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WITH METALLIC POST AND DIELECTRIC SLEEVE IN
OVER-SIZED CAVITY

Meysam Sabahialshoara* and Swee Ping Yeo

National University of Singapore, Kent Ridge, Singapore 117583,
Singapore

Abstract—The Least-Squares Boundary Residual Method is em-
ployed in the present paper to develop a computer model of the sym-
metrical six-port waveguide junction. The analytical formulation is
difficult because of the insertion of a metallic post together with a di-
electric sleeve into the over-sized cavity of the junction. Computational
and experimental tests confirm that the resultant model is able to com-
pute the scattering parameters of such a structurally-complicated com-
ponent with numerical accuracies of ±0.001 and ±0.1◦ for magnitude
and phase respectively.

1. INTRODUCTION

The building blocks of waveguide circuits are commonly based on one-,
two-, three- and four-port components [1–3]. With the ever-increasing
expectations imposed on modern-day circuits, however, microwave
designers may nowadays have to seek recourse to novel components
with five or more ports [4–6] in order to meet more complex functional
requirements. In particular, various six-port components [7–13] have
already been attracting the attention of researchers who utilized a
diversity of numerical techniques to develop computer models for
predicting their performance characteristics.

Researchers [14–27] have also found it interesting to study the
family of symmetrical N -port waveguide junctions; for the generic case
described by Bialkowski [14], N rectangular-waveguide arms are affixed
at regular azimuthal intervals to a central circular-waveguide cavity.
The most familiar of these symmetrical structures are the N = 3 and
N = 4 junctions which have benefited from decades of research for use
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as circulators [15]. In addition, the N = 4 junction has been proposed
for switch [17], vircator [18] and crossover [19] applications. Although
not as well-known, the N = 5 junction has been attracting interest
as well [20–24]; such a component can function as a four-way power
divider [20] and suitable prototypes have been designed for combining
the power outputs of four Gunn diodes [21] or for directing power flow
within six-port reflectometers [22]. Extending this line of study, we
shall thus consider the N = 6 junction where its scattering matrix
may in general be written in the following form (based on its six-fold
rotational symmetry and network reciprocity properties):

S =




γ α β τ β α
α γ α β τ β
β α γ α β τ
τ β α γ α β
β τ β α γ α
α β τ β α γ




. (1)

It is beneficial for us to draw upon the experience already
gained by the researchers who successfully developed models for the
symmetrical five-port waveguide junction. As depicted in Figure 1,
our N = 6 structure incorporates various features that resemble those
reported for the earlier N = 5 prototypes in [20–24]:
(a) According to Montgomery et al. [20], the insertion of a rotationally

symmetric object (such as dielectric sleeve) together with a
metallic post into the cylindrical cavity will offer us greater
flexibility in adjusting the phases of the eigenvalues associated
with the component’s scattering matrix. Similar to the N = 5
junction designed by Yeo et al. [23], we have added a concentric
sleeve (of relative permittivity εr) in Figure 1; such a dielectric-
loaded cavity will support hybrid modes which have more
complicated field expressions when compared with the pure TE
and TM modes that can be expected inside a coaxial cavity for
the simplified case of εr = 1.

(b) The simulation results obtained by Chumachenko and Zinenko [24]
for their N = 5 junction suggest that the size of the central cavity
may be appropriately enlarged in order to optimize coupling.
As can be seen from the cross-sectional view of our N = 6
structure in Figure 1(b), we have opted instead for an over-sized
cavity where its height h is longer than the broad dimension a of
each rectangular-waveguide arm. The immediate consequence of
allowing for h > a is that a wider array of additional rectangular-
waveguide TE and TM modes must be taken into account during
the formulation of our junction model in Section 2.
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(a) (b)

Figure 1. Symmetrical six-port waveguide junction with metallic post
and dielectric sleeve in over-sized (E-plane coupled) cavity. (a) Top
view, (b) mid-sectional view.
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Figure 2. One-sixth segment of waveguide junction depicted in
Figure 1. (a) Top view, (b) cross-sectional view U-U.

2. EIGENMODE MODEL

When developing his generic model of the symmetrical N -port
waveguide junction (with its central cavity containing a metallic post
without any dielectric sleeve), Bialkowski [14] chose a non-eigenmode
approach and included only the simpler TE modes in his field-matching
analysis. For our case, however, it is more expedient for us to capitalize
on the six-fold rotational symmetry of the N = 6 structure shown
in Figure 1(a) so as to develop an eigenmode model of the one-sixth



196 Sabahialshoara and Yeo

 

1e jπk/3

e
2j
π
k/

3

λ k
e

2j
π
k/

31e
2j
π
k/

3

λ k
e

jπ
k/3

λ
k

1ej0

λk e j0
1e -2jπk/3e -2

jπk/3

λ
k

λ
k1e

-jπ
k/

3

e
-jπ

k/3

λ k

1e jπk

e jπkλk

Figure 3. Schematic arrangement of input and output waves at
ports of waveguide junction depicted in Figure 1 when operating in
eigenmode (of order k = 0, 1, 2, 3, 4, 5).

segment sketched in Figure 2 (where the coordinates are defined with
reference to the center O on the z-axis of the cylindrical cavity).

It is known that the symmetrical six-port junction supports a
total of six eigenmodes [25]. The general arrangement of input and
output waves associated with any of these eigenmodes is schematically
portrayed in Figure 3; for the eigenmode of order k (where k =
0, 1, 2, 3, 4, 5), the input waves at the six ports have the same
amplitude (which we normalize to 1) but their phases differ by ±jkπ/3
for any pair of neighboring ports. We thus have to append an
additional eigenmode-related condition (viz. BC7) to the following list
of boundary conditions that must be satisfied during our derivation of
the field-matching equations:

BC1 negligible tangential electric fields over the metallic walls at
z = ±1

2a and y = ±1
2b of the rectangular waveguide (denoted

as Region R in Figure 2).
BC2 negligible tangential electric fields over the metallic terminations

at z = ±1
2h of the cylindrical cavity (denoted as Region C in

Figure 2).
BC3 negligible tangential electric field over the metallic surface at

r = rp of the central post.
BC4 continuity of tangential electric- and magnetic-field components

across the dielectric-air interface at r = rd of the concentric sleeve.
BC5 continuity of tangential electric- and magnetic-field components
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across the interface (represented by Sinterface in Figure 2) between
Regions R and C.

BC6 negligible tangential electric field over the metallic wall
(represented by Swall in Figure 2) at r = r0 of the cylindrical
cavity.

BC7 eigenmode-related inter-relationships for the azimuthal variation
of the electric- and magnetic-field distributions in any pair of
adjoining 60◦ sectors within the cylindrical cavity.
BC1, BC2, BC3 and BC4 have been incorporated directly into

the hybrid expressions we selected to represent the modal fields within
Regions R and C while BC7 in essence specifies the type of azimuthal
variation allowed in Region C for any particular eigenmode. BC5
is especially difficult to implement and we need to define two error
parameters that measure the residual mismatch of the respective field
components tangential to Sinterface:

∆A =
∫∫

Sinterface

∣∣∣∣∣∣

P∑

p=0

ap~e
R
p −

Q∑

q=1

bq ~e C
q

∣∣∣∣∣∣

2

ds (2)

∆B =
∫∫

Sinterface

∣∣∣∣∣∣

P∑

p=0

ap
~hR

p −
Q∑

q=1

bq
~hC

q

∣∣∣∣∣∣

2

ds (3)

where, as portrayed in Figure 2(a), the TE10 wave incident from
the source is denoted by a0 (which we normalize to 1 + j0) and
where a1, a2, a3, . . . are the coefficients assigned to the different back-
scattered modes in Region R and b1, b2, b3, . . . are the coefficients
assigned to the various cavity modes excited in Region C. We have
reproduced in the Appendix the expressions for the electric and
magnetic fields ~e R

p and ~hR
p associated with the pth mode in Region

R as well as ~e C
q and ~hC

q associated with the qth mode in Region C. In
addition, we need to define another field-mismatch parameter for BC6
to measure the residual electric field tangential to Swall:

∆C =
∫∫

Swall

∣∣∣∣∣∣

Q∑

q=1

bq ~e C
q

∣∣∣∣∣∣

2

ds (4)

Given the complexity of our junction structure and the
concomitant requirement for hybrid field expressions, we have opted
to minimize ∆sum = ∆A + η2

0∆B + ∆C (where η0 is the free-
space impedance) by employing the Least Squares Boundary Residual
Method (LSBRM) because this numerical technique has been found by
others to be rigorous:
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(i) Davies [28, p. 102] already demonstrated that “convergence to the
physically correct solution is assured” for the LSBRM.

(ii) during their computational trials, Bunch et al. [29, p. 1027]
observed that “boundary residual methods find the best fit to field
continuity and furthermore they converge to the exact solution as
the number of wave functions increased”.

(iii) in his tutorial paper where he explained the mathemati-
cal differences between the LSBRM and Galerkin’s method,
Sarkar [30, p. 1222] agreed that “only the method of least squares
guarantees the convergence of the residuals as the order of the
approximation gets higher” but he also pointed out that “this ad-
vantage is, however, offset by the fact that the method of least
squares requires considerably more computations”.

(iv) Oraizi [31, p. 58] concluded from his literature survey that
“boundary-value problems. . . can be readily handled by the
LSBRM.”

Each of the three boundary residuals defined in (2)–(4) is clearly
positive semi-definite. In essence, the formulation of our LSBRM
model is based on the following minimization of the positive semi-
definite ∆sum with respect to the unknown ap and bq coefficients:

∂

∂ap
∆sum = 0 for p = 1, 2, 3, . . . , P (5)

∂

∂bq
∆sum = 0 for q = 1, 2, 3, . . . , Q. (6)

The P +Q inhomogeneous equations contained in (5), (6) may be more
conveniently recast in compact matrix notation:

Ux = v (7)

where all of the modal coefficients a1, a2, a3, . . . , aP , b1, b2, b3, . . . , bQ

are placed sequentially in the column vector x while the various entries
in the square matrix U and column vector v consist of the self- and
inter-coupling integrals among the different modes of Regions R and C.
The detailed expressions for these coupling integrals are available
in [10] (which can be readily downloaded from the thesis archive
website hosted by National University of Singapore).

Although the N = 6 junction has six eigenvalues λk (where
k = 0, 1, 2, 3, 4, 5 is the order of the associated eigenmode), two
pairs are known to be degenerate [25]. The numerical solution of
the matrix equation in (7) for the unknown vector x yields all of
the modal coefficients ap (where p = 1, 2, 3, . . . , P ) and bq (where
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Table 1. Convergence of LSBRM-generated results for eigenvalues
of junction depicted in Figure 1. (a = 22.9mm, b = 10.2mm,
h = 26.5mm, r0 = 13.4mm, rd = 5.0mm, rp = 1.8mm, εr = 3
and f = 10GHz).

P = Q 
Eigenvalues 

 

50 0.9031 24.2
o

0.8807 9.9
o
 0.9698 63.5

o
0.9512 -110.5

o
 0.9694 -163.5

o
 0.8819 9.8

o

150 0.9714 -21.3
o
 0.9693 11.6

o
 0.9869 -163.0

o
 0.9780 -108.1

o
 0.9869 -163.0

o
 0.9693 11.6

o
 

250 0.9793 -20.7
o
 0.9788 12.0

o
 0.9908 -162.8

o
 0.9834 -107.5

o
 0.9908 -162.8

o
 0.9788 12.0

o
 

350 0.9817 -20.5
o
 0.9815 12.2

o
 0.9922 -162.6

o
 0.9852 -107.1

o
 0.9922 -162.6

o
 0.9815 12.2

o
 

500 0.9833 -20.1
o
 0.9834 12.4

o
 0.9931 -162.4

o
 0.9868 -106.8

o
 0.9931 -162.4

o
 0.9834 12.4

o
 

650 0.9877 -19.8
o
 0.9877 12.6

o
 0.9949 -162.2

o
 0.9903 -106.5

o
 0.9949 -162.2

o
 0.9876 12.6

o
 

800 0.9899 -19.6
o
 0.9897 12.8

o
 0.9956 -162.1

o
 0.9918 -106.3

o
 0.9956 -162.1

o
 0.9897 12.8

o
 

950 0.9906 -19.6
o
 0.9905 12.8

o
 0.9960 -162.1

o
 0.9925 -106.2

o
 0.9960 -162.1

o
 0.9905 12.8

o
 

(λ  )k

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

- -

q = 1, 2, 3, . . . , Q) for each eigenmode and the four non-degenerate
eigenvalues are then computed via the following relationship:

λk =
(

a1

a0

)

k

for k = 0, 1, 2, 3. (8)

For the remaining two eigenvalues, we infer from the junction’s six-fold
rotational symmetry that λ4 = λ2 and λ5 = λ1 [25] as can also be seen
from the sample results presented in Table 1 (as well as all of the other
numerical results we have compiled in [10]) even when our LSBRM
model employs only 50 modes during the numerical computations.

Since both metal and dielectric have been presumed to be loss-free
for the symmetrical six-port waveguide junction shown in Figure 1,
S in (1) must be a unitary matrix and the eigenvalues generated by
our computer model ought to have unit magnitudes. It is evident
from the numerical results of Table 1 that all eigenvalue magnitudes
|λk| do converge monotonically towards 1 as we increase the number
of modes P and Q used to represent the fields in Regions R and C
respectively. In view of this, what we should retain for our ensuing
computations are the numerical results for the eigenvalue phases θk

which correspondingly converge in Table 1 to within ±0.1◦ when P
and Q exceed 800 for all six eigenmodes. Given the level of accuracy
obtainable by our LSBRM model for θk, we can confidently proceed
to compute the various scattering parameters defined in (1) via the
following equations [10] (which are derived via the superposition of the
output waves portrayed in Figure 3 for all possible eigenmodes [25]):

α =
1
6

{
ejθ0 + ejθ1 − ejθ2 − ejθ3

}
(9)

β =
1
6

{
ejθ0 − ejθ1 − ejθ2 + ejθ3

}
(10)
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γ =
1
6

{
ejθ0 + 2ejθ1 + 2ejθ2 + ejθ3

}
(11)

τ =
1
6

{
ejθ0 − 2ejθ1 + 2ejθ2 − ejθ3

}
(12)

3. TEST RESULTS

Table 2 presents a sample of the numerical results we obtained
via (9)–(12) for the scattering parameters of the symmetrical six-port
waveguide junction depicted in Figure 1. Since we have allowed for
an over-sized cavity with h > a, we need to include both TEmn and
TMmn modes (where m = 1, 3, 5, . . . and n = 1, 2, 3, . . .) to represent
the rectangular-waveguide fields in Region R as well as hybrid modes
to describe the dielectric-loaded cavity fields in Region C. Hence, it
is not surprising to find in Tables 1 and 2 that our LSBRM model
requires a large number of modes (with P and Q exceeding 800) before
the computed results for α, β, γ, τ and λk converge to ±0.001 and
±0.1◦ for magnitude and phase respectively.

We have, for convenience, opted for the default choice of P = Q
during the computations. In view of Davies’ assertion that “the least-
squares approach avoids problems of relative convergence” [28, p. 100]
(which are known to affect certain numerical techniques as explained
in [32]), our LSBRM-based model should allow other P

Q ratios to be
adopted as well. To dispel any possibility of concern (as alluded

Table 2. Convergence of LSBRM-generated results for scattering
parameters of junction depicted in Figure 1. (a = 22.9mm, b =
10.2mm, h = 26.5mm, r0 = 13.4mm, rd = 5.0mm, rp = 1.8mm,
εr = 3 and f = 10GHz).
(a) Using default choice of P = Q.

# modes
Scattering parameters computed with different P and Q

α β γ τ

P = Q = 50 0.518 ∠51.8◦ 0.270 ∠-48.9◦ 0.164 ∠-73.2◦ 0.442 ∠-107.1◦

P = Q = 150 0.537 ∠52.7◦ 0.280 ∠-47.8◦ 0.160 ∠-63.9◦ 0.445 ∠-106.5◦

P = Q = 250 0.540 ∠53.0◦ 0.280 ∠-47.4◦ 0.161 ∠-62.9◦ 0.457 ∠-106.3◦

P = Q = 350 0.541 ∠53.1◦ 0.281 ∠-47.3◦ 0.161 ∠-62.7◦ 0.457 ∠-106.2◦

P = Q = 500 0.542 ∠53.3◦ 0.281 ∠-47.2◦ 0.162 ∠-62.5◦ 0.457 ∠-106.1◦

P = Q = 650 0.543 ∠53.5◦ 0.281 ∠-46.7◦ 0.164 ∠-61.6◦ 0.458 ∠-106.0◦

P = Q = 800 0.544 ∠53.6◦ 0.281 ∠-46.5◦ 0.165 ∠-61.1◦ 0.458 ∠-105.9◦

P = Q = 950 0.545 ∠53.7◦ 0.281 ∠-46.5◦ 0.165 ∠-61.1◦ 0.458 ∠-105.9◦



Progress In Electromagnetics Research B, Vol. 46, 2013 201

(b) using mode ratio of P
Q ≈ a

h .

# modes
Scattering parameters computed with different P and Q

α β γ τ

P = 50,

Q = 58
0.518 ∠51.9◦ 0.271 ∠-48.8◦ 0.165 ∠-73.0◦ 0.442 ∠-107.1◦

P = 150,

Q = 174
0.537 ∠52.8◦ 0.280 ∠-47.8◦ 0.160 ∠-63.8◦ 0.455 ∠-106.5◦

P = 250,

Q = 290
0.540 ∠53.0◦ 0.281 ∠-47.4◦ 0.161 ∠-62.9◦ 0.457 ∠-106.3◦

P = 350,

Q = 406
0.541 ∠53.2◦ 0.281 ∠-47.2◦ 0.162 ∠-62.7◦ 0.457 ∠-106.2◦

P = 500,

Q = 580
0.542 ∠53.4◦ 0.281 ∠-47.0◦ 0.163 ∠-62.1◦ 0.457 ∠-106.1◦

P = 650,

Q = 752
0.544 ∠53.6◦ 0.281 ∠-46.6◦ 0.164 ∠-61.3◦ 0.458 ∠-105.9◦

P = 800,

Q = 926
0.545 ∠53.7◦ 0.281 ∠-46.5◦ 0.165 ∠-61.1◦ 0.458 ∠-105.9◦

P = 950,

Q = 1100
0.545 ∠53.8◦ 0.281 ∠-46.4◦ 0.165 ∠-60.9◦ 0.458 ∠-105.8◦

(c) Using mode ratio of Q
P ≈ πr0

3b .

# modes
Scattering parameters computed with different P and Q

α β γ τ

P = 50,

Q = 70
0.531∠52.2◦ 0.277∠− 48.3◦ 0.157∠− 66.5◦ 0.442∠− 106.7◦

P = 150,

Q = 208
0.539∠52.8◦ 0.280∠− 47.7◦ 0.159∠− 63.4◦ 0.455∠− 106.4◦

P = 250,

Q = 346
0.540∠53.0◦ 0.281∠− 47.5◦ 0.161∠− 62.9◦ 0.457∠− 106.3◦

P = 350,

Q = 484
0.541∠53.2◦ 0.281∠− 47.3◦ 0.161∠− 62.7◦ 0.457∠− 106.2◦

P = 500,

Q = 692
0.543∠53.5◦ 0.281∠− 46.8◦ 0.163∠− 61.7◦ 0.457∠− 106.0◦

P = 650,

Q = 898
0.544∠53.7◦ 0.281∠− 46.5◦ 0.165∠− 61.1◦ 0.458∠− 105.9◦

P = 800,

Q = 1102
0.545∠53.8◦ 0.281∠− 46.4◦ 0.165∠− 60.9◦ 0.458∠− 105.8◦

P = 950,

Q = 1312
0.545∠53.9◦ 0.281∠− 46.2◦ 0.166∠− 60.6◦ 0.458∠− 105.8◦
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in [31, 33]), we have taken additional efforts to repeat the computations
when P 6= Q; for example, the extra sets of numerical results we
recorded in [10] for different mode-ratio selections (viz. P

Q = 1
3 , 1

2 , 2,
and 3) show no indication of relative convergence. We have also been
advised to perform these computational experiments for P

Q ≈ a
h and

Q
P ≈ 2πr0

6b ; the data presented in Tables 2(b) and 2(c) for these two
special cases likewise confirm that the converged values for the four
scattering parameters do not depend on the choice of mode ratio.

Another useful advantage of the LSBRM is that we can check the
level of residual field-mismatch via the parameters ∆A, ∆B and ∆C

defined in (2)–(4) as stipulated by BC5 and BC6. If P and Q are
allowed to be infinitely large, our LSBRM model should in the ideal
case return zero values for these three field-mismatch parameters. In
practice, however, there are constraints on the number of modes to be
included during the actual computations. Nevertheless, we observe
that the total field-mismatch level ∆sum monotonically decreases
towards zero in Table 3 as we steadily increase P and Q even when we
have opted for different mode ratios (viz. P

Q = 1
3 , 1

2 , 1, 2 and 3). For
ease of relative comparison, we have conveniently normalized ∆sum = 1
when M = 1 for all five columns of field-mismatch data in Table 3.

Table 3 must be supplemented by electric- and magnetic-field plots
in order for us to gain some appreciation of the residual field-mismatch
level associated with the numerical results for ∆sum. Reproduced in
Figure 4 is a sample set of field distributions at the interface r = r0

between Regions R and C where we varied the linear coordinate z
along the horizontal axis of the plots. Figure 5 presents another set

Table 3. Residual field-mismatch results of LSBRM-based model
for junction depicted in Figure 1. (a = 22.9mm, b = 10.2mm,
h = 26.5mm, r0 = 13.4mm, rd = 5.0mm, rp = 1.8mm, εr = 3
and f = 10GHz).

M (number

of modes)

Field-mismatch level ∆sum for different P and Q

P=M

Q=M

P = 2M

Q = M

P = 3M

Q = M

P = M

Q = 2M

P = M

Q = 3M

25 0.063 0.059 0.049 0.033 0.033

75 0.016 0.021 0.019 0.013 0.013

150 0.0094 0.012 0.011 0.0083 0.0061

300 0.0084 0.0079 0.0072 0.0054 0.0048

450 0.0052 0.0071 0.0065 0.0041 0.0039

600 0.0048 0.0060 0.0057 0.0037 0.0035
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Figure 4. LSBRM-generated plots showing how electric- and
magnetic-field components in Region R (· · · · · · ) and Region C (—)
vary along z-direction over Sinterface and Swall interface for 60◦ sector
of symmetrical six-port waveguide junction depicted in Figure 2 (where
a = 22.9mm, b = 10.2 mm, h = 27.5mm, r0 = 13.4mm, rd = 5.0mm,
rp = 1.8mm, εr = 3, f = 10 GHz and P = Q = 950). (a) Electric-field
patterns, (b) magnetic-field patterns.

of field distributions over Sinterface and Swall but this time we varied
the azimuthal coordinate φ along the horizontal axis of the plots.
The electric-field plots in Figures 4(a) and 5(a) confirm that there
is excellent field-match over Sinterface (as specified by BC5) and the
magnitude of the tangential electric field remains negligible over Swall

(as specified by BC6). In Figures 4(b) and 5(b), our implementation of
BC5 over Sinterface has likewise resulted in excellent matching between
the magnetic fields in Regions R and C (while BC6 does not impose any
corresponding requirement for the tangential magnetic field to vanish
over Swall).

To study the effects of the dielectric sleeve, we have additionally
plotted the electric-field variation as a function of the radial coordinate
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Figure 5. LSBRM-generated plots showing how electric- and
magnetic-field components in Region R (· · · · · · ) and Region C (—)
vary along ϕ-direction over Sinterface and Swall interface for 60◦ sector
of symmetrical six-port waveguide junction depicted in Figure 2 (where
a = 22.9mm, b = 10.2mm, h = 27.5mm, r0 = 13.4 mm,rd = 5.0mm,
rp = 1.8mm, εr = 3, f = 10 GHz and P = Q = 950). (a) Electric-field
patterns, (b) magnetic-field patterns.

r in Figure 6 (where the field continuity observed at r = rd and r = r0

provides further affirmation that the boundary conditions at these
interfaces have been adequately met). For Bialkowski’s model [14],
there is no need for hybrid modes to be taken into account because his
central cavity does not contain any dielectric. For our dielectric-loaded
structure, we note from Figure 6(b) that |Ez| decreases towards zero
when εr is reduced from 6 to 1.1. In any event, |Ez| must decay
with increasing r for all plots in Figure 6(b) because each of the
electric-field patterns will have to revert to that of the rectangular-
waveguide TE10 mode when we increase r beyond r0 into Region R.
Furthermore, Figure 6(a) shows the electric fields within Region C
becoming progressively concentrated in the dielectric sleeve as εr is
increased from 1.1 to 6.
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Figure 6. LSBRM-generated plots showing how electric-field
components vary along r-direction for dielectric sleeve with different
relative permittivity settings (εr = 1.1, 3 and 6) inside 60◦ sector of
symmetrical six-port waveguide junction depicted in Figure 2 (where
a = 22.9mm, b = 10.2 mm, h = 27.5mm, r0 = 15.0mm, rd = 7.0mm,
rp = 4.0 mm, f = 10 GHz and P = Q = 950, φ = 0◦). (a) Azimuthal
electric field component eφ, (b) axial electric field component ez.

It is also useful for us to know how the junction’s dimensions
affect α, β, γ and τ . By way of example, we have varied in Figure 7
the central post’s radius rp over its range of permissible values from
0 to rc (where we have opted for the convenient setting of εr = 1 so
as to remove the presence of the dielectric sleeve for this particular
set of computations). Such simulations offer useful insights as we can
infer from the compilation of the resulting plots the appropriate range
of values over which each of the junction’s dimensions ought to be
varied for design purposes; returning to our example in Figure 7, we
accordingly learn that rp should not be allowed to be too large as
otherwise the metallic post dominates the interior of the cavity and
effectively becomes a short-circuit termination at the rp = r0 limit.
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Figure 7. LSBRM-generated plots showing how scattering parameters
vary with metallic-post radius for junction depicted in Figure 1 (where
a = 22.9 mm, b = 10.2mm, h = 27.5mm, r0 = 16.5mm, εr = 1,
f = 10 GHz and P = Q = 950).

Figure 8. Comparison of LSBRM-generated plots and 8510C-
measured results for scattering parameters of prototype depicted in
Figure 1 (where a = 22.9mm, b = 10.2mm, h = 25.8mm, r0 =
14.2mm, rd = 6.7mm, rp = 4.8mm and εr = 2.1).

The test results we presented thus far have been obtained from
computational simulations. There is also a need for comparison with
experimental results so as to check the validity of the assumptions
incorporated during our analytical formulation. We have therefore
fabricated a prototype with over-sized cavity and six WR90 arms
(based on the structure schematically reproduced in Figure 1) and
measured its scattering parameters by using the 8510C vector network
analyzer available in our laboratory. The close agreement between the
predicted and measured results plotted in Figure 8 for α, β, γ and τ
over the frequency range from 8.2 GHz to 12.4GHz provides further
corroboration that the numerical results generated by our LSBRM
model are accurate and reliable for use in computer-aided design.
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4. CONCLUSION

We have demonstrated in the present paper that the structurally
complicated junction depicted in Figure 1 is amenable to rigorous
analysis. The non-eigenmode analysis employed by Bialkowski [14]
appears simpler but it should be remembered that there is no dielectric
sleeve inside his central cavity which, furthermore, is not over-sized.
We have chosen to utilize the LSBRM because of the need to generate
reliable results that are free from any possibility of spurious solutions.
The various tests we performed in Section 3 have confirmed that
our computer model is capable of yielding accuracies of ±0.001 for
magnitude and±0.1◦ for phase with no evidence of relative convergence
in the numerical results for the junction’s eigenvalues and scattering
parameters. Another helpful feature (not available in Bialkowski’s
model) is that we can readily ascertain the level of residual field-
mismatch by simply computing the error parameter ∆sum defined
via (2)–(4) as part of our LSBRM formulation.

As pointed out in Sarkar’s tutorial paper [30] which compared the
method of least squares with Galerkin’s method, our LSBRM model
requires significantly more computational resources. Fortunately,
access to powerful computing facilities is readily available nowadays
and the LSBRM’s number-crunching requirements have not posed any
major obstacles during our series of validation tests. The resultant
model is thus suitable for use with optimization routines in the
computer-aided design of symmetrical six-port waveguide junctions
(such as the one we recently attempted in [27]).

APPENDIX.

The boundary residuals defined in (2)–(4) are based on the modal field
components that are tangential to Sinterface and Swall. Reproduced
in (A1)–(A4) are the tangential-field expressions where BC1 has been
incorporated for the TEmn and TMmn modes in Region R. Since the
incident a0 wave is propagating in the dominant TE10 mode, we infer
from symmetry about the mid-plane z = 0 that the mode indices
required for the back-scattered waves a1, a2, a3, . . . included in (2)–
(4) are m = 1, 3, 5, . . . and n = 1, 2, 3, . . . respectively.

eR
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where ER
mn = 0 for TEmn modes, HR

mn = 0 for TMmn modes, and

f (φ) = r0 (1− cosφ) (17)
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m = 1, 3, 5, . . .

n = 0, 1, 2, 3, . . .
(19)

In the case of the dominant TE10 mode (which is the only propagating
mode within Region R), the attenuation constant in (A7) is imaginary
for the incident and reflected waves (represented by a0 and a1

respectively):

α+
10 = − |αmn|m=1

n=0
= −j

√
k2 −

(π

a

)2
for incident guided wave

α−10 = |αmn|m=1
n=0

= j

√
k2 −

(π

a

)2
for reflected guided wave

(20)

where k = ω
√

ε0µ0.
Also required for the boundary residuals defined in (2)–(4) are the

following tangential-field expressions where BC2, BC3 and BC4 have
been incorporated for the hybrid modes in Region C.
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where HC
mn = 0 for E-type components, EC

mn = 0 for H-type
components, and

km =

√
ω2ε0µ0 −

(mπ

h

)2
(25)

βm = |km| (26)
where m = 1, 3, 5, . . . and n can be obtained based on BC7. The
functions ξn (βmr) and χn (βmr) denote Bessel functions (or modified
Bessel functions) of the first and second kinds respectively:

ξn(βmr) =

{
Jn (βmr) k2

m ≥ 0

In (βmr) k2
m < 0

(27)

χn (βmr) =

{
Yn (βmr) k2

m ≥ 0

Kn (βmr) k2
m < 0

(28)

The coefficients B1mn, B2mn, D1mn and D2mn in (A9)–(A12) are
obtained via BC3 and BC4. In addition, BC7 stipulates that the fields
within any pair of adjacent sectors in Region C are related via the
following equations for any eigenmode (of order k = 0, 1, 2, 3, 4, 5):
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