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Abstract—In this paper, some design criteria for a Tubular Linear
Induction Motor (TLIM) as a fast actuator are considered. The
influence of geometrical and physical parameters on the operating
conditions of a TLIM are investigated by means a quasi-analytic model.
The model is based on the application of the Fourier Transform both
in space and in time. The Fourier transform in space is introduced to
take into account the finite length of the stator windings in the axial
direction. The transient electrical response of the motor at standstill
following the insertion of a three-phase system of voltage generators is
performed by the Fourier transform in the time.

1. INTRODUCTION

Linear movements are very usual in mechanical engineering, especially
in industrial robots, where linear speeds up to several meters per
second are often required. These movements are usually obtained
by using rotating motors in combination with rotation to translation
mechanism. The resulting systems may have poor performance; in
particular, an excessive time delay may prevent their use as fast
actuators [1]. The complexity of these systems can be overcome by
using linear actuators. It is well known that tubular linear induction
machines have the highest force to moving mass ratio when compared
with other linear motors; this property makes these devices very
attractive to be used as servo motors since they may have better
performance in terms of reduction of delay times with respect to those
of traditional systems.

The simplest approach to model these linear motors is based on
the use of lumped equivalent circuits as described in [1–7] for similar
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devices. However, while this technique allows to establish analytical
relationships between the design parameters and the performance of
the machine, it suffers from inherent inaccuracy especially in presence
of complex flux paths.

A step forward can be performed by means of analytical methods
which provide simple closed formulas for a quick evaluation of the
distribution of magnetic flux density and induced currents as a function
of the machine’s dimensions and of the slip [8, 9].

More accurate design requires the development of 3D models
of the motors that allow to determine the distribution of electrical
and mechanical quantities taking into account the finite length of the
machine, the presence of slots and teeth, the presence of nonlinear
materials and the transient nature of the phenomena that take place in
these devices [10–19]. Numerical method based on integral formulation
may be convenient in the analysis of such devices because of the
presence of conductors in motion. Integral formulation do not suffer of
some of the drawbacks of Finite Elements Methods (FEM) related to
the sliding meshes [20–26], but may require long computation times.
Many integral formulations reduce the analysis of the device to the
one of an equivalent network. It is worthwhile to note that these
formulations allow for a quick and accurate evaluation of the sensitivity
with respect to the design parameters [27, 28].

Numerical approaches are time consuming (especially when used
in conjunction with automatic optimizers) and they are not effective to
insight the dependence of the performance on the design parameters.

The use of more sophisticated analytical models characterized
by series expansions of the solution in terms of special functions
may represent a good compromise between accuracy and requested
computation time.

The design of a TLIM as a fast actuator cannot leave its time
response out of consideration. This time depends on the weight of the
mover and on the waveform of the thrust force acting on it at standstill.

In this paper a quasi analytical model of a TLIM based on the use
of a double Fourier Transform, is used to obtain the transient behavior
of the main electromechanical quantities following the insertion of a
three phase voltage generator. The solution of the governing equations
in the transformed domain is expressed in terms of Bessel functions.
The numerical inverse transform allows to determine the distribution of
all the electrical and mechanical quantities and to specify some design
criteria for a TLIM as fast actuator.
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Figure 1. Schematization of the TLIM with hollowed mover.

2. THE MODEL

A schematization of a TLIM is shown in Fig. 1. The armature consists
of a conductive nonferromagnetic sheet (aluminum) surrounding an
iron tube. The whole armature is free to move in the axial direction
on linear bearings [29] (not shown in the figure).

2.1. Governing Equation

Because of the presence of slots and teeth, the device shown in Fig. 1
can only be analyzed by numerical methods. Analytical models can be
obtained by using a simplified structure with a smooth stator and with
the primary windings substituted by an equivalent current sheet. The
use of the Carter coefficient allows to evaluate the equivalent air gap
and a proper positioning of the current sheet [30–32]. Defining g0 as
the distance between the iron-massive part of the mover and the inner
part of the stator, the Carter airgap is given by:

gC =
τcv

τcv − γτ0
g0; with γ =

(bcv/g0)2

(5 + (bcv/g0))
; (1)

where τcv and bcv are respectively the distance between two adjacent
slots and the axial width of the slots as shown in Fig. 2.

The model so obtained does correctly work as far as the motor
is fed by imposed currents. When the motor is fed by a three phase
voltage generator, a set of inductors and resistors has to be series
connected to the equivalent impedance of the motor in order to take
into account the voltage drops due the resistance of the conductors and
to the leakage fluxes in the slots.
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Figure 2. Double layer winding of a TLIM.

The resistors are evaluated by using the d.c. values, while the
evaluation of the inductors has been performed by using a classical
approach taken from electrical machines textbooks [30, 31].

For the sake of simplicity we consider a double layered primary
winding as shown in Fig. 2. In this case we consider only the coupling
between coils in the same slot, and assume that coils in different slots
are not magnetically coupled. Let Li the inductance of the coil in the
inner position in a slot and Le the inductance of the one in the external
position; Mi,e is the mutual inductance between the two coils. We can
write:

Li/e =
2 ·Wi/e

i2i/e

; and Mi,e =
Wi,e

ii · ie ; (2)

where:
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The notation i/e means that the subscript may assume the value i or
e. The above equations are obtained by considering the flux density
distribution evaluated under the hypothesis µfe = ∞ and by using
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closed paths as the one shown in Fig. 2 [30, 31]. Subscript 2 and 1
respectively refer to the outer and inner radius of each coil. N is the
number of turns, R0 is the inner radius of the slot and bs and lc are
the linear dimensions of the slot and coil as shown in Fig. 2.

Considering the winding scheme in Fig. 2, the inductance of the
section of a winding located in three adjacent slots is:

Lsect = 2 · (Li + Le + Mi,e) ; (3)

The total voltage drop on the leakage inductance of each phase is
written as the sum of one term due to the current in that phase, and
of two terms due to the coupling with the currents in the other phases.
If the motor is fed by a three phase balanced system of currents, we
can write: I2 = I1e

j2π
3 and I3 = I1e

j4π
3 and as a consequence:

V1=jωNsect · (LsectI1 ±Mi,eI2 ±Mi,eI3)

=jωNsect ·
(
LsectI1 ±Mi,eI1e

j2π
3 ±Mi,eI1e

j4π
3 Mi,e

)

=jωNsect ·
(
Lsect ±Mi,ee

j2π
3 +±Mi,ee

j4π
3 Mi,e

)
I1 =jωLtotI1; (4)

where Nsect represents the number of series connected sections of a
given phase that constitute the entire winding; throughout the paper
we assume Nsect = 4. The choice of the sign in (5) depends on the
relative direction of the turns of the coils in the same slot.

The same inductors have also been evaluated by using the
computer codes in [10, 15], and the difference between the two
numerical values and those by the above formulas is within ±5%.

A number of analytical models of TLIM when fed by a current
sheet are derived under the hypothesis of indefinite axial length of the
machine and in steady operating conditions [3, 8, 9]. A quasi-analytical
model is used here to approximate the finite length of the stator by
considering a finite axial extension of the primary currents windings
and an indefinite length of the primary core [33–35]. End effects are
therefore caused only by the finite length of the primary windings but
not by the iron core. Let the primary current sheet extend between
z = 0 and z = L.

Figure 3 shows a schematic representation of the motor used for
the deduction of the quasi-analytical model.

Introducing in the Maxwell equations the vector potential with
the Coulomb gauge, for field equation of an isotropic medium moving
with velocity [8] we can write:

∇2Ā = µσ

(
∂

∂t
Ā− v × (∇× Ā

))
(5)
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Figure 3. Linear tubular machine scheme.

where µ and σ respectively indicate the permeability and the
conductivity of the medium. In the following analysis we assume that
the permeability of the iron is constant. This hypothesis is based on
the greater length of the air gap of linear motors in comparison with
that of rotating induction motors.

In a cylindrical coordinates system we can express the primary
current sheet as follows:

J̄1(r, ϕ, z, t) = J1 sin(ωt− kz)u(z)u(L− z)δ(r − r4) · āϕ (6)

where āϕ indicates the azimuth direction, u(z) is the unit step function
and δ(r−r4) is the Dirac function located on the inner face of the stator.
Let p the number of the poles of the motor, then k = 2pπ/L.

Vector potential has only azimuth components in cylindrical
coordinates and is a function of r, z and t: Ā = Aϕ(r, z, t) · āϕ.

Substituting in (1), after some manipulations we obtain:

∂2Aϕ

∂r2
+

1
r

∂Aϕ

∂r
+

∂2Aϕ

∂z2
− Aϕ

r2
= µσ

(
∂Aϕ

∂t
+ vz

∂Aϕ

∂z

)
(7)

On sinusoidal steady state condition the vector potential is
expressed as: Aϕ(r, z, t) = Aϕ(r, z)·ejωt. Substituting in (7) we obtain:

∂2Aϕ

∂r2
+

1
r

∂Aϕ

∂r
+

∂2Aϕ

∂z2
− Aϕ

r2
= µσ

(
jωAϕ + vz

∂Aϕ

∂z

)
(8)

Let the Fourier transform of Aϕ (r, z) with respect to z be denoted
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by Ãϕ (r, ζ):

Aϕ(r, z) =
1
2π

∫ +∞

−∞
Ãϕ(r, ζ)ejζzdζ (9)

Then in terms of Fourier transform, (8) becomes:

∂2Ãi,ϕ

∂r2
+

1
r

∂Ãi,ϕ

∂r
−

(
ζ2 +

1
r2

)
Ãi,ϕ = jµσ (ω − ζvz) Ãi,ϕ (10)

Subscript i is introduced according to Fig. 3 to indicate the regions
where (10) is written. Writing (10) in the regions labeled with 1, 2, 4,
5, 6 where σ = 0 or vz = 0 (iron cores and air) we obtain:

∂2Ãi,ϕ

∂r2
+

1
r

∂Ãi,ϕ

∂r
−

(
ζ2 +

1
r2

)
Ãi,ϕ = 0; for i 6= 3; (11)

In the conductive region of the mover we have:

∂2Ãi,ϕ

∂r2
+

1
r

∂Ãi,ϕ

∂r
−

(
jα2 +

1
r2

)
Ãi,ϕ = 0; for i = 3; (12)

where: α2 = ζ2(sµσvs

ζ − j), and s is the slip of the mover with respect
to the current wave of wavelength 2π/ζ, whose synchronous speed is
vs(ζ) = ω/ζ.

2.2. Solution of the Governing Equation

Solutions of Equations (11) and (12) are expressed in terms of modified
Bessel functions of the first and second kind [36]:

Ãi,ϕ = ciI1(ζr) + c′iK1(ζr); for i 6= 3 (13)

Ã3,ϕ = c3I1(
√

jαr) + c′3K1(
√

jαr); for i = 3 (14)

The determination of the unknown coefficients in the previous
relations is obtained by imposing the following boundary conditions:

B̃i,r(r, z)=B̃i+1,r(r, z); for i = 1, . . . , 6; and r = r1, . . . , r5;

H̃i,r(r, z)=H̃i+1,r(r, z); for i 6= 4; and r 6= r4;

H̃4,r(r, z)−H̃5,r(r, z) = J̃1; for r = r4;

(15)

where J̃1(ζ) is the Fourier transform of the excitation current.
In order to obtain the integration coefficients ci and c′i, the fields

B̃ and H̃ are expressed in terms of vector potential Ã. Before solving
the resultant linear system for the determination of the integration
constants let us observe that c′1 = c6 = 0 because of the form of the
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modified Bessels functions. Then the other coefficients can be written
in the form:

ci = J̃1(ζ)
Ni(ζ)
Di(ζ)

; c′i = J̃1(ζ)
N ′

i(ζ)
D′

i(ζ)
; (16)

where Ni(ζ), Di(ζ), N ′
i(ζ) and D′

i(ζ) are involved expressions
containing Bessel functions. Finally a numerical Fourier inverse
transform allows obtaining the vector potential and all the others
electromagnetic quantities in the whole space. In particular, the
induced eddy currents in the aluminum are found as:

J̄ = σĒ = −jσ (ω − αvz) · Ā;

and the total thrust force is expressed by:

F̄ =
1
2

∫

V
<(

J̄ × B̄∗)dv;

where V is the conductive cylinder.
It is now possible to evaluate the voltages at the terminals

of the stator windings at the arbitrary angular frequency ω. The
calculation is carried out by firstly performing a line integration of
the vector potential on circular lines located on the current sheet and
corresponding to the turns of the windings.

These lines and their orientations are determined by considering
the position of the stator conductors inside the slots and the direction
in which they are wound. The axial position of a turn of a coil ranges
within the z coordinates corresponding to the middle points of the
teeth that delimit the slot where the coil is located.

In order to evaluate the resultant e.m.f. at the terminal of each
winding the contributions of the turns are summed considering the
coils interconnection in the winding scheme.

We can write:

Ei(ω)=jω

N i
coil∑

k=1

αi
kN

i
cond,k

zzk − z1k

∫ 2π

0

∫ z2k

z1k

Aϕ(r4, z)r4dθdz

=jω2πr4

N i
coil∑

k=1

αi
kN

i
cond,k

zzk−z1k

∫ z2k

z1k

Aϕ(r4, z)dz; for i = 1, . . . , 3; (17)

In the above expression N i
coil and N i

cond,k are respectively the
number of coil in the ith winding and the number of the conductors of
the kth coil of the ith winding. The coefficient αi

k assumes the values
±1 depending on the direction of the turns in the kth coil of the ith
winding.
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To obtain the voltages at the terminal of the real windings we have
to add to the electromotive force the contributes due to the voltage
drops on the resistors and on the inductors produced by the currents
in the windings. These currents can be evaluated as:

I =
2J1

Ntot cond

sin
(

2pπ
2Ntot slot

)

2pπ
L

; (18)

where Ntot slot is the total number of slots in the motor and Ntot cond

the total number of conductor in a slot. The slots have the same
dimensions and are equally spaced along the axial direction and with
the same total number of conductors inside them.

It is now possible to write for the voltages at the terminals of the
windings the following expressions:

V̇i(ω) = Ėi(ω) + Riİi(ω) + jωLiİi(ω) = Z̄i(ω)İi(ω); (19)

Once the impedance of each phase of the motor is known it is
possible to determine the absorbed currents when the motor is fed by
a three phase voltage generator at arbitrary frequency.

Because of the finite length of the motor the impedances Z̄i are
slightly different, so that the currents in the windings are not able to
produce the same magneto-motive force as that produces by (6). At a
first approximation we can neglect this error which decreases with the
length of the motor and its number of pole pairs.

Lets now consider the insertion of a three phase symmetric voltage
generator of the form:

v1(t) = VM sin (ω0t + ϕ) · u(t)

v2(t) = VM sin
(

ω0t + ϕ− 2π

3

)
· u(t)

v3(t) = VM sin
(

ω0t + ϕ− 4π

3

)
· u(t) (20)

Let Ṽ1(ω), Ṽ2(ω) and Ṽ3(ω) respectively be the Fourier transforms
of the applied voltages. The feeding voltages can be expressed as:

v1(t) =
∑

n

∥∥∥Ṽ1(ωn)
∥∥∥ ·∆ωn · sin

(
ωnt + ∠Ṽ1(ωn)

)

v2(t) =
∑

n

∥∥∥Ṽ2(ωn)
∥∥∥ ·∆ωn · sin

(
ωnt + ∠Ṽ2(ωn)

)

v3(t) =
∑

n

∥∥∥Ṽ3(ωn)
∥∥∥ ·∆ωn · sin

(
ωnt + ∠Ṽ3(ωn)

)
(21)
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Once the phasors V̇i = ‖Ṽi(ωn)‖ · ∆ωnej∠Vi(ωn), corresponding
to the nth harmonic component, are known, Equation (19) can be
used to obtain the absorbed currents and correspondingly all the
electromechanical quantities in the motor at ωn. We are so able to
study of the transient phenomena in the TLIM at standstill following
the insertion of a three phase voltage generator. The extension to
feeding generators of arbitrary waveform is straightforward. If the
feeding voltages in (20) are periodic waveforms with the same period,
using the Fourier transform expressions as in (21) are obtained. In
the most general case, the three phasors at the angular frequency
ωn do not constitute a set of symmetrical voltages. However, if we
use the Fortescue theorem these three phasors can be resolved into
three balanced system of phasors: positive, negative and zero sequence
components so that we can use the previously described method.

3. RESULTS

The proposed model has been used to characterize the operating
condition of a TLIM in order to obtain design criteria. The linear
dependence of the thrust force on the length of the motor can be
assumed for realistic length-to-radius ratio of the motor. This linear
dependence is obtained when the feeding voltages are proportional to
the length of the motor.

3.1. Transient Response

Results here presented refer to a motor with a stator of length 32.4 cm
and with two pole pairs obtained by a double layered winding as shown
in Fig. 2. Because of the presence in the mover of a conductive non
ferromagnetic cylinder the reluctance of the magnetic circuits of the
motor can assume high values. As a consequence the leakage fluxes
in the slots can assume comparable values with those of the flux in
the mover. A careful design of the stator is important in order to
keep as small as possible the leakage fluxes. Wide and superficial slots
should be used, and this is helpful in reducing the radial dimension
of the motor. Moreover slots so shaped may cause high values of the
Carter coefficient and produce reduced thrust force at a given absorbed
current. On the other hand we have to consider that reducing the
leakage impedance, the absorbed current at a given feeding voltage is
increased. Figs. 4(a)–4(c) show the waveforms of the thrust force on
the mover for different shapes of the slots and for different external
radii of the mover. The conductor on the mover is supposed to be
aluminum (σ = 3.57× 107 S/m) and is 2mm thick; the same thickness



Progress In Electromagnetics Research, Vol. 132, 2012 613

is assumed for the iron on the mover. We consider the standstill
condition and evaluate the transient response to the insertion of a
220V balanced three-phase feeding voltage generator at 50Hz. The
generators have the waveforms as in (20); the response cannot by
obtained by considering the steady behaviour at 50Hz but we have
to sum the contributes of the terms in (21) that represents the non
sinusoidal feeding voltage as the sum of sinusoidal components at
different frequencies.

As expected the figures show an increased force with the length of
the slots (in the Figs. 4(a) to 4(a) the area of the cross section of the slot
is approximately the same). These results show an increasing thrust
force with a decreasing radius of the motor. This can be explained
remembering that the feeding voltage is the same in the three cases.

Reducing its radius, the motor produces a reduction of its total
impedance and a corresponding increment of the current. At a first

(a) (b)

(c)

Figure 4. Transient waveforms of thrust force. (a) Teeth: 8 mm
wide; slots: 5.5mm long, 39.4 mm deep; (b) teeth: 6.8mm wide; slots:
6.7mm long, 29 mm deep; (c) teeth: 5.5mm wide; slots: 8mm long,
23.8mm deep.
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Figure 5. Currents in TLIM for different shapes of slots and mover
radii.

approximation we can assume that the absorbed current is inversely
proportional to the radius. The thrust force quadratically depends on
the current and is approximately linear with respect to the surface of
the conductive sheet on the mover. As a result the thrust is inversely
proportional to the radius. This is true if saturation, that is likely to
occur in motors with small radius, is not considered. Conversely, if
we keep constant the maximum value of the flux density in the motor,
the dependence of the thrust with the radius is approximately linear.
This condition requires that the feeding voltage is approximately
proportional to the radius.

3.2. Steady Response

These considerations are confirmed by the results reported in Fig. 5
which shows the absorbed currents in steady conditions corresponding
to Figs. 4(a)–4(c).

Figure 5 shows that at given feeding voltage, motors with small
radii absorb higher currents; so they are able to produce a given force
with smaller voltage with respect to a motor with a greater radius.
Thermal stresses may appear in small radii TLIMs; electric insulation
are subject to stress in motor with large radii.

The dependence of the thrust force on the conductor thickness
of the mover has also been investigated. Fig. 6(a) shows the thrust
force for a TLIM characterized by teeth 6.8mm long with slots 6.7mm
wide and 29mm deep, the inner radius of the mover of 3.6 cm and iron
thickness of 2 mm. The curves in the figure are obtained for different
values of conductivity. Feeding voltage is 220 V at 50 Hz. Fig. 6(b)
shows the currents absorbed by the motor corresponding to the same
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(a) (b)

Figure 6. Thrust force (a) and current in primary windings (b) for
different values of the conductivity and thickness of the conductive
part of the mover.

(a) (b)

Figure 7. Force on the mover (a) and current in the primary windings
(b) for different materials.

operating condition as those of the previous figure. The curves in
Fig. 6(a) that correspond to the three highest values of conductivity
(aluminum, copper and silver) show the presence of maxima. The
values of thickness of the conductive part of the mover and of the
conductivity of the material corresponding to these maxima should be
used in the design of the TLIM.

Figure 7(a) shows the thrust force as a function of the feeding
frequency for a thickness of the conductive part of the mover of
2mm and for three different materials (aluminum, copper and silver).
Fig. 7(b) shows the currents in the primary windings under the
same operating condition as Fig. 7(a). As expected the ratios[
thrust force/current2

]
are curves with negative slope.
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4. CONCLUSIONS

The Fourier transform has been applied in this paper to obtain the
transient behavior of a TLIM at standstill taking into account the finite
length of the stator windings. The main electromechanical quantities
involved in this operating condition have been examined. The transient
waveform of the thrust force on the mover reaches its maximum
after few milliseconds; this makes attractive the use of TLIMs as fast
actuators. In the related operating conditions is of great importance
the promptness of the system at standstill while its behavior at steady
state is less important. The analysis of the influence of the slots shape
on the stator leakage inductance has highlighted the need for wide slots
of limited depth. Further useful information for the design procedure
have been obtained by varying the thickness and the conductivity of
the conductive part of the mover and by varying the frequency of the
feeding three phase voltage generator.
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