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Abstract—The multifractal characteristics of return signals from
aircraft targets in conventional radars offer a fine description of
dynamic characteristics which induce the targets’ echo structure;
therefore they can provide a new way for aircraft target classification
and recognition with low-resolution surveillance radars. On basis of
introducing the mathematical model of return signals from aircraft
targets in conventional radars, the paper analyzes the multifractal
characteristics of the return signals as well as the extraction method
of their multifractal features by means of the multifractal analysis of
measures, and puts forward a multifractal-feature-based classification
method for three types of aircraft targets (including jet aircrafts,
propeller aircrafts and helicopters) from the viewpoint of pattern
classification. The analysis shows that the conventional radar return
signals from the three types of aircraft targets have significantly
different multifractal characteristics, and the defined characteristic
parameters can be used as effective features for aircraft target
classification and recognition. The results of classification experiments
validate the proposed method.

1. INTRODUCTION

Most of active surveillance radars adopt the conventional low-
resolution radar system. If they are able to provide target attribute
information such as its class, model, etc. while detecting a target,
they certainly will have important practical significance for the aerial
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defence of a country. Comparing with the working of low-resolution
searching plus high-resolution recognition, if we can introduce a
function of target classification and recognition into a low-resolution
radar, and realize simple target classification and recognition directly
by means of signal processing in most active surveillance radars, then
we can avoid the increase of system cost and complexity brought by
the broadband rebuilding. Nowadays, most active surveillance radars
achieve their limited target classification and recognition abilities by a
recognition method based on the experience and tactics, and it is up to
the radar operators to distinguish the class and sortie of aircraft targets
according to echo intensity as well as its undulation characteristics,
target motion characteristics, identification friend or foe (abbr. IFF)
signals, etc., so it is difficult to meet the need of modern information
wars. Therefore, seeking a feasible target classification and recognition
method with low-resolution radars has long been an important research
aspect in the realm of radar target recognition, and the research has
a wide application prospect. However, due to the low-resolution radar
system, such as low pulse repetition frequency (abbr. PRF), narrow
signal band, short irradiation time, automatic target classification
and recognition with low-resolution radars also becomes a research
difficulty [1–3].

So far, the features extracted in methods with respect to target
classification and recognition with low-resolution radars can be divided
into two kinds in principle: one kind of features is extracted based on
the target RCS, echo amplitude undulation, echo phase undulation,
target motion parameters, echo vision effect or its 2-D gray-level map,
etc. [4–7]; the other kind of features is extracted based on the jet engine
modulation (abbr. JEM) features generated by target rotating parts,
such as the rotor, empennage, propeller, turbine fan, etc. [8–14]. JEM
modulation features are determined by the leaf number and rotary
speed of the rotating parts of a target and independent with the target
attitude angle if no LOS-sheltering, i.e., the rotating parts can be seen
by the radar. Now proposed extraction methods for JEM features
mainly contain the complex cepstrum method, self-correlation method,
AR model power spectrum method, SVD eigenvalue decomposition
method, etc., but most of these methods have high computational
complexit, and often demand a higher PRF and longer observation
time, so it is difficult to apply them to engineering [3].

Actually, as a kind of complex target, the size of an aircraft is
generally far longer than the wavelength of conventional radars, so the
echo scattering of aircraft targets is in the optical area, which means
that the general target scattering echo is the linear superposition of
the scattering echo from each independent scattering center, and the
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echo undulation reflects the complex micro-motion modulation effect
of various parts of an aircraft target and contains target information
such as the fine geometry structure, material composition, etc. If these
nonlinear modulation features which reflect the physical characteristics
of an aircraft target can be extracted effectively, then we can directly
apply them to the classification and recognition of different types of
aircraft targets. As we all know, fractal is an important nonlinear
research method. If one performs the multifractal analysis of measures
on radar return signals from an aircraft target, it is hopeful to reveal
the nonlinear dynamic characteristics which induce the echo structure
as well as their relationships with the target structure [15, 16].

Based on the above analysis, the paper plans to analyze the
multifractal characteristics of the conventional radar return signals
from aircraft targets by means of the multifractal analysis of measures,
and puts forward a multifractal-feature-based method for aircraft
target classification so as to classify three types of aircraft targets
(including jet aircrafts, propeller aircrafts and helicopters) in condition
of no compensation for airframe components from the viewpoint of
pattern classification. Firstly, on basis of introducing the mathematic
model of conventional radar return signals from aircraft targets as well
as the ideal JEM features, the paper points out that it is difficult to
extract the JEM features in the low-resolution radar system due to low
PRF, short irradiation time, etc. Secondly, on basis of introducing the
multifractal theory, the paper analyzes the multifractal characteristics
of return signals from aircraft targets in condition of low PRF and short
irradiation time by the multifractal analysis of measures, proposes a
multifractal-parameter-based feature extraction method, and defines
four characteristic parameters to lower the dimension of the eigenvector
for target classification. Finally, aiming at the proposed classification
method, the paper takes the support vector machine (abbr. SVM) as
the classifier to do classification experiments and takes the eigenvalue-
spectra-dispersion-based method proposed in [3] as a contrast to
analyze the algorithmic performance and validate the validity of the
proposed method.

2. ECHO MATHEMATIC MODEL OF AIRCRAFT
TARGETS

Despite the ground clutter and other electronic jamming, a
conventional radar return signal from an aircraft target should include
the airframe section, echo section of the rotating parts (i.e., the JEM
section), and noise section [17], viz.

s (t) = as (t) [Casa (t) + Cjemsjem (t)] + Cnsn (t) , (1)
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where as(t) denotes the comprehensive impact of the radar system
on the return signal, equivalent to as(t) = at(t)aa(t)ar(t). at(t) is
the transmission signal model, aa(t) the antenna scan and receiving
model, and ar(t) the receiver model. sa(t), sjem(t) and sn(t) denote
the airframe section, JEM section, and noise section respectively. Ca,
Cjem and Cn denote the intensity coefficients of the airframe section,
JEM section, and noise section respectively.

Concretely, if we assume that there is an aircraft target containing
M engines, located in the far field of the radar with the distance R0,
azimuth α, and elevation β, then during the brief time when the aircraft
is exposed to the irradiation of the radar, the fundamental frequency
airframe section is [3]

sa (t) = exp (j2πfdt + j4πR0/λ) , (2)

where λ is the wavelength of the radar; fd = 2u/λ denotes the airframe
Doppler frequency. u is the projection of the airframe velocity in
the radar-target LOS, i.e., u = uf cosϕ, uf the flying velocity of the
aircraft, and ϕ the inclination of uf relative to the radar-target LOS.
The fundamental frequency JEM section is [11]

sjem (t) = exp
(

j2πfdt + j
4πR0

λ

) M∑

m=0

v
(
α, β′, P

)

·
Nm−1∑

k=0

[g1m + g2m cos (θkm + ωrmt− α)]

·(L2m−L1m) sinc
[
2π

λ
(L2m−L1m)cosβ′ cos(θkm+ωrmt−α)

]

· exp {j4π/λ} ·
[
L1m + L2m

2
cosβ′ cos (θkm + ωrmt− α)

]
(3)

where v (α, β′, P ) is the visibility function, used to describe the LOS-
sheltering problem of the rotating parts. P denotes some concrete
aircraft type, β′ = β when the rotating plane is parallel to the flight
path, β′ = π/2 − β when the rotating plane is vertical to the flight
path; Nm, ωrm, L1m and L2m are the leaf number, rotary speed,
distance from the oar rootage, and oar tine to the oar center of
the mth group of rotating parts respectively; θkm = θ0 + 2πk/Nm,
k = 0, 1, . . . , Nm − 1, where θ0 is the initial phase of the 0th oar
leaf. If we ignore the torsion of oar leaves and use θm to stand for
the leaf angle, then we have g1m = sin(|β′| + θm) + sin(|β′| − θm),
g2m = sign (β′)[sin(|β′|+ θm)− sin(|β′| − θm)].
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The Fourier transform of Equation (3) is given by [11]

Sjem (f) =
M∑

m=0

v
(
α, β′, P

) N1m∑

k=−N1m

cm,kδ (f − fd − kfTm), (4)

i.e., the modulation spectrum is made up of a series of linear spectrum.
With respect to the mth group of rotating parts, the interval of
adjacent spectrum lines is fTm = Nmωrm/2π, determined by Nm and
ωrm; the spectrum line amplitude Cm,k is determined by parameters
Nm, λ, β′, L1m, L2m and θ0 together with the Bessel function; N1m

is the number of spectrum lines of one sideband. N1m and B1m (the
bandwidth of one sideband) can be written as [11]

N1m = 8πL2m cosβ′/(Nmλ) (5)

and
B1m = 4ωrmL2m cosβ′/λ. (6)

Currently, the research work on the extraction of JEM features is
mainly concentrated on estimating the interval of adjacent spectrum
lines [8–14, 17–25]. However, in the conventional low-resolution radar
system, the radar irradiation time towards a target is very short
(often 20∼30ms), and PRF is very low (often a few hundred ∼ a
few thousand Hz), so the resolution power in the Doppler domain is
lower, and the return signals from different types of aircraft targets
are often overlapped in the Doppler domain. Thus, for low-resolution
surveillance radars with lower PRF and shorter irradiation time, it is
very hard to estimate the interval of adjacent spectrum lines, and it
is also very difficult to estimate the bandwidth of one sideband [3].
Below we will analyze the multifractal characteristics of return signals
from three types of aircraft targets (including jet aircrafts, propeller
aircrafts and helicopters), and discuss the feature extraction method
propitious to the classification of these three types of aircraft targets.

3. EXTRACTION METHOD OF MULTIFRACTAL
FEATURES

Since Mandelbrot introduced the concept of fractal geometry in the
seventh decade of the 20th century, fractal theory has been widely
applied to many subjects and technical realms such as natural science,
social science, engineering, etc. However, with the development of
the theoretical and applied research, people gradually wake up to the
fact that for a great deal of objective fractal objects, it is difficult
to depict their fine structure only by a single fractal dimension.
Therefore, Grassberger [26], Hentschel and Procaccia [27], and Halsey
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et al. [28] put forward multifractal theory systematically at the
beginning of the eighth decade of the 20th century and introduced the
generalized dimension and multifractal spectrum to describe a fractal
object. Owing to considering the spatial singularity distribution of
a fractal object in geometrical subsets, multifractal theory has been
rapidly applied to almost all realms concerning fractal such as onflow,
earthquake, etc. Now, multifractal has become an important research
means for complex nonlinear systems.

3.1. Multifractal Model

What multifractal describes is the characteristics of different levels of a
fractal object during the growing process. Therefore, we can divide the
investigated object into several small regions, noting the total number
of the regions and the size of a region with N and ε (ε < 1) respectively,
and let the growth probability of the growth interface of the fractal
object be Pi(ε). Generally, there are different growth probabilities in
different regions, and the growth probabilities of different regions can
be expressed by different indexes σ, i.e., [26]

Pi (ε) ∝ εσ, i = 1, 2, . . . , N. (7)
If the values of σ for all the regions are the same, then the

investigated object is a mono-fractal object; contrarily, if the values
of σ for different regions are different, then the investigated object is
a multifractal object. Constructing a subset with small regions with
the same σ, then due to ε < 1, it can be seen that the maximum
index σmax corresponds to the minimum probability subset, while the
minimum index σmin corresponds to the maximum probability subset.
Let the number of small regions with the same σ be Nσ (ε), then we
have [26]

Nσ (ε) ∝ ε−f(σ) (ε → 0) , (8)
where σ is called local fraction-dimension, or singular index, whose
value reflects the size of the growth probability in a small region; f(σ)
denotes the fractal dimension of the subset with the same σ. Because
of the large number of small regions, we can use an infinite serial f(σ)
corresponding to different σ to represent the fractal dimensions of the
whole fractal object; therefore, f(σ) is called multifractal spectrum.
The σ − f(σ) curve reflects the distribution features of the growth
probabilities.

3.2. Calculation of Multifractal Spectrum

Multifractal objects may be divided into two kinds: regular
multifractal and irregular multifractal. Generally speaking, we can
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calculate their multifractal spectrum by statistic physics methods.
Therefore, firstly we define a partition function [28]

Γ (q, ε) =
N∑

i=1

P q
i (ε) = ετ(q), (9)

where, q ∈ (−∞, +∞), but we can determine its range according to the
actual circumstances. If the right equation of Equation (9) is tenable,
i.e., the partition function takes on a power function relationship with
ε, then from the slope of the ln Γ(q, ε)−ln ε curve we can get τ(q), which
is often called mass index. q and τ(q) are also a group of parameters
using to describe multifractal. If τ(q) is a linear function of q, then
the fractal object is a mono-fractal object; however, if τ(q) is a convex
function of q, then the fractal object is a multifractal object.

If q À 1, then the subsets with large probabilities will dominate
in

∑
P q

i (ε). If q ¿ −1, then the subsets with small probabilities will
dominate in

∑
P q

i (ε). Therefore, we can carry out a fine study on the
internal structure of a fractal object by weighted processing.

In order to derive f(σ) from the relationship between τ(q) and q,
at first we introduce the generalized fractal dimension Dq [26, 27]:

Dq =
τ (q)
q − 1

=
lnΓ (q, ε)
(q − 1) ln ε

(ε → 0) . (10)

Obviously, Dq has different senses for different values of q, e.g., D0 is
the simple fractal dimension when q equals 0; D1 is the information
dimension when q equals 1. Equation (9) can be rewritten as [27]

Γ (q, ε) =
N∑

i=1

P q
i (ε) =

∑
N (P ) P q, (11)

i.e., we can calculate
∑

P q
i (ε) through grading the regions according

to their growth probabilities, where N(P ) denotes the number of the
regions with the same growth probability P . Substitute Equations (7)
and (8) into (11), then (11) can be expressed as [27]

Γ (q, ε) =
∑

εσq−f(σ) = ετ(q). (12)

Rewrite the right equation of Equation (12) as [27]∑
εσq−f(σ)−τ(q) = 1. (13)

Evidently, when ε → 0, those items with σq − f(σ) − τ(q) > 0 will
verge on zero, while those items with σq − f(σ) − τ(q) < 0 will be
impossible. Otherwise, the sum will become infinite. Consequently,
only those items with σq − f(σ)− τ(q) = 0 will be kept, i.e., [27]

f (σ) = σq − τ (q) , (14)
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and σ can be obtained by the differential coefficient of τ(q) on q,
i.e., [27]

σ = dτ (q)/dq. (15)

From Equations (14) and (15), we can see that the relationship among
τ(q), q and f(σ), σ is the Legendre Transform, i.e., one can get the
multifractal spectrum f(σ) by the Legendre Transform of τ(q) and q.

Table 1. The structure parameters and rotary speeds of twenty-five
aircrafts belonging to three types.

Aircraft number Number of blades L1/m L2/m Rotary speed/rpm

J-A 38 0.38 1.1 3520

J-B 27 0.18 0.51 8615

J-C 30 0.3 1 3000

J-D 33 0.2 0.6 5000

J-E 42 0.24 0.8 4000

J-F 50 0.3 0.9 3500

P-A 4 0.68 1.7 1200

P-B 4 0.79 1.95 1245

P-C 3 0.27 0.76 3400

P-D 3 0.23 0.66 3400

P-E 3 0.23 0.66 2340

P-F 2 0.12 0.33 6060

P-G 2 0.12 0.33 7010

P-H 2 0.12 0.33 7400

P-I 2 0.12 0.33 7800

H-A 5 0 10.645 192

H-B 5 0 8.6 242

H-C 8 0 16 132

H-D 4 0 7.8 217

H-E 4 0 5.5 384

H-F 4 0 5.335 395

H-G 3 0 5 406

H-H 3 0 5.345 394

H-I 2 0 7.31 324

H-J 2 0 5.64 394

*Note: J — Jet aircrafts, P — Propeller aircrafts, H — Helicopters.
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3.3. Extraction of Multifractal Spectrum Features

According to Equation (1), return signals from aircraft targets should
include the airframe section, JEM section, and noise section. We will
simulate the radar echo data of the three types of aircraft targets
according to Equations (1)–(3). The aircraft parameters and case
parameters are presented by Tables 1 and 2, respectively. For a
helicopter, compared with its rotor, its empennage has a lesser leaf
diameter and quicker rotary speed. The echo energy of its empennage
possesses a smaller ratio in the general echo energy, so its JEM section
is mainly affected by its rotor. During the simulation, we set the
diameter of the empennage as one third of that of the rotor and the
rotary speed of the empennage as three times of that of the rotor,
and give them a random rotation angle difference. Both jet aircrafts
and propeller aircrafts have two engines, and each of them has a fan
with the same structure and rotary speed. Moreover, there is a certain
distance and random rotation angle difference between the two fans,
and the pitch angle of the oar blades is a random number within a
certain range. During the short time when an aircraft is being exposed
to the irradiation of the radar, the target can be viewed as a dot moving
at a certain speed, so the airframe section is a mono-frequency signal as
Equation (2). RCSs of aircraft targets tally with Swerling models, and
RCSs of jet aircrafts and those of propeller aircrafts and helicopters
tally with Models I and III, respectively. The echo pulses within a scan
are correlative. Assume that the radar works at the L-band with its
wavelength λ = 0.3m and PRF fr = 600 Hz. Figures 1 and 2 show the
typical mass index and multifractal spectrum curves of the three types
of aircraft targets (The flying attitude can be set randomly) with the
observation time T equal to 25ms and 100 ms, respectively.

It can be seen from Figure 1(a), under condition of T = 25 ms,
the mass index τ(q) of return signals from jet aircraft targets is
approximatively a linear function of q, so its multifractal characteristic
is not distinct; however, τ(q) of return signals from propeller aircrafts

Table 2. The typical case parameters and flying speeds of three types
of aircrafts.

Distance/km Height/km Velocity/m·s−1

Jets U (30, 40) U (15, 23) U (600, 700)
Propeller aircrafts U (30, 40) U (3.95, 12) U (150, 200)

Helicopters U (30, 40) U (0.5, 10) U (56, 98)
*Note: U(a, b) denotes a uniform distribution in the interval (a, b).
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or helicopters is obviously a convex function of q, which means that
their multifractal characteristics are very noticeable. As can be seen
from Figure 1(b), under condition of increasing the observation time
(T = 100 ms), the multifractal characteristics of return signals from
jet aircraft targets are still inconspicuous, while those of return signals
from helicopter targets strengthen markedly, but the mass index curve
of return signals from helicopter targets takes on a different symmetric
property from that of return signals from propeller aircrafts. We can
see from Figure 2(a) that among the multifractal spectrum curves of
return signals from three types of aircraft targets, the range of σ of
return signals from jet aircrafts is the smallest, and that of return
signals from helicopters takes second place, while that of return signals
from propeller aircrafts is the largest, i.e., their echoes present more
and more distinct multi-fractal characteristics in turn. Figure 2(b)
shows that under the circumstance of increasing the observation time,
the range of σ of return signals from jet aircrafts changes very little,

 

(a) (b)

Figure 1. τ(q) ∼ q curves. (a) T = 25 ms. (b) T = 100 ms.

 

(a) (b)

Figure 2. f(σ) ∼ σ curves. (a) T = 25 ms. (b) T = 100 ms.



Progress In Electromagnetics Research B, Vol. 45, 2012 301

while that of return signals from helicopters increases remarkably, but
its multifractal spectrum curve has a different symmetric property
from that of return signals from propeller aircrafts. Thereinto, the
multifractal spectrum of return signals from helicopters is a right-
symmetrically campanulate curve, and that of return signals from
propeller aircrafts is a left-symmetrically hooked curve. Therefore,
Figures 1 and 2 take on corresponding variation characteristics.

We can see from the above analysis that the mass index curves
and multifractal spectrum curves of return signals may discriminate
these three different types of aircraft targets. Therefore, we define
four multifractal characteristic parameters as follows.

1) Mass index symmetric degree

Rτ =
∣∣∣∣
max τ (q)
min τ (q)

∣∣∣∣ . (16)

2) Spectrum width

∆σ = σmax − σmin. (17)

where σmax and σmin denote the maximum and the minimum
of singular index σ, respectively, corresponding to the minimum
probability subset and the maximum probability subset. The size of
∆σ reflects the prominence degree of the multifractal characteristics of
the return signal.

3) Difference of the fractal dimensions of the maximum and the
minimum probability subset

∆f = |f (σmin)− f (σmax)| . (18)

As can be known by [29],

f (σmin)− f (σmax) =
ln (Nσ max/Nσ min)

ln ε
, (19)

where Nσ max and Nσ min are the region numbers of the minimum
probability subset and the maximum probability subset, and ε denotes
the size of a region. Therefore, the size of ∆f reflects the relative
distribution proportion of the minimum probability subset and the
maximum probability subset.

4) Asymmetric index

Rσ =
∆σL −∆σR

∆σL + ∆σR
. (20)

with

∆σL = σ0 − σmin, (21)
∆σR = σmax − σ0, (22)
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where σ0 is the singular index corresponding to the maximum of
the multifractal spectrum f(σ). It is apparent that Rσ depicts the
asymmetric property of the multifractal spectrum curve from the
whole.

Figure 3 gives the probability distribution density curves of the
four multifractal characteristic parameters of return signals from three
types of aircrafts under the previous radar working conditions with
the observation time T = 25 ms and no compensation for airframe
components. As can be seen from the figure, each of the four
multifractal features has certain classification abilities. In Figures 3(a)
and (b), Rτ and ∆σ can distinguish jet aircrafts from the other two
types of aircrafts easily, but they behave badly in the discrimination
of propeller aircrafts and helicopters. In Figures 3(c) and (d), ∆f and
Rσ can discriminate helicopters from the other two types of aircrafts
easily; however they are helpless in discriminating propeller aircrafts

(a) (b)

(c) (d)

Figure 3. The probability density distribution curves of four
multifractal spectrum characteristic parameters. (a) Mass index
symmetric degree. (b) Spectrum width. (c) Difference of the fractal
dimensions of the maximum and the minimum probability subset.
(d) Asymmetric index.
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and jet aircrafts. Therefore, if we combine these four characteristic
parameters together to classify these three types of aircraft targets, it
is hopeful to get a better performance.

4. CLASSIFICATION EXPERIMENTS

According to the aircraft parameters and case parameters shown by
Table 1 and 2, respectively, we simulate radar echo data of three
types of aircraft targets by Equations (1)∼(3) and take them as
the experimental data. On basis of analyzing the performance of
methods using some typical low-resolution radar target classification
features [17–25, 30–32], ref. [3] points out that the classification method
based on dispersion situations of eigenvalue spectra (abbr. CMDSES)
excels other methods markedly. Therefor, we will take CMDSES as
the contrast to analyze the performance of the classification method
based on multifractal features (abbr. CMMF) in the following text.

Experiment 1 : Take SVM [33] as the classifier to analyze the
performance of CMDSES and CMMF contrastively. In the experiment,
the classifier takes the Gaussian kernel K(xi, xj) = exp(−||xi −
xj ||2/σ2) as the kernel function. Because there is no prior knowledge
about the parameter σ2, in the following experiments, we will try
different parameter values several times without going beyond the
calculation burden and take the parameters which can well classify
different types of aircraft targets as the kernel function parameters.
All the correct classification rates (abbr. CCRs, here CCR is defined
as the ratio of the number of samples which are classified correctly and
the total number of samples) given in the following are the classification
results using the better kernel function parameters.

Table 3 shows the CCRs of CMDSES and CMMF with the radar
operating at L-band, PRF fr = 600 Hz, observation time T = 25ms,
and signal-to-noise ratio (abbr. SNR) SNR = 20 dB. As can be seen
from the table, the average CCR of CMMF is far higher than that
of CMDSES whether on training samples or testing samples, and
the CCR of each type of aircraft targets is more than approximately
eighty-five percent. In addition, CCRs using CMDSES of three
types of aircraft targets except jet aircrafts are all lower than those
using CMMF, especially the classification performance of CMDSES
for helicopters is very low. Consequently, CMMF outstrips CMDSES
in the total performance.

Experiment 2: Still take SVM using the Gaussian kernel function
as the classifier and choose a group of better kernel function parameters
to analyze the classification performance of CMDSES and CMMF
under the circumstances of different observation times, different PRFs,
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Table 3. CCRs of CMDSES and CMMF.

CMDSES CMMF

Training

samples

Testing

samples

Training

samples

Testing

samples

Jet aircrafts 99.33% 99.67% 98.67% 98.33%

Propeller aircrafts 87.11% 86.22% 88.67% 86.22%

Helicopters 60.40% 59.20% 89.40% 84.60%

Average CCR 79.36% 78.64% 91.36% 88.48%

20 40 60 80 100
T/ms

C
C

R

CMMF
CMDSES

0 2 4 6 8 10 12 14 16
PRF/kHz

C
C

R

CMMF
CMDSES

0 5 10 15 20 25 30

C
C

R

SNR/dB

CMMF
CMDSES

(a) (b)

(c)
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1

Figure 4. The variational curves of the averageCCR with the
observation time, PRF and SNR. (a) Observation time (L-band, PRF
= 600 Hz, SNR = 20 dB) (b) PRF (L-band, T = 25 ms, SNR = 20dB).
(c) SNR (L-band, T = 25ms, PRF = 600Hz).

and different SNRs.
Figure 4 gives the variation curves of the average CCRs with the

observation time, PRF, and SNR. It can be seen from the figure,
corresponding to the conclusion in Experiment 1, CMMF outdoes
CMDSES in the total performance under the same circumstances.
In Figure 4(a), along with the increase of the observation time, the
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calculated mass index curves and multifractal spectrum curves are able
to reflect the difference consisting in the multifractal characteristics
of return signals from different aircraft targets more adequately, so
the average CCRs improve steadily. Moreover, the average CCRs of
CMMF exceed those of CMDSES more than five percent with the same
SNR. In Figure 4(b), under the circumstances of the radar operating at
L-band, T = 25 ms, and SNR = 20dB, the average CCRs of CMMF are
all more than 90 percent. When PRF is greater than 2 kHz, the average
CCRs change slowly, and the average CCR of CMMF exceeds that of
CMDSES more than six percent with the same PRF. From Figure 4(c),
we can see that both the average CCRs of the two methods are badly
affected by SNR and improve steadily with the increase of SNR. When
SNR is less than 5 dB, the average CCRs of the two methods are very
close; however, when SNR is more than 10 dB, the average CCR of
CMMF exceeds that of CMDSES more than four percent, and the
difference between them will increase along with the farther increase
of SNR. Moreover, what should be pointed out is that the data we
used in the experiments are return signals from aircraft targets within
a single observation. If we combine target echo data belonging to
multiple observations, then the average CCR could still have a biggish
increase.

5. CONCLUSIONS

The multifractal features of return signals from aircraft targets in
conventional radars reveal the dynamic characteristics which induce
the targets’ echo structure, so they offer a new way for aircraft target
classification and recognition by low-resolution surveillance radars. On
basis of introducing the echo mathematic model of aircraft targets in
conventional radars as well as the multifractal research methods, the
paper sets out from the JEM modulation echo of aircraft targets and
extracts the multifractal-feature-based JEM features, on this basis,
puts forward a multifractal-feature-based target classification method
with low-resolution radars. The experimental analysis shows that the
multifractal features of return signals from three types of aircraft
targets (including jet aircrafts, propeller aircrafts and helicopters)
in conventional radar reveal their different nonlinear modulation
characteristics, and the defined multifractal parameters can be used
as effective features for aircraft target classification and recognition in
the conventional radar. The experimental results also show that in the
conventional low-resolution radar system with lower PRFs and shorter
observation times, the multifractal-feature-based pattern classifier can
classify the three types of aircraft targets effectively and has an
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excellent classification performance in condition of no compensation
for airframe components.
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