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Abstract—Behavioral modeling technique provides an efficient and
convenient way to analyze and predict the performance of the RF
power amplifiers (PAs) in system-level, and thus helps to construct
a suitable predistorter to linearize the PA system. To accurately
describe the nonlinear dynamic characteristics of PAs, an orthonormal
Hermite polynomial basis neural network (OHPBNN) is utilized to
represent the PA behavioral model, which outperforms, mainly in
respect of modeling accuracy, the classic feedforward neural network
using sigmoid activation functions. In addition, we apply an
adaptive algorithm to determine the appropriate memory depth of PA
behavioral model. Simulation results show that the proposed model
provides more accurate prediction of the PAs output signal compared
with classic neural network models.

1. INTRODUCTION

The RF power amplifiers (PAs) are essential components in modern
wideband wireless communication systems, the purpose of which is
to boost the radio signal to sufficient power level for transmission
through the air interface from the transmitter to the receiver. However,
PAs are inherently nonlinear components, especially when operating
close to saturation for power efficiency considerations [1–5], which
induces in-band and out-of-band distortions and thus degrades the
communication performance. Behavioral modeling is crucial to predict
the nonlinearity of PAs in system analysis and estimation, and it is also
a key step in constructing a suitable linearizer for the communication
system.
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Recently, PA behavioral models have attracted much interest as
a means of characterizing PAs. The key advantage of behavioral
modeling lies in the fact that it does not require deep knowledge of
the RF circuit physics and functionality, but simplifies the modeling of
the RF circuit to the identification of a mathematical formulation that
relates the input and the output of the device under test (DUT) that
can be considered as a black box. Consequently, behavioral modeling
appears as a time- and resource-efficient process for transmitter
performance evaluation and digital predistorter design.

In general, PA behavioral models can be classed into memoryless
behavioral models and behavioral models with memory effects.
Different memoryless PA models have been proposed in the past,
such as the Saleh model [6], the memoryless polynomial model [7],
the lookup table (LUT) model [8], etc.. The memoryless behavioral
models are simple, efficient and effective for PAs applied in narrowband
systems. However, with the increase in the signal bandwidth, the
memory effects of PAs can no longer be ignored since it has a more
and more significant influence on the system’s nonlinear distortion.
Thus behavioral modeling of PAs with memory effects is the research
focus of many authors in the recent years and various model topologies
have been proposed. Volterra series is a general nonlinear model with
memory and has been used to model PAs with mild nonlinearities [9–
11], however, its prohibitive complexity and restricted applicability
to mildly nonlinear PAs have limited the applications of the Volterra
model. To avoid the disadvantages of the Volterra model, various
modified Volterra models have been proposed. A special case of
the Volterra model is the memory polynomial model proposed by
Kim et al. [2]. The memory polynomial model [12–14] is currently
the most popular derivation of the Volterra model that abandoned
the cross terms to alleviate the complexity. Nevertheless, the
identification process of the parameters of the memory polynomial
model is still relatively computationally complex and perhaps suffers
from instability. Alternatively, two-box models, generally known as
Wiener or Hammerstein models [15, 16], which are the cascade of a
linear block and a static nonlinearity, have been proposed to model
the dynamic nonlinearity of PAs. In the two-box, the memoryless
nonlinearity is, in most cases, described by a polynomial, while a finite
impulse response (FIR) filter is selected to form the linear block due
to its good stability. But these models do not consider the nonlinear
behavioral of the memory effects and cross terms, which limits the
modeling performance. What more, the parameter identification
process for both the linear dynamic and static nonlinear blocks has
to be carried out separately.
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Over the last decade, artificial neural networks (ANNs) have
emerged as an efficient and powerful computational tool and have
been widely used in in pattern recognition, signal processing, system
identification, and control. The neural network approach has also
been investigated as one of the modeling and predistortion techniques
for PAs because of its adaptive nature and the claim of a universal
approximation capability. Different neural topologies and computation
algorithms have been proposed [17–22]. Now the ANN-based models
are seen as a potential alternative to model RF PAs having medium-
to-strong memory effects along with high-order nonlinearity.

However, it should be noted that, although the neural networks
have been successfully used in the fields of PA behavioral modeling
and predistortion, they suffer from some significant issues, such as
the model accuracy, the efficient algorithms and the architecture
of the neural network. In this paper, an orthonormal Hermite
polynomial basis neural network (OHPBNN) is utilized to represent
PA behavioral model, which outperforms, mainly in respect of
approximation performance, the most frequently used feedforward
neural network using sigmoid activation functions. In addition, we
apply an adaptive algorithm to determine the appropriate time delay
taps of the PA behavioral model.

2. OHPBNN PA BEHAVIORAL MODEL

2.1. Comparative Analysis of ANN-based PA Behavioral
Models

During the past decade, artificial neural network technology has
been successfully applied to RF and microwave applications since it
can approximate any real function of interest to any desired degree
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Figure 1. Two separate and
uncoupled real-valued neural net-
works.
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Figure 2. complex-value-based
neural network.
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of accuracy due to its universal approximation capability. Various
topologies of ANNs were reported in the literature for PAs behavioral
modeling [17–22]. In [17], two separate and uncoupled real-valued
neural networks were used to model the output amplitude and phase
(or the output I and Q components) with the input signal amplitude
as the two neural networks’ input, as shown in Figure 1. Although
this topology is simple and computational efficient, it may suffer
from the problem of convergence since the two neural networks are
trained separately. Alternatively, [21] proposed to apply a complex-
value neural network to the complex signal directly, as shown in
Figure 2. In this case, both the weights and activation functions of the
network are complex. This type of ANN has to undergo a cumbersome
complex training algorithm, increasing the computational burden. To
avoid the disadvantages mentioned above, a more effective approach,
called the real-valued feedforward neural network (RVFFNN) [22], is
proposed as shown in Figure 3. the RVFFNN model takes advantage
of simple implementation and low computational complex. Although
this topology has been found effective for behavioral modeling of
dynamic nonlinear PAs, it falls short of expectations when the PA
shows strong memory effects. Considering the memory effects of the
PA, the baseband output Iout and Qout components of the PA at instant
n are a function of p past value of the baseband input Iin and q values
of the baseband input Qin according to (1) and (2) as follows:

Iout(n) = fI [Iin(n), Iin(n−1), . . . , Iin(n−p), Qin(n), Qin(n−1),
. . . , Qin(n− q)] (1)

Qout(n) = fQ [Iin(n), Iin(n−1), . . . , Iin(n−p), Qin(n), Qin(n−1),
. . . , Qin(n− q)] (2)

Based on Equations (1) and (2), Liu et al. [18] proposed a new neural
network topology, as shown in Figure 4, called the real-valued focus
time-delay neural network (RVFTDNN) to account for the memory
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effects, which was found effective in modeling PAs with memory effects.

2.2. OHPBNN PA Behavioral Model

In this paper, we apply the orthonormal Hermite polynomial basis
neural network (OHPBNN) to construct the dynamic nonlinear
behavioral model of PA. The OHPBNN model utilizes the same
topology as the RVFTDNN model but adopts the orthonormal Hermite
polynomial basis functions as the hidden layer’s activation functions.
In RVFTDNN, the most commonly used activation function, i.e., the
sigmoid function, was used in the hidden layer, which is defined as:

f(u) =
1

(1 + e−u)
(3)

In place of the sigmoid function, here we propose to use a set of
orthonormal Hermite polynomial basis functions, taking advantage of
their excellent approximation performance, as the activation functions
in the hidden layer with the aim of attaining better performance in
terms of accuracy and convergence [23, 24]. The orthogonal Hermite
polynomials are defined as follows:

{
H0(x) = 1
H1(x) = 2x
Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x)

(4)

where Hi(x), i = 0, 1, 2, . . ., is the ith-order term of the orthogonal
Hermite polynomial. It should be noted that the terms are orthogonal
with each other and there is a recursive relationship between the terms,
which helps to alleviate the computational burden. Based on the
representations given above, the orthonormal Hermite polynomials are
defined as:

hn(x) = anHn(x)ϕ(x) n = 0, 1, 2, . . . (5)

where

an = (n!)−1/2π1/42−(n−1)/2 (6)

ϕ(x) =
(
1/
√

2π
)

e−x2/2. (7)

The orthonormal Hermite terms are also orthogonal and have the
property of universal approximation, i.e., they have the capability of
approximating any real function of interest to any desired accuracy.
In the proposed OHPBNN behavioral model in this paper, the terms
hn(x), n = 0, 1, 2, . . ., are chosen as the activation functions of the
hidden neurons of the neural network. The orthonormal Hermite
terms are assigned from the lowest order term to the higher order ones
in the hidden neurons, as shown in Figure 5. The OHPBNN model
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Figure 5. OHPBNN PA behav-
ioral model.

Figure 6. Test platform.

utilizes the baseband signal’s in-phase and quadrature components as
its inputs and outputs. There are 2L inputs, including L inphase
components and L quadrature ones, n hidden neurons and 2 outputs
representing the PA’s current baseband outputs. Here L is considered
as the number of time-delay taps of the OHPBNN model. The hidden
layer of neural network can be considered as a nonlinear mapping
and thus it’s just equivalent to an orthonormal Hermite polynomial
which has excellent approximation capability. By applying the more
complicated and orthogonal basis functions as the hidden layer’s
activation functions, the OHPBNN is expected to attain more accurate
approximation performance, but with less number of hidden neurons,
than the classic neuron network with identical sigmoid functions as
activation functions.

3. TRAINING ALGORITHM AND VALIDATION
RESULTS

For validation of the proposed OHPBNN PA behavioral model, low-
pass equivalent input-output data were measured on a class-AB power
amplifier with an average output power of 50.4 dBm using MMB
(Mobile Multimedia Broadcasting) signal. The signal bandwidth was
7.56-MHz. Figure 6 shows the test platform to obtain measured PA
input-output data as well as observe PA output. The test MMB
signal, generated by a MMB signal generator (A), was fed to the DUT
(power amplifier) (C) after preamplification of a high-gain preamplifier
stage (B). The output of the DUT was then, through a power meter
probe (D) and a directional coupler (E), sent to the MMB signal
generator where PA input and output data were sampled for model
extraction and validation. The power spectrum density (PSD) and
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power level of PA output signal were also presented on the spectrum
analyzer (G) and the power meter (F), respectively. The measured
data were first synchronized using cross-correlation technique for time
alignment and then divided into two sets. One set was used for training
purpose and the other for validation.

3.1. Memory Depth Estimation of PA Behavioral Model

When applied with narrowband signals, PA can be considered as a
memoryless component. In this case, the neural network for PA
behavioral modeling uses only the current input signal as its input.
But as for high power PAs fed with wideband signals, the memory
effects can no longer be ignored and should be taken into account in the
behavioral modeling procedure. Thus it’s a preceding and important
task to estimate the degree of PA’s memory effect which determines the
appropriate number of inputs (or time-delay taps) of neural network
model. Here we employ an adaptive algorithm to estimate the PA’s
memory depth. The algorithm updates the OHPBNN network weights
by minimizing the mean-squared error (MSE) which is defined as
follows:

MSE =
1

2N

N∑

n=1

[
(Io(n)− Īo(n))2 + (Qo(n)− Q̄o(n))2

]
(8)

where Io and Qo are the measured outputs, and Īo and Q̄o represent
the outputs of the behavioral model. N is the total number of the
training samples.

The main ideal of the adaptive algorithm is that, during
the training procedure, the neural network model is dynamically
constructed through an incremental constructive method. At first,
a simplest neural network topology is given, which has only two inputs
(Ii(n) and Qi(n)), two outputs and one hidden neuron in the hidden
layer. Then the adaptive algorithm trains the network by dynamically
increasing the hidden neurons as well as the time-delay taps (i.e., the
input neurons). The whole training procedure is as follows:

(1) Set the initial OHPBNN network architecture, which includes:
two inputs (Ii(n) and Qi(n)), one hidden neuron with activation
function ho, and two outputs (Io(n) and Qo(n)).

(2) Train the hidden layer through an incremental constructive
method. The hidden neurons are dynamically increased during
this step until MSE performance fails to improve. For the hidden
layer is equivalent to a functional series expansion utilizing the
orthonormal Hermite polynomials and where each additional term
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Figure 7. MSE variation versus the number of time-delay taps of
OHPBNN PA behavioral model.

in the expansion contributes to improving the accuracy of the
approximation, MSE will become smaller as more hidden neurons,
having higher order orthonormal Hermite terms, are included.

(3) Increase one time-delay tap in the input layer, i.e., add one
previous input to the network, thus the OHPBNN model can
account for more memory effects.

(4) The weights attached to the new input neuron are first trained for
a fixed iterative times by freezing the existing neurons’ weights.
Then the algorithm trans the whole network to further minimize
MSE error.

(5) If the MSE error decreases enough during step (4), then go to (3)
and continue to increase the time-delay taps; or else, execute the
following steps.

(6) Further train the hidden layer by appropriately increasing the
hidden neurons.

(7) If the MSE error decreases enough during step (6), then go to (3)
and continue to increase the time-delay taps; or else, stop the
algorithm.

Through the above algorithm, the exact number of time-delay taps
required for the behavioral modeling can be found. Figure 7 shows the
MSE variation with respect to the number of time-delay taps. It can
be seen from the figure that the OHPBNN PA model with 3 time-delay
taps approximates the minimum MSE, suggesting the appropriate
memory depth in constructing the behavioral model. However, it
should be noted that, to reinforce the adaptive algorithm, here we have
made some modifications to it so that the MSE performance for much
more time-delay taps were inspected and presented in this figure. The
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optimal number of time-delay taps shown in this figure will be applied
in the following section.

3.2. Validation Results

Figure 8 shows the power spectra density for the PA output, the
OHPBNN and the RVFTDNN model prediction. As seen form this
figure, both the OHPBNN and RVFTDNN model exhibit good in-band
modeling performance, but the RVFTDNN model fails to precisely
describe the out-of-band PA characteristic. To inspect the in-band
modeling performance, the power spectra density of error signals both
for the OHPBNN and RVFTDNN model are presented in Figure 9.
Results from Figures 8 and 9 show that the OHPBNN model has
much better modeling performance, both for in-band and out-of-band
regions, than RVFTDNN model. For the time-domain comparison,
the NMSE is adopted as a metric and the results are presented in
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Figure 8. PSD comparison for
the PA output, OHPBNN model
and RVFTDNN model prediction.
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Figure 9. PSD of the error
signals both for the OHPBNN
and RVFTDNN.
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Figure 10. The NMSE for OHPBNN decreases steadily with the
increase of hidden neurons. This supports our initial statement in the
paper that the OHPBNN will become more accurate as more hidden
neurons, having higher order orthonormal Hermite terms, are added to
the network. Although the minimum NMSE for RVFTDNN is acquied
when there are 30 hidden neurons according to Figure 10, careful
inspection is still needed before constructing the best RVFTDNN
model to find the optimal number of hidden neurons. In this paper,
the number of hidden neurons is 35 both for the RVFTDNN and
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Figure 11. Dynamic nonlinear AM/AM and AM/PM characteristic
comparison between the PA output and OHPBNN prediction.
(a) AM/AM. (b) AM/PM.
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OHPBNN models for comparison purpose. In Figure 11, dynamic
nonlinear AM/AM and AM/PM characteristics are shown both for
the measured PA output and the OHPBNN prediction. From this
figure, it can also be seen that there is a very promising agreement
between the measured and OHPBNN prediction in terms of dynamic
nonlienar AM/AM and AM/PM conversion characteristics. Note that
the AM/AM and AM/PM responses show the hysteresis dependency
of the power amplifier on the history of past input signals. Figure 12
presents the in-phase and quadrature channel signal which provides
the validation in time domain.

4. CONCLUSION

In this paper, the orthonormal Hermite polynomial basis neural
network is utilized for dynamic nonlinear PA behavioral modeling.
The OHPBNN PA behavioral model uses orthonormal Hermite basis
functions as the hidden layer’s activation functions, providing more
accurate modeling performance, both for in-band and out-of-band
regions, compared with RVFTDNN model. In addition, an adaptive
algorithm is also proposed to estimate the memory depth of PA
behavioral model. Validation results on a class-AB power amplifier
using MMB signals with 7.56MHz signal bandwidth demonstrates the
superior performance of the OHPBNN model.
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