
Progress In Electromagnetics Research B, Vol. 54, 385–405, 2013

MODIFIED BAYESIAN OPTIMIZATION ALGORITHM
FOR SPARSE LINEAR ANTENNA DESIGN

Bui Van Ha1, *, Paola Pirinoli2, Riccardo E. Zich1,
Marco Mussetta1, and Francesco Grimaccia1

1Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4,
Milano 20156, Italy
2Dipartimento di Elettronica e Telecomunicazioni, Politecnico di
Torino, C. Duca degli Abruzzi 24, Torino 10129, Italy

Abstract—In this paper, a modified Bayesian Optimization Algo-
rithm (BOA), named M-BOA, is proposed to introduce a suitable mu-
tation scheme for the traditional procedure in order to speed up the
convergence of the algorithm and to avoid it to be trapped in local
minima or to stagnate in suboptimal solutions. The proposed algo-
rithm has been applied both to a specific mathematical test function
and to sparse linear antenna arrays design, showing outperforming ca-
pabilities not only with respect to the standard BOA, but also with
respect to other assessed global optimization methods.

1. INTRODUCTION

The design of complex electromagnetic (EM) structures for real life
applications often requires exploiting the features of evolutionary com-
putation techniques such as the classic Genetic Algorithms (GA) [1],
Particle Swarm Optimization (PSO) [2], Ant Colony Optimization
(ACO) [3] as well as more recent developed population based ap-
proaches such as MetaPSO [4], Memetic Algorithm [5], Invasive Weed
Optimization (IWO) [6], Biogeography-Based Optimization [7] and
other hybrid techniques [8–10]. All these population based techniques
share the same basic idea, i.e., they attempt to reach the optimum
solution acting at each step of the iterative process on the current
population, i.e., on a considered set of candidate solutions, through
general, problem-independent operators. These, however, could be
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insufficiently effective and therefore they could lead to lose the best
solutions, or, at least, to slow down the procedure convergence.

Obviously this risk is greater in case of complex optimization
problems, as the EM ones are, but it can also occur in simpler cases.
In literature two different approaches have been usually proposed to
tackle this limitation of the pseudo-stochastic algorithms. One of these
is based on an idea to use the information available from the entire
set of the most promising solutions to generate the new offspring,
in opposite to what is done for instance in the GA, where only the
genes of two parents concur to the chromosome structure of a child.
This principle has been implemented in the Estimation of Distribution
Algorithms (EDAs) [11], based on the estimate of the distribution of
the promising solutions and on the generation of a new population
according to this estimate.

Among the EDAs, particularly interesting is the Bayesian
Optimization Algorithm (BOA) [12, 13], that uses a technique derived
from the idea of extracting from the available data the information
theory content to mathematically model the possible interactions
among all the most promising solutions and to estimate their joint
distribution. The standard version of the BOA, however, usually lacks
of exploration, since it attempts to build up a probabilistic model from
the available knowledge, and may be easily trapped in local optima if
the starting sampling of the problem is not suitably chosen. In order
to overcome such a limitation and to increase the Bayesian exploration
capability, in this paper a modified and enhanced version of the BOA
(M-BOA in the following) is proposed by adding a suitable mutation
scheme. Some preliminary results on its application to the design of
microstrip filters have already been presented in [14]; here the M-BOA
scheme is described for the first time in detail, and a larger set of results
of its applications to different optimization problems is presented. In
fact, in order to test its efficiency and to compare its performances
with those of the standard BOA, as well as of other well-established
algorithms, as the GA and the PSO, the M-BOA has been at first
applied to several benchmark functions, and then to the design of
several linear arrays, with constrained radiation pattern.

The choice of these applications for the testing of the M-BOA is
due to the remarkable practical importance of linear arrays, whose
optimization has received a great attention in the electromagnetic
community. In previous works [15–21], the GA and the PSO have
been successfully applied to the design of linear or planar antenna
arrays. Recently, Taguchi method has also been implemented for
the synthesis of linear arrays [22]. All these optimization approaches
generally allow to obtain optimum solution using as free parameters
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the position and/or the excitation of the array elements, while their
number is fixed “a priori”. Recently, some published papers [23–26]
proved the possibility to fulfill the design constraints while reducing
the number of elements in non-uniformly spaced arrays. In [23, 24]
the number of elements in the array is achieved by the singular
value decomposition (SDV) approach, while the proper excitation and
location of the elements is obtained with the matrix pencil method
(MPM); in [25] sparseness constrained optimization is adopted, and
finally in [26] the “probability” of different values of the number of
array elements is provided, by sampling the distribution using Bayesian
Interference (BI); this method, however, has to take into account the
information provided by thousands of samples in order to get the
proper probability distribution. Moreover, the distribution inferred by
the BI approach is usually heavily affected by the initial assumptions,
e.g., by the probability distribution assignment to all the parameters;
therefore this approach could not guarantee that the obtained value is
the absolute optimum one, but only the optimum of a solution subspace
defined by the first guess choice, and this can dramatically affect not
only the efficiency but even the robustness of all the procedure.

This is the main aspect that we took into account for improving
the performances of BOA: in fact, even if the here introduced M-
BOA also starts from initial assumptions, a suitable operator has been
introduced in order not to limit its exploration to the solution subspace
defined by the first guess vector choice. Moreover, by considering the
number of elements as a variable, the proposed method will estimate
the distribution of all possible values for the number of elements
without any particular problem.

The paper is organized as it follows. In Section 2, the M-
BOA is introduced, after a brief review of the standard BOA. In
Section 3, the results of the application of the proposed algorithm to
benchmark functions are reported. In Section 4 examples of application
of the M-BOA to the design of unequally spaced linear array are
shown and compared with the results obtained with other optimization
techniques.

2. MODIFIED BAYESIAN OPTIMIZATION ALGORITHM

The Bayesian Optimization Algorithm (BOA), introduced in [12],
uses probability theory for estimating the distribution of promising
solutions for a specific problem. In the BOA, the interaction between
parameters (i.e., variables) is considered to build a probabilistic model,
i.e., a Bayesian Network (BN), that evolves during an iterative process
towards increasingly good solutions, until the achievement of a global
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optimum.
In the BOA procedure, the BN is built taking advantages of the

information from the selected most promising solutions and eventually
the prior knowledge on the problem to be optimized, if already
available. At each iteration, new candidate solutions are generated
by sampling the BN, and then they are included in the population, in
place of its worst elements. A full description of BOA can be found
in [12, 13], but for sake of clarity and uniformity of the notation, it is
briefly summarized in the following, before introducing the M-BOA.

2.1. Standard BOA

The BOA starts with randomly generating an initial population as
a set of strings. The best solutions in the current population are
then selected using a specific selection method such as the truncation
selection or the tournament selection.

A Bayesian Network is then constructed to fit the selected set of
strings. In the building network process, a metric and a search method
are used to measure and maximize the quality of the Bayesian network.
The new offspring is generated using the information encoded in the
BN. Finally, a new population is obtained, substituting in the older one
the worst strings with the new ones. The iterative algorithm proceeds
until when stopping criteria are satisfied.

The pseudo-code of the BOA could be summarized in the following
steps:

1. Randomly generate initial population (P);
2. Select a set of promising solutions (S) from (P);
3. Construct the network (B) using the information from the set of

solutions at point (2) and the prior knowledge of the problem, if
available;

4. Generate a new offspring (O) sampling B;
5. Create a new population (P’) by replacing some instances from

(P) with (O);
6. If the stop criteria are not met, go to (2).

In the above pseudo-code, steps (3) and (4) are the most important
and critical, since the accuracy and effectiveness of the entire algorithm
depend on them.

The Bayesian Network [27] represents the structure of the
problem, since it is essentially a mathematical and graphical model
that combines probabilistic theory with graph theory to encode the
relationship between variables contained in the modeled data. In
the graph, each node represents one variable, and the edges between
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the nodes correspond to the conditional dependencies between two
variables. Once constructed, the BN is used to generate new instances,
resorting the conditional probability of each variable.

Mathematically, a BN encodes the joint probabilistic distribution:

p (X)=
l∏

i=1

p (Xi |πi) (1)

where X = (X1, X2, . . . , Xl) is the vector of variable of problem, πi the
set of parents of variable Xi, and p(Xi|πi) the conditional probability
of Xi conditioned on the variables πi.

In the BOA procedure, the BN has to be trained in order
to properly fit the promising solutions which satisfy the design
requirements. There are two basic components of the algorithm to
perform the learning of the BN: the scoring metric and the search
procedure.

The scoring metric quantifies the quality of the given network. As
already said previously, all the prior knowledge about the problem can
be included into the metric as well.

The search engine is used to explore the space of all possible
networks in order to maximize the value of the scoring metric. The
exploration is usually restricted by the problem constraints such as the
maximum number of incoming edge to one node. This number directly
influences the complexity of the algorithm in constructing the network
and generating the related offspring. In this work, we chose K2 as
scoring metric [28] and greedy algorithm as search procedure.

2.2. Modified BOA

As described above, BOA performances greatly depend on the
distribution of the current good solutions. The critical point is
that, in absence of available prior knowledge of the problem, the
initial population for the BOA, in order to start to build up the
BN, is randomly generated. Therefore, in some cases it could be
possible that all the best solutions in the initial population would
not provide good enough distribution, because they do not properly
represent the solution space dimensionality, affecting the convergence
capability of the algorithm itself. To overcome this problem, one
possibility is to increase the population size: this may increase the
quality of the sampling in terms of information quantity, and therefore
may improve the distribution modeling of good solutions, but it
also increases the algorithm computational cost for sure. On the
contrary, the variation of the standard BOA proposed here presents the
advantage of enhancing the method performances without increasing
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its computational cost, since it does not need a further sampling of the
cost function. The resulting approach will be indicated in the following
as Modified BOA (M-BOA).

The basic idea of the M-BOA is that of using not only the Bayesian
Network for generating a new offspring but also a mutation scheme.
Mutation is also characteristic of other optimization algorithms as
the GA [1], Population Based Incremental Learning (PBIL) [29] and
Compact Genetic Algorithm (cGA) [30]: thank to it, some individuals
will be used to explore candidate solutions out of the considered
distribution space and therefore, the algorithm:

- will avoid being trapped in local optima;
- could find good solutions out of the initial population, allowing it

to have a reduced size.

Referring to the pseudo code of the BOA, the introduction of
the mutation essentially affects steps 4 and 5 that are modified as in
following:

1. Generate a set of new offspring (O) according to the joint
distribution encoded by B; generate a set of new offspring (O′)
applying mutation to the same set of promising solution (S) use
to generate (O);

2. Create a new population (P′) by replacing some instances, the
worst ones, from (P) with (O) and (O′).
The scheme adopted by the M-BOA for generating a new

population is therefore the one sketched in Fig. 1. It is worth to
notice that both the new population elements obtained through the
application of the Bayesian Network or through mutation are derived
from the same set of selected solutions, i.e., the best ones. This differs
from other algorithms that use mutation, since they generally apply
it to the worst elements of the population. The new population is

Figure 1. M-BOA new population generation scheme.
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therefore given by the sum of the most promising elements of the
previous population (S) plus the new offspring obtained applying to S
the BN (O) or the mutation (O′).

Finally, notice that M-BOA works with variable vectors, which
is much preferable for real variable problems or components, instead
of probability vector as PBIL and cGA. In all the examples and tests
problems considered in the following, the M-BOA with tournament
selection and individual mutation have been adopted.

3. M-BOA VALIDATION: BENCHMARK FUNCTIONS

Very preliminary results for the modified BOA have been presented
in [14]. In this section, the results of the testing of the M-BOA through
its application to benchmark functions are presented, while in the next
section real-life antenna problems will be considered.

In particular, the results shown here refer to the application of
the M-BOA to the Rosenbrock, Rastrigin, Ackley (all with dimension
N = 15) and Shenkel functions, and its comparisons with the standard
BOA and the PSO (the expressions of these benchmark cost functions
are reported in Appendix A for the sake of completeness). The three
algorithms have been compared in term of both speed of convergence
and reliability, considering for each of them the results obtained with
50 independent trials, each with 1000 iterations.

The curves of convergence relative to the application of the three
optimization methods applied to the Rosenbrock function are shown
in Fig. 2. The blue, green and red lines represent the average curves
of convergence over the 50 trials for the BOA, the PSO and M-BOA,
respectively. Comparing these three curves, it clearly appears that the
M-BOA outperforms the other two schemes, since both BOA and PSO
are inclined to stagnate.

Further performance comparisons are shown in Table 1, in which
the average minimum values obtained by the three algorithms when
applied to the different considered benchmark functions are listed,
together with the standard deviation (in parenthesis). Both the
BOA and M-BOA outperform the PSO, in terms of convergence and
reliability. For what concerns the comparison between these two,
they show both an (almost) zero standard deviation, but the average
minimum value achieved with the M-BOA is much smaller, and this
confirms the results in Fig. 2, i.e., the M-BOA converges better than
the standard BOA.
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Figure 2. Curves of convergence relative to the PSO (green line), the
BOA (blue lines) and M-BOA (red lines) applied to the Rosenbrock
function.

Table 1. Comparison among PSO, BOA and M-BOA in terms of
minimum value and standard deviation.

Ackley Rosenbrock Rastrigin Shekel

PSO
3.149

(0.768)
0.218

(0.039)
30.062
(9.48)

0.0022
(0.0178)

BOA
0.164
(0)

0.8384
(0)

0.1488
(0)

0.0013
(0)

M-BOA
0.032
(0.02)

0.000085
(0.0000128)

0.0092
(0.0012)

0.000026
(0.000016)

4. M-BOA BASED LINEAR ARRAY SYNTHESIS

In view of the promising results obtained on the benchmark functions,
the M-BOA has been applied to more realistic antenna problems, i.e.,
the optimized design of three linear antenna arrays. To compare
the results obtained by the M-BOA with those provided by other
approaches, we have considered three examples of linear, broadside,
sparse, symmetric arrays, already presented in [21–24, 26]. In all the
considered cases the array is symmetric, and the optimization goal
is that of determining the array element excitation coefficients, an,
the position, normalized with respect to the wavelength λ, dn/λ, and
the minimum number 2N of array elements that allows to satisfy the
array radiation constraints. Note that the estimation of the lowest
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number of necessary array elements is an important aspect, as also
discussed in [24]. Most of the optimization techniques adopted for
array synthesis [15–21] work with a fixed and predetermined number
of array elements, which is generally taken larger than the one actually
needed, in order to be sure to satisfy the radiation pattern constraints.
However, the use of a not redundant number of elements is generally
advantageous, since it allows to reduce the feeding network complexity
and the antenna weight. For this reason, in the last years, several
efforts have been made to propose techniques for the design of arrays,
linear and planar, with a reduced number of elements not equally
spaced [23–26]. Due to their probabilistic nature, BOA and M-
BOA seem particularly suitable to determine, during the optimization
process, also the proper number of array elements, and therefore the
design of such kind of array seems a particularly suitable test case for
comparing their performances.

4.1. Chebyshev-like Pattern Synthesis

The first considered example consists in the synthesis of an array
showing a radiation pattern with the HPBW of at least 6.3◦, the
−30 dB beam width lower than 8◦ and the side lobe level ≤ −30 dB
(see the mask plotted later on in Fig. 6). Such requirements can be
easily obtained with a uniformly spaced Chebyshev array with 2N = 20
elements (this is the reason why we named “Chebyshev-like” this type
of radiation pattern) while in [23, 26] the constraints have been satisfied
with unequally spaced arrays with N = 6.

Here both the BOA and M-BOA have been used for the array
optimized synthesis, according to the Chebyshev-like constraints above
specified. In this test, we used a population of 100 individuals in both
the procedures, considering 1000 independent trials of 200 iterations
each. The fitness function that models the problem is defined as:

f (X) =
∑

i
ε (θi) (2)

where ε(θi) is the difference between the constraints mask (Rmask) and
the radiation pattern (Rp) obtained at any iteration of the optimization
process:

ε (θi) = Rp (θi)−Rmask (θi) (3)

It is worth noticing that Eq. (3) applies only when the obtained
radiation pattern exceeds the constraints, while ε(θi) = 0 otherwise.

The ranges of variation for the optimization variables are set equal
to (0.25–5) for the normalized array element location (dn/λ), (0–1) for
the element excitation coefficient (an) and (5–9) for the array element
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pair number (N). In order to have a stronger validation of the M-BOA,
it was also compared with the GA and the PSO.

First, the results of the comparison between the standard BOA
and the M-BOA are presented. In Fig. 3 the worst (dot-dashed line),
average (continuous line) and best (dashed line) curves of convergence
relative to the two methods are plotted, showing that the M-BOA
outperforms the BOA both in terms of capability of convergence (the
average curve relative to M-BOA reaches a final value for the cost
function that is almost two order of magnitude smaller than the one
of the BOA) and reliability (the average curve converges, even if with
a greater number of iterations, almost the same value as the best one;
moreover, the average curve of convergence for the M-BOA is much
closer to the best solution than to the worst one, and this means that
the number of trials in which a solution close to the best one is reached
is greater than the number of cases in which it is close to the worst
one).

In Fig. 4 the average curve of convergence obtained with the M-
BOA (red solid line in Fig. 3) is compared with the best curves of
convergence obtained with a decreasing number of array elements: with
N = 6 the algorithm convergence is still good and fast: this means that
it is possible to satisfy the radiation pattern constraints with such a
number of radiator pairs. The curve corresponding to N = 5 is not
plotted since in that case the algorithm does not converge.

The second column of Table 2 shows the probability (computed as
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the ratio between the times in which a good result is obtained and the
total number of trials) of obtaining a good solution with different array
sizes within a predefined number of iterations. Note that, as it can be
also deduced from the above considerations, in that table any row
corresponds to N = 5, since with such a small number of elements the
desired radiation pattern is never achieved (the probability is therefore
0). Moreover, note that the probability to have good solutions first
increases and then decreases. This can be explained with the fact
that with a high value of N , i.e., 9, the number of variables that the
M-BOA has to manage increases, and therefore, the convergence can
not be reached in the considered number of iterations; on the other
hand, when N is small, i.e., 6, it becomes difficult to find the proper
values of an and dn/λ that get the required pattern. In both cases, the
algorithm hardly converges, and less good solutions are obtained. On
the contrary, medium values of N , i.e., 7, 8, represent a good trade-
off between the problem size and the ease of satisfying the pattern
constraints. In the third column of the table, the probability values
computed in [26] for the same array problem are reported: even if the
case N = 10 is out of the range of variability of the number of element
pairs considered here, its relative row has been added, just to show
that also in [26] the sum of the probabilities is equal to 1. It is worth
to note that both algorithms shown the ability to obtain the desired
array performances with 6 elements, but the probability value relative
to M-BOA is higher than that what derived in [26] for the Bayesian
Interference (BI), and this confirms the better reliability of the M-BOA
with respect to the BI.

Finally, the convergence of the M-BOA has been compared with
that of the PSO and GA. For doing that, N has been fixed to 6. A
population of 100 individuals has been considered, and the results have
been averaged over 30 independent trials, each with 1000 iterations.
The resulting average curves of convergence for the M-BOA, BOA,

Table 2. Probability of good convergence for different values of N.

N
Convergence probability
M-BOA BI [26]

6 0.182 0.1327
7 0.349 0.5377
8 0.296 0.2843
9 0.173 0.0393
10 0.006
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PSO and GA are plotted in Fig. 5(a). As expected, the BOA can
not converge since the number of array elements is too small, while
the M-BOA outperforms both the GA and the PSO. The results show
that not only the M-BOA has the capability of automatically setting
the minimum number of elements needed to satisfy the radiation
constraints, but, for a fixed N , it also converges faster than the GA
and the PSO.

In Fig. 5(b), it is finally shown the radiation pattern for the
N = 6 array designed with the M-BOA, together with the required
mask, while the corresponding values of the element positions (dn/λ)
and of the excitation coefficients an are listed in Table 3. Note that
the radiation pattern in Fig. 5(b) does not show uniform SLL as that
obtained with the Chebyshev synthesis, but in any case the mask is
satisfied, with a much smaller number of elements.

Table 3. Parameters of the N = 6 array designed with the M-BOA.

Element # dn/λ an

1 0.4313 0.3657
2 1.3055 0.3282
3 2.1777 0.2769
4 3.0494 0.2037
5 3.9076 0.1316
6 4.7919 0.0815
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4.2. Flat-beam (Sector Beam) Pattern Synthesis

The second considered example is the synthesis of a sector beam
pattern with the following requirements: a first region ranging from
78.3◦ to 90◦, where the beam has to be almost flat, with a ripple lower
than 0.5 dB, and a second region, ranging from 0◦ to 69.3◦, in which the
side lobe level has to be less than −25 dB. Therefore, the cost function
is the same as (3), considering Rmask(θi) as defined in Fig. 8(b).

This synthesis problem is effectively solved controlling the
excitation amplitude and the phase of all the array elements [21, 22].
In [22], the use of Taguchi method allows fulfilling the radiation
pattern constraints with an array of N = 7 pairs of elements, i.e.,
with 6 elements less than the one designed in [21] using PSO. As in
the previous example, here the M-BOA is also used to estimate the
minimum number of elements necessary to satisfy the radiation pattern
requirements.

Since we have already proved that M-BOA outperforms BOA in
terms of both speed of convergence and solution quality, the M-BOA
is, from here on, only compared with the GA and PSO. In all cases,
the ranges of variation for the optimization variables are set equal to
(0.25–5) for the normalized array element location (dn/λ), (−0.5÷0.5)
for the element excitation coefficient (an), while for the M-BOA only
the number of element pairs can also vary between 4 and 9, since the
problem can be easy solved with 10 pairs of elements.

In Fig. 6, the best curves of convergence of the M-BOA for different
values of N are reported. They have been obtained using a population
of 100 individuals and considering 800 independent trials, each of 200
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iterations. From this plot it appears that the problem can be solved
even with N = 5 pairs of elements, since the convergence of M-BOA
with N = 5 is really fast, and the pattern requirements are reached
with two pairs less of elements than those of the array proposed in [22].

In Table 4, the probability of obtaining a good solution with
different array sizes is listed. For a value smaller than 5 (N =
4), the algorithm cannot convergence to the desired solution, and
the probability is 0. The probability for N = 5 is the highest,
indicating that this is the sufficient number of element pairs necessary
to obtain the desired radiation pattern. Moreover, when N increases,
the probability of finding good solution decreases, since the problem
complexity increases, and probably the population size and/or the
number of iterations considered here are not still enough to guarantee
the convergence. Finally, note also in [26] that an array of 10
elements satisfying the same constraints as here has been designed,
but comparing the probabilities of obtaining good solutions in Table 4
with those in [26, Table III], it is possible to conclude that also in this
case the M-BOA outperforms the Bayesian Interference method.

Table 4. Probability of good convergence with different values of N.

N M-BOA Convergence probability

5 0.818

6 0.110

7 0.055

8 0.015

9 0.002

In Fig. 7(a) the average curve of convergence for the M-BOA in the
case N = 5 is compared with those relative to the GA and PSO. For all
the three methods, the adopted population has 50 individuals, while
30 independent trials have been considered, each with 1000 iterations.
It can be seen that the GA converges better than the PSO, while the
M-BOA outperforms both of them. The radiation pattern obtained
with the M-BOA is plotted in Fig. 7(b), together with the mask it has
to satisfy, while the design parameters are listed in Table 5. A very
good flat beam has been obtained with a ripple of 0.22 dB, i.e., 0.36 dB
less with respect to the ripple of the array designed with the Taguchi
method [22].
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Table 5. Parameters of the N = 5 array, designed with the M-BOA.

Element # dn/λ an

1 0.3586 0.2767
2 1.0748 0.1420
3 2.4697 −0.0472
4 3.0955 −0.0246
5 4.1708 0.0245

4.3. Null-controlled Pattern Synthesis

The last example that we considered is the synthesis of an array whose
radiation pattern presents nulls for specific directions [22, 26]. The
main beam has to point to 90◦ with a HPBW of 7.4◦, while the
sidelobe levels have to be lower than −40 dB. Moreover, two nulls
are desired between 50◦ and 60◦. Such a radiation pattern has been
obtained adopting GA, PSO, and Taguchi methods with arrays of
20 elements [18, 19, 22]. Here, the M-BOA is used in order to estimate
the sufficient number of element to fulfill the requirements [26].

The ranges of variation are set equal to (0.25–5) for the normalized
array element location (dn/λ), (−0.5÷ 0.5) for the element excitation
coefficient (an) and (5–9) for the array element pair number (N),
assuming to be able to design the array with a number of elements
lower than that used in [18, 19, 22]. The M-BOA uses a population of
100 individuals, and 800 independent trials, each of 200 iterations, have
been considered. As previously, the cost function is given in Eq. (3),
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considering the Rmask(θi) shown later on in Fig. 9(b).
In Fig. 8, the average curve of convergence of M-BOA is plotted

along with the best curve of convergence obtained for different values
of N . The results reveal that the desired pattern can be obtained even
with 6 pairs of elements, i.e., with a reduction of the 40% of the number
of elements compared with the one in [22]. It is worth to note that
the best result ever achieved for this problem is with N = 7 in [26],
and this again confirms the better performances of the here proposed
method with respect to direct sampling from Bayesian Interference.

In Table 6, the probability of achieving good solutions with
different values of N is shown. For N = 5, the desired pattern is
never obtained, while the probability increases with N , probably due
to the fact that the constraints on the radiation pattern are harder to
fulfill with a too small number of elements (we can also see in Fig. 8
that for larger values of N the convergence is faster). However, the
probabilities to obtain good solutions with N = 8 or N = 9 are very
close, showing that a further increases of the number of array element
will not significantly improve the possibility of having good solutions.
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Figure 8. Null-controlled pattern synthesis: curves of convergences
of the M-BOA, relative to different values of array element pairs.

Table 6. Probability of good convergence with different values of N.

N M-BOA Convergence probability
6 0.105
7 0.255
8 0.327
9 0.313
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Finally, the performances of the M-BOA have been tested again
against those of the GA and PSO, setting N = 6, using a population
of 100 individuals and averaging the results over 30 independent trials,
while for the M-BOA it is sufficient to perform 200 iterations to reach
the convergence, both the GA and the PSO needed 10000 iterations.
The resulting average curves of convergence are plotted in Fig. 9(a):
also in this case the M-BOA outperforms both the GA and the PSO
in terms of computational cost and in term of solution quality, i.e.,
the M-BOA requires less iterations than PSO and GA, to reach a final
value of the fitness function that is better than those of the PSO and
the GA. The desired pattern for the twelve-elements null-controlled
array, obtained by M-BOA, is plotted in Fig. 9(b), together with the
mask. All the design parameters are instead reported in Table 7.
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Figure 9. Null-controlled pattern synthesis. (a) Average curves of
convergence relative to different methods. (b) Best array factor (AF)
obtained by M-BOA for the N = 6 array.

Table 7. Parameters of the N = 6 array, designed with the M-BOA.

Element # dn/λ an

1 0.4221 0.2114
2 1.2611 0.1834
3 2.1023 0.1390
4 2.9476 0.0881
5 3.7805 0.0461
6 4.6220 0.0146
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5. CONCLUSION

In this paper, a Modified Bayesian Optimization Algorithm (M-BOA)
has been introduced. It shows improved performances with respect to
the standard BOA, as well as other optimization algorithms as the GA
and the PSO, both for what concerns the computational cost and the
solution quality. Moreover, it has been shown, considering different
examples, that it seems particularly suitable for the design of sparse
arrays, since it also allows to easily include the number of elements in
an array among the optimization parameters.

APPENDIX A.

The expressions of the standard cost functions [4] used in this article
are:
a) Ackley Function (N = 15):

f (X) = 20 + e− 20 e
−0.2

√
1
N

∑
i x2

i − e
1
N

∑
i cos(2πxi)

b) Rosenbrock Function (N = 15):

f (X) =
N∑

i=1

(
100

(
x2i − x2

2i−1

)2 + (1− x2i−1)
2
)

c) Rastrigin Function (N = 15):

f (X) =
N∑

i=1

(
x2

i − 10 cos (2π · xi ) + 10
)

d) Shekel Function:

f(X) = 12−
9∑

i=1

(
(X− ai )

T (X− ai) + ci

)−1

where X = (x1, x2) is the variable vector, ai are vectors
of i-th local minima and ci are constant proportional to min-
imum f((ai)T ) ≈ 12 − 1

ci
. There are 9 minima at points

(−3,−3), (−3, 0), (−3, +3), . . . , (+3, +3).
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