀
E

∂t
+ σ⇀

E + ⇀
J . (2)

The scattering from the 3D object buried below a random rough surface
is to be determined by a Monte-Carlo MPSTD algorithm formulated
in this section.

2.1. Formulation of the 3D MPSTD Algorithm

In this section, first, the major steps of the general 3D MPSTD
algorithm are briefly outlined. Then, we focus on the treatment of
a random rough surface involved in the analysis of scattering of a 3D
object buried below it. In particular, the 3D computation domain
decomposition, the subdomain mapping, and the subdomain patching
along the random rough surface are derived.

2.1.1. Outline of the General 3D MPSTD Algorithm

The first step of the MPSTD algorithm is to divide the computation
domain into non-overlapping subdomains, conforming to the problem
geometry including a random rough surface involved in this analysis.
In order to truncate the unbounded medium and confine the solution
in a finite computation domain, an absorbing boundary condition
(ABC) is introduced by implementing a well-posed perfectly matched
layer (PML) [33–35] surrounding the “regular” region. Then, each
subdomain in the (x, y, z) coordinates is mapped into a unit cube in
the (ξ, η, ζ) coordinates by means of coordinate transformation. In
the transformed (ξ, η, ζ) coordinates, the Chebyshev-Gauss-Lagrange
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(CGL) points are chosen as the grid points. Making use of the
coordinate transformation ξ = ξ (x, y, z), η = η (x, y, z), and
ζ = ζ (x, y, z), the Maxwell’s Equations (1) and (2) in the (x, y, z)
coordinates can be rewritten in the (ξ, η, ζ) coordinate system. And
the electromagnetic field quantities and their spatial derivatives in the
(ξ, η, ζ) coordinates are represented by a tensor-product Chebyshev-
Lagarange polynomial [22]. To take care of the time derivatives
of the fields appearing in Equations (1) and (2), a Runge-Kutta
method [22, 31] is employed to update the solutions in time domain.

2.1.2. Treatment of the Random Rough Surface

In the formulation of the Monte-Carlo MPSTD algorithm for studying
the scattering of a 3D object buried below a random rough surface,
special attention is paid to the treatment of the random rough surface
as described below.

2.1.2-1 Generation of Random Rough Surface Profile and Its Matching
with CGL Points

Different from the previously published MPSTD analysis, which mainly
analyzed the scattering of buried objects under flat or undulated
surfaces, this work and the authors’ previous one [32] involve a random
rough surface. As the first trial to introduce a random rough surface
into the Monte-Carlo MPSTD algorithm, the random rough surface is
generated in x direction with Gaussian spectrum profile [36, 37],

y = f(xm) =
1
L

N/2∑

n=−N/2+1

bn exp
(

i
2πnm

N

)
, (3)

where xm = mL/N , (m = 1, 2, . . ., N) in which L is the length of
the rough surface, and bn is the inverse Fourier transform coefficient
defined in terms of the correlation length lc and the rms height of the
random rough surface. A sample random rough surface generated is
illustrated in Figure 1.

As pointed out in [32], the profile y = f (xm) is generated as
a function of evenly distributed xm. But in a MPSTD subdomain
that is partially bounded by the rough surface, the profile ymapped is
a function of xmapped , which are related to the CGL points in the
(ξ, η, ζ) coordinates by the coordinate transformation. Since xm are
uniformly distributed but xmapped are not, they are normally different;
hence the two profiles of y = f (xm) and ymapped in general do not
coincide. To match these two profiles, an interpolation technique is
used as described in [32].
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2.1.2-2. Three-dimensional Subdomain Division and Subdomain
Mapping

When a random rough surface and a 3D object with curved surface
are involved in the analysis, the subdomain division, mapping of a
subdomain from the (x, y, z) coordinates to the (ξ, η, ζ) coordinates,
and choosing of the anchor points for the mapping are particularly
important. Corresponding to certain shape of the object and the rough
surface profile, an appropriate division of the computation domain and
proper selection of the anchor points can help reduce the number
of subdomains and thereby improve the computational efficiency.
For a general curved hexahedral subdomain, a curvilinear coordinate
transformation in terms of the Lagrange polynomials [22, 26] can be
employed,

x =
P∑

p=0

Q∑

q=0

R∑

r=0

xpqrφ
(P )
p (ξ)φ(Q)

q (η)φ(R)
r (ζ), (4a)

y =
P∑

p=0

Q∑

q=0

R∑

r=0

ypqrφ
(P )
p (ξ)φ(Q)

q (η)φ(R)
r (ζ), (4b)

z =
P∑

p=0

Q∑

q=0

R∑

r=0

zpqrφ
(P )
p (ξ)φ(Q)

q (η)φ(R)
r (ζ), (4c)

where xpqr , ypqr , and zpqr are the anchor points.
To illustrate the procedure of the subdomain division and

selection of anchor points for subdomain mapping, we use a dielectric
sphere below a random rough surface as an example, the geometry
of which is depicted in Figure 1. As the first step of the 3D
MPSTD formulation, the computation domain is divided into 216
non-overlapping hexahedral subdomains. Sample subdomains that
contain the rough surface and the dielectric sphere are depicted in
Figure 2(a). After the division, anchor points for each subdomain
are chosen for the subdomain mapping. For the subdomains that
are partially bounded by the random rough surface, to accurately
model the complex geometry, sufficient anchor points are needed. In
this work, 90 anchor points are chosen in each of these subdomains.
Then, using these anchor points in Equations(4a)–(4c), a hexahedral
subdomain in the (x, y, z) coordinate system is successfully mapped
to a unit cube in the (ξ, η, ζ) coordinate system, as depicted in
Figure 2(b).

2.1.2-3. Subdomain Patching in 3D Computation Domain
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(a)

(b)

Figure 2. Computation domain division and subdomain mapping.
(a) Sample subdomains. (b) Coordinate mapping.

Figure 3. Subdomain mapping of two subdomains separated by a
random rough surface.
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Two subdomains, which are separated by a random rough surface, in
the (x, y, z) coordinate system is illustrated in Figure 3. Following the
procedure described above, each subdomain is mapped to a unit cube in
the (ξ, η, ζ) coordinate system. The bottom surface of subdomain (2)
and the top surface of (1) are mapped to the η = −1 and η = 1 surface
of the unit cube, respectively. Note that the interface separating these
two subdomains is a random rough surface, special attention should
be paid to the subdomain patching there. To satisfy the boundary
conditions, which require continuity of the tangential components of
the electric and magnetic field at the interface, we need to identify the
tangential and normal unit vectors at the interface first, and then use
them to determine the tangential and normal components of the fields.

The unit vector normal to the η plane is given by

n̂ =
1√

η2
x + η2

y + η2
z

(ηxx̂ + ηyŷ + ηsẑ) , (5)

and the three unit vectors tangential to the interface are




t̂1 = 1√
η2

y+η2
z

(ηz ŷ − ηy ẑ) ,

t̂2 = 1√
η2

x+η2
z

(−ηzx̂ + ηxẑ) ,

t̂3 = 1√
η2

x+η2
y

(ηyx̂− ηxŷ) ,

(6)

in which ηx, ηy, and ηz are the partial derivatives of η with respect
to x, y and z. It is noted that the three unit vectors in (6) are not
linearly independent. Therefore, after two out of the three tangential
field components along (t̂1, t̂2, t̂3) are set to be continuous, the third
one is automatically continuous.

Using the unit vectors given in (5) and (6), the tangential and
normal components of the fields can be obtained by taking dot product
of the corresponding unit vector with the fields. Then, by enforcing the
continuity of the tangential components along the unit vectors t̂1 and
t̂2; and leaving the normal components remain unchanged, we have

H̃
(1)
t1 , H̃

(2)
t1 =

1
2

(
H

(1)
t1 + H

(2)
t1

)
, H̃

(1)
t2 , H̃

(2)
t2 =

1
2

(
H

(1)
t2 + H

(2)
t2

)
, (7)

Ẽ
(1)
t1 , Ẽ

(2)
t1 =

1
2

(
E

(1)
t1 + E

(2)
t1

)
, Ẽ

(1)
t2 , Ẽ

(2)
t2 =

1
2

(
E

(1)
t2 + E

(2)
t2

)
, (8)

Ẽ(1)
n = E(1)

n , H̃(1)
n = H(1)

n , (9)

Ẽ(2)
n = E(2)

n , H̃(2)
n = H(2)

n , (10)

where the tilted variables are the tangential and normal components
after the subdomain patching at each time step, the untitled variables
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are the components before the patching, and the super script denote
the subdomain where the field components are located.

Solving Equations (7)–(10), the updated field components in
subdomains (1) and (2) are obtained. The updated field components
in subdomain (1) along the rough surface are

Ẽ(1)
x =

1
2

(
E(1)

x + E(2)
x

)

+
η2

x

(
E

(1)
x −E

(2)
x

)
+ηxηy

(
E

(1)
y −E

(2)
y

)
+ηxηz

(
E

(1)
z −E

(2)
z

)

2
(
η2

x+η2
y+η2

z

) , (11)

Ẽ(1)
y =

1
2

(
E(1)

y + E(2)
y

)

+
ηxηy

(
E

(1)
x −E

(2)
x

)
+η2

y

(
E

(1)
y −E

(2)
y

)
+ηyηz

(
E

(1)
z −E

(2)
z

)

2
(
η2

x+η2
y+η2

z

) , (12)

Ẽ(1)
z =

1
2

(
E(1)

z + E(2)
z

)

+
ηxηz

(
E

(1)
x −E

(2)
x

)
+ηyηz

(
E

(1)
y −E

(2)
y

)
+η

(2)
z

(
E

(1)
z −E

(2)
z

)

2(η2
x+η2

y+η2
z)

, (13)

H̃(1)
x =

1
2

(
H(1)

x + H(2)
x

)

+
η2

x

(
H

(1)
x −H

(2)
x

)
+ηxηy

(
H

(1)
y −H

(2)
y

)
+ηxηz

(
H

(1)
z −H

(2)
z

)

2
(
η2

x + η2
y+η2

z

) , (14)

H̃(1)
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1
2

(
H(1)

y +H(2)
y

)

+
ηxηy

(
H

(1)
x −H

(2)
x

)
+η2

y

(
H

(1)
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(2)
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)
+ηyηz

(
H

(1)
z −H

(2)
z

)

2
(
η2

x+η2
y+η2

z

) , (15)

H̃(1)
z =

1
2
(H(1)

z + H(2)
z )

+
ηxηz

(
H

(1)
x −H

(2)
x

)
+ηyηz

(
H

(1)
y −H

(2)
y

)
+η

(2)
z

(
H

(1)
z −H

(2)
z

)

2(η2
x+η2

y+η2
z)

. (16)

The updated electric and magnetic field components in subdo-
main (2) can be expressed by equations in the same form as Equa-
tions (11)–(16) with the super scripts 1 and 2 exchanged. Similar
procedures can be implemented to obtain the updating equations for
interfaces along other directions. For the subdomain patching along
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the interfaces normal to ξ and ζ direction, after going through a similar
procedure, the updating equations can be obtained by replacing η by
ξ and ζ respectively in Equations (11)–(16).

2.2. Monte-Carlo Statistic Average

Since a random rough surface is involved in this work, a statistic
average of the scattering of the buried 3D object below the rough
surface needs to be determined. The Monte-Carlo method (MCM),
which is also known as the method of statistical trials [38], has been
used in the past together with an integral equation formulation in
the frequency domain [9] and with the FDTD method in the time
domain [16, 17] for the analysis of electromagnetic scattering involving
a random rough surface. Most recently, a Monte-Carlo MPSTD
algorithm is developed for the analysis of scattering from a 2D cylinder
buried below a random rough surface [32]. In this work, the Monte-
Carlo MPSTD algorithm is extended for studying the scattering of a
3D object buried below a random rough surface. It is carried out by the
following steps. First, a set of random rough surfaces with Gaussian
spectrum is generated. Then, the MPSTD algorithm formulated above
is employed to determine the scattering of the buried object below each
of the rough surfaces generated. And finally, the statistic average of the
scattering is determined. To make sure that the Monte-Carlo statistic
average results converge, numerical tests are performed and the results
are presented in the next section.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results of scattering of a 3D
object buried below a random rough surface separating two half spaces.
The upper half space is taken to be free space, and the lower one
is a dielectric medium with various relative permittivity εr2. The
excitation is a TM z plane wave normal incidence, the time function
of which is the first derivative of the Blackman-Harris window (BHW)
function [21],

f(t) =




−

3∑
n=1

nπ
T an sin

(
2nπt

T

)
, 0 < t < T,

0, else,
(17)

where a1 = −0.488, a2 = 0.145, a3 = −0.01022222, and 1
T = fc

1.55 .
In all the numerical examples presented in this section, the central
frequency fc = 100 MHz, unless otherwise specified.
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3.1. Validation of the MPSTD Algorithm

To validate the MPSTD algorithm developed, we introduce a virtual
random rough surface placed along y = 0 and the half spaces above
and below it are both set to be free space. In the first example, we
consider the scattering of a dielectric cube, which is of side length
0.6m, centered at (0, −0.9, 0), and characterized by µr = 1, εr = 4
and σ = 0. It is illuminated by a TMz plane wave propagating in −y
direction, the time function of which is the first derivative of BHW
function with central frequency 200 MHz. At two observation points,
one is below and the other is above the virtual rough surface, such
calculated MPSTD results of the total field Ez are compared with the
free-space results as well as those obtained using the FDTD method.
From the comparison illustrated in Figures 4(a) and (b), one sees an
excellent agreement between the three sets of data, as expected.

In the second example, we consider a lossy dielectric sphere, which
is of radius 2 m, centered at (0, −3, 0), and characterized by µr = 1,
εr = 4 and σ = 0.002. The incident wave is with fc = 50 MHz. At
two observation points, one is below and the other is above the virtual
rough surface, the MPSTD results of the total field Ez are compared
with the free-space results as well those obtained using the FDTD
method. The comparison is illustrated in Figures 5(a) and (b), where
an excellent agreement between the three sets of data is observed.

-4

-3

-2

-1

0

1

2

3
x 10 8

time (ns)

E
z

 (
V

/m
)

MPSTD result with virtual random rough surface
MPSTD free space result
FDTD result

x 108

time (ns)

MPSTD result with virtual random rough surface
MPSTD free space result

(a) (b)

E
z
 (

V
/m

)

-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Figure 4. Scattering of a dielectric cube below a virtual random
rough surface compared with the free-space results as well as the FDTD
results. (a) At (0, −0.3, 0). (b) At (0, 0.6, 0).
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Figure 5. Scattering of a dielectric sphere below a virtual random
rough surface compared with the free-space results as well as the FDTD
results. (a) At (0, −3, −2.5). (b) At (0, 2, 0).

Figure 6. 3D computation domain containing a random rough
surface.

3.2. Convergence Test for Scattering from a Random Rough
Surface

To make sure that the numerical results of the 3D Monte-Carlo
MPSTD technique converges, first, we employ it for the analysis of
scattering of a random rough surface, which is of correlation length
lc = 0.45m, the rms height hrms = 0.2 m and located within −4 ≤
x ≤ 4, −3 ≤ z ≤ 3. The upper half space is free space, and the
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lower half space is a medium with relative permittivity εr2 = 3. The
computation domain (PML regions is not included for simplicity) is
shown in Figure 6.

A set of N random rough surfaces is generated, the MPSTD
numerical technique is employed N times for determining the scattering
of each of the random rough surfaces, and then the Monte-Carlo
statistic average is obtained. Such obtained electric field Ez observed
at (0, 2, 0) and (−3, 2, 0) are presented in Figures 7(a) and (b). From
the data presented in the figures, one notes that the numerical results
have a significant change when N is increased from 1 to 10, but the
change becomes very little when N is further increased from 10 to 13,
which verifies the convergence of the Monte-Carlo MPSTD numerical
technique after it is executed 10 times.

3.3. Scattering of a PEC Cube Buried below a Random
Rough Surface

Next, we present the numerical results of scattering of a PEC cube
with side length of 2 m and centered at (0, −3, 0), buried below a
random rough surface, which is of the same parameters as that used
in the previous sub-section. The computation domain is illustrated in
Figure 8(a). In Figure 8(b), we present the numerical results of Ez

observed at (−5, 2, 2) for the lower half space relative permittivity
εr2 varying from 3 to 1. From the data presented in the figure, one
observes that as εr2 decreases from 3 to 2, then to 1.5, and finally to 1,
the results gradually reduce to that for the cube located in free space,
as expected.

One notes that the incident wave propagates to impinge the
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Figure 7. Convergence test for the scattering of a random rough
surface. (a) At (0, 2, 0). (b) At (−3, 2, 0).



396 Liu, Dai, and Xu

0 10 20 30 40 50 60 70
-1.5

-1

-0.5

0

0.5

1

1.5 x 10 8

time (ns)
E

z 
(V

/m
)

εr2 = 3
εr2 = 2
εr2 = 1.5
εr2 = 1

(a) (b)

Figure 8. Scattering from a PEC cube buried below a random rough
surface. (a) Geometry of the 3D computation domain. (b) Ez observed
at (−5, 2, 2) for various εr2.

random rough surface first and then the buried object; after that, the
wave is scattered back to reach the observation point at y = 2 from the
rough surface along y = 0 and then from the buried cube, the upper
surface of which is along y = −2. Due to such a time sequence, the
field depicted in this figure represents the incident wave for t < 13 ns,
the scattered wave by the rough surface for 13 ns < t < 26 ns, and
then the wave scattered by the buried cube for t > 26 ns. Therefore,
for t < 13 ns, the curves corresponding to the four different values of
εr2 are identical because they are all the incident wave that is not
affected by εr2; then for 13 ns < t < 26 ns, the magnitudes of the
fields are different due to the effect of the different lower half space
relative permittivity εr2 on the scattering from the rough surface; and
finally, for t > 26 ns, as εr2 increases, there is a time delay of the wave
propagating in the lower half space. This is due to the fact that the
electromagnetic wave propagates at a slower speed in a medium with
higher relative permittivity.

To illustrate the plane wave propagation through the random
rough surface and its scattering by the PEC cube, spatial distribution
of the electric field Ez on the z = 0 plane at two specific moments t =
15ns and t = 30 ns, for εr2 = 3, are depicted in Figures 9(a) and 9(c).
The shape of the rough surface is well displayed in Figure 9(a), but
the buried cube is not shown there. This is due to the fact that at
t = 15 ns, the incident wave just impinges the rough surface but has
not reached the buried cube yet. As the time progresses, the wave
travels farther and at t = 30ns, the buried PEC cube is illuminated and
its shape is well represented in Figure 9(c). In order to demonstrate
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Figure 9. Spatial distribution of the electric field on the z = 0 plane,
(a) with a random rough interface, observed at t = 15 ns; (b) with a
flat interface, observed at t = 15 ns; (c) with a random rough interface,
observed at t = 30 ns; (d) with a flat interface, observed at t = 30 ns.

the impact of the roughness of the interface on the scattering, the
spatial distribution of Ez with a flat media interface at t = 15 ns and
t = 30ns are illustrated in Figures 9(b) and 9(d). From a comparison
between the data shown in Figure 9(a) with 9(b) and Figure 9(c) with
Figure 9(d), one observes a significant difference, which is due to the
impact of the rough surface.

3.4. Scattering of a Dielectric Cube Buried below a Random
Rough Surface

Next, we present the numerical results of scattering of a dielectric cube
with side length of 0.6 m and centered at (0, −0.9, 0), buried below a
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random rough surface. The random rough surface is of correlation
length lc = 0.12m, rms height hrms = 0.1m, and located within
−1.2 ≤ x ≤ 1.2, −0.9 ≤ z ≤ 0.9. The upper half space is free space,
and the lower half space is characterized by εr2 = 2. The incident plane
wave is with fc = 200 MHz. The numerical results of Ez observed at
(0, 0.6, 0) are depicted in Figure 10 for the relative permittivity of the
dielectric cube εr3 varying from 2 to 3, and then to 4. As shown in
this figure, before the moment t ≈ 9 ns, the electric field Ez does not
change as εr3 varies because the filed then is due to the scattering of the
lower half space only, the relative permittivity of which remains to be
unchanged. But after that moment, the scattering from the dielectric
cube reaches the observation point and it changes for different εr3, as
it is supposed to be. Note that for εr3 = 2, which is equal to the
relative permittivity of the lower half space εr2, there is no scattering
from the dielectric cube and the scattering is from the rough surface
only, as illustrated by the dotted green line. But as εr3 is increased to
3 and then to 4, the scattering from the dielectric cube shows up and
becomes stronger for larger εr3, as expected.

3.5. Scattering of a Dielectric Square Cylinder Buried below
a Random Rough Surface with Various Roughness

To illustrate the capacity of the Monte-Carlo MPSTD method
presented in this paper, in this section, we consider a buried dielectric
square cylinder, with a cross sectional area of 0.6m×0.6m and a length
of 1.8 m, buried below a random rough surface with various roughness.
The top surface of the buried square cylinder is located 0.6 m below
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Figure 10. Scattering from a
dielectric cube buried below a
random rough surface observed
at (0, 0.6, 0) for various εr3.
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y = 0 where the rough surface is located. The incident plane wave is
with central frequency fc = 200MHz, the lower half space is taken to
be of relative permittivity εr2 = 2 and the dielectric square cylinder is
characterized by εr3 = 4. The roughness of the random rough surface
can be described by its rms slope s =

√
2hrms
lc

[36]. The correlation
length of the random rough surface is taken to be lc = 0.12m (0.08λ),
and its rms height hrms varies from 0.06m (0.04λ), to 0.09 m (0.06λ),
then 0.12 m (0.08λ), and finally 0.15m (0.1λ), which correspond to
s = 0.707, 1.06, 1.4142, and 1.7678, respectively. The numerical results
are presented in Figure 11. It has been found from the numerical tests
that the solution is stable for hrms = 0.06m, 0.09m, and 0.12m using
a time step length ∆t = 5 ns. But for hrms = 0.15m, the solution
becomes unstable. However, the solution regains its stability after the
time step is decreased to ∆t = 2 ns, at a cost of longer computation
time. This numerical example demonstrates that the Monte-Carlo
MPSTD method presented can solve the scattering problem involving a
pretty rough random rough surface with its rms slope up to s = 1.7678.
For comparison, in the literature, for examples, a rough surface with
lc = 0.2m and hrms = 0.1 m (s = 0.707) is considered in [17]; lc = 0.2λ
and hrms = 0.01λ (s = 0.0707) are used in [4].

Also, the size of the buried object and the distance between the
buried object and the rough surface are important parameters that
must be considered in the Monte-Carlo MPSTD method. Apparently,
the size of the buried dielectric square cylinder, with a cross sectional
area of 0.6m× 0.6m and a length of 1.8m, analyzed in this section is
larger than the dielectric cube with side length of 0.6 m considered in
the previous example. Such a larger buried object has been successfully
treated by increasing the number of grids of the subdomain occupied
by the buried object without adding more subdomains. If the distance
between the buried object and the rough surface is larger, then more
grids and/or more computation domains would be needed at a cost of
more computation time.

3.6. Scattering of a Dielectric Sphere Buried below a
Random Rough Surface

The last example is for the scattering of a lossy dielectric sphere buried
below a random rough surface. The geometry and the electromagnetic
parameters of the sphere and the incident wave are taken to be the same
as those used for Figure 5. The random rough surface is of correlation
length lc = 0.4m, the rms height hrms = 0.2m, and it is located by
−4 ≤ x ≤ 4, −2 ≤ z ≤ 2. The numerical results of Ez observed at
(0, 2, 0) and (−1, 2, −2) are presented in Figure 12 for the lower-half-
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Figure 12. Scattering from a dielectric sphere buried below a random
rough surface observed at (0, 2, 0) for various εr2.

space relative permittivity εr2 varying from 1 to 1.2, then to 1.5, and
finally to 2. From this figure, one observes that as εr2 = 1, which is
equivalent to the problem of scattering of the dielectric sphere in free
space, the result is exactly the same as that shown in Figure 5(b), as
expected. And when εr2 is gradually increased from 1 to 2, the effects
of the random rough surface appears and it gradually dominates the
scattering.

4. CONCLUSIONS

A Monte-Carlo MPSTD algorithm is formulated and implemented
for studying the scattering of a 3D object buried below a random
rough surface of finite length. The 3D object may be of various
shapes and electromagnetic properties; embedded in a half space with
different permittivity and the roughness of the random rough surface
may vary. Sample numerical results are presented, validated, and
analyzed. Through the analysis, it is shown that the roughness of
the random rough surface and the electromagnetic properties of the
lower half space can significantly affect the scattered signature of
the buried object. In addition, the numerical results show that the
Monte-Carlo MPSTD method presented in this paper can handle a
pretty rough random rough surface involved in the scattering problem,
the roughness of which represented by the rms slope may be up to
s = 1.7678. Currently, the authors are extending the Monte-Carlo
MPSTD algorithm presented in this paper to the analysis of scattering
of an object buried below an infinitely-long random rough surface, and
finally extend it for determining the scattering of a 3D object buried
in a layered half space with random rough interfaces.
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