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Abstract—A despeckling technique based on multiple image
reconstruction and selective 3-dimensional filtering is proposed.
Multiple SAR images are reconstructed from a single SAR image
by employing compressive sensing (CS) theory. In order to obtain
multiple images from single SAR image, multiple subsets of pixels
are selected from input SAR image by imposing restriction that each
subset has at least 20% different pixels from any other subset. These
subsets are taken as measurement vectors in CS framework to obtain
multiple SAR images. A despeckled image is obtained by employing
selective 3-dimensional filtering to multiple reconstructed SAR image.
The proposed technique is tested on single look complex TerraSAT-X
data set, and experimental results exhibit that the proposed technique
outperformed benchmark despekling methods in terms of visual quality
and despeckling quality metrics.

1. INTRODUCTION

Synthetic aperture radar (SAR) system is all-time and all-weather
imaging system used for earth surveying. SAR systems transmit
electromagnetic waves, and produce images by coherent integration
of received pulses. In coherent systems, backscatter signals add to
each other coherently, and random interference of electromagnetic
signals causes the speckle noise [1]. Speckling is multiplicative
noise which deteriorates the image quality. Recently, SAR
systems have employed for several remote sensing applications
such as environmental monitoring [2], surveillance [3, 4], target
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identification [5], navigation [6], homeland security [7, 8] and target
recognition [9]. The speckle noise in SAR images reduces the potential
of SAR images to be utilized as effective data in remote sensing
applications [10]. Therefore, despeckling (removal of speckle noise)
is one of the more important tasks in SAR imaging.

The despeckling of SAR image has been a hot research area
during last two decades. Classical despeckling methods such Lee [11],
Frost [12] and Gamma-MAP [13] use a priori statistical information
of speckle noise. These filters may over-smooth the textures.
With the development of multi-resolution analysis theory, wavelet
transformation methods are often used for despeckling [14, 15]. In
Wavelet shrinkage techniques, wavelet transform coefficients are
thresholded. The texture preservation in multi-resolution techniques
is better compared to statistical techniques such as [11] and Frost [12],
but performance of wavelet shrinkage techniques are quite sensitive to
threshold limit. Non-local mean (NLM) approach has also been applied
for despeckling of SAR images [16, 17]. NLM approaches are based on
the observation that most images are comprised of self-similar patches.
After identifying the self-similar patches, noise filtering is carried out
in those patches. Block matching 3D (BM3D) [18] combines NLM
and wavelet shrinkage. In BM3D, wavelet shrinkage is followed by
collection of group of similar patches. In probabilistic patch based
(PPB) algorihtm [19], a similarity criterion based on noise distribution
method is considered and filtering weights are obtained through an
iteration process which takes into account the similarity between
restored patches.

The compressive sensing (CS) theory [20] proved that any sparse
signal or image can be reconstructed from samples fewer than number
of elements in a signal or image. Recently, CS theory has been
used in SAR signal processing and image formation [21–24]. In
this paper, we exploit CS theory for despeckling of SAR image. It
is a well-known fact that multiple noisy images can be combined
statistically to obtain cleaner image. Taking motivation from this
phenomenon, we employ CS to obtain multiple SAR images from a
single SAR image. A number of subsets of pixels are selected from
input SAR image by imposing restriction that each subset has at
least 20% different pixels than any other subset. These subsets are
taken as measurement vectors in CS framework to obtain multiple
SAR images by solving convex optimization problem. The pixel-wise
averaging of multiple compressive reconstructed images would lead to
better results compared to conventional despeckling techniques [25].
In this work, employ selective 3 dimensional (3D) filtering of multiple
reconstructed images to further improve despeckling results. The
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experimental results on single look SAR data set exhibited that
the proposed technique outperformed benchmark as well as recent
despeckling techniques in terms of qualitative and quantitative results.

The rest of the paper is organized as follows. A brief introduction
of compressive sensing is given in Section 3. The proposed despeckling
framework is described in Section 3 and experimental results are given
in Section 4. Finally we conclude this paper in Section 5.

2. COMPRESSIVE SENSING FRAMEWORK

CS theory proved that a signal, which is sparse in some basis can be
reconstructed from incomplete information, i.e., number of samples
or measurements is less than the number of elements in the signal.
Let x be an N × 1 signal which is sparse in an orthonormal basis
Ψ = [ψ1, ψ2, . . . , ψN]. If M (¿ N) number of samples are acquired
from signal by using M × N sampling matrix S, the resulting vector
(containing samples) can be written as [20]

y = Sx (1)

The representation of x in sparse domain Ψ can be given as

xw = Ψx (2)

where xw is N × 1 vector with K (K < M) non-zero entries and Ψ is
N ×N sparse basis matrix. Using (2), the measurement vector can be
written as

y = SΨ−1xw (3)

where Θ = SΨ−1 is an M×N matrix called measurement matrix. The
problem of finding xw from y is highly under-determined, as number
of unknown N , is higher than the number of equations which is equal
to M (¿ N). But if measurement matrix, Θ satisfies Restricted
Isometery Property (RIP), (3) can be solved by emplying efficient
reconstruction techniques. RIP states for any vector ν sharing the
same K non-zero entries as v and for some ε > 0 [20]

1− ε ≤ ‖Θv‖2

‖v‖2
≤ 1 + ε (4)

If (4) is satisfied, signal xw can be reconstructed from (3) by solving
following l1 optimization problem [20]

x̂w = min ‖xw‖1 subject to y = Θxw (5)

(5) can be solved by employing a convex optimization algorithm,
such as gradient point sparse reconstruction (GPSR) [26] or regularized
orthogonal matching pursuit (ROMP) [27]. The convex optimization
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algorithm requires y ∈ RM and measurement matrix, Θ = SΨ−1 to
reconstruct x̂w ∈ RN . The x is obtained by taking inverse Ψ transform
of x̂w.

Conventional CS sampling matrices takes information from
several randomly selected sensors in one measurement [28]. In this
proposed despeckling framework, this conventional CS sampling matrix
cannot be used, as the proposed despeckling technique is aimed at
reconstructing multiple SAR images using different subsets of pixels
from SAR image. The point sampling matrix proposed by Sen and
Darabi [29] collects information from one pixel in one sample. A
subset of M pixels selected from original SAR image can be arranged
as M × 1 vector y to serve as input for (5). The M × N sampling
matrix corresponding to y will be comprised of only one ‘1’ in each
row corresponding to locations of selected pixels within SAR image.

3. PROPOSED DESPECKLING TECHNIQUE

The proposed despeckling framework is comprised of three major steps;
selection of subsets of pixels from SAR images, reconstruction of SAR
image from each subset of pixels using CS theory, and statistical
combining of multiple reconstructed images by employing selective 3D
filtering. The proposed framework is shown in Fig. 1. The hierarchical
steps of the proposed framework are described in detail in following
subsections.

Figure 1. Proposed despeckling framework.
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3.1. Selection of Multiple Subsets

In order to formulate multiple partially overlapped subsets of pixels
from m × n SAR image, x, first of all SAR image is divided into P
mutually exclusive (ME) groups of pixels. The pixels in each group
follow regular pattern, and pixels of same group are separated by fixed
distance in horizontal and vertical directions as shown in Fig. 2. In
Fig. 2, the pixels belonging to each group is represented by a unique
symbol. These groups do not overlap and each group contains distinct
pixels. The distance between pixels of same group in horizontal and
vertical directions are h and v respectively. In Fig. 2, h is 4, v is 2 and
P = h × v = 8. Each group contains S = N/P (where N = m · n)
pixels. If image is divided into more number of groups, the distances
between pixels of same groups increases and vice versa.

Let p-th group of pixels be up with p = 1, 2, . . . , P . If pixels in up

are selected in regular pattern as shown in Fig. 2, it can be gievn by
following expression by taking leverage from Matlab syntax

up = x(α : v : m,β : h : n) (6)

Figure 2. Selection of multiple mutually exclusive subsets of pixels.
In this example, 8 subsets of pixels are selected from SAR image.
Each group is represented by different symbol in the image. The
corresponding indices of subsets are also shown as vectors.
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Figure 3. Three dimensional selective filtering.

where
α = 1, 2, . . . , v and β = 1, 2, . . . , h

and
p = β + (α− 1)h

with p ∈ {1, 2, . . . , P} and maximum value of p = P (= v · h) when
α = v and β = h.

Similarly, vectors containing indices of pixels in original SAR
image corresponding to up can be given as

λp = {(i− 1)n + j}|i=α:v:m
j=β:h:n

(7)

where p, α, β are same as for (6). An example of selection of up for
Fig. 2 where, h = 4 and v = 2 is given as

u1 = {x(i, j)|i = 1 : 2 : m, j = 1 : 4 : n}
u2 = {x(i, j)|i = 1 : 2 : m, j = 2 : 4 : n}
u3 = {x(i, j)|i = 1 : 2 : m, j = 3 : 4 : n}
u4 = {x(i, j)|i = 1 : 2 : m, j = 4 : 4 : n}
u5 = {x(i, j)|i = 2 : 2 : m, j = 1 : 4 : n}
u6 = {x(i, j)|i = 2 : 2 : m, j = 2 : 4 : n}
u7 = {x(i, j)|i = 2 : 2 : m, j = 3 : 4 : n}
u8 = {x(i, j)|i = 2 : 2 : m, j = 4 : 4 : n}

(8)

The multiple subsets of image pixels to be used as compressive
samples for multiple reconstruction are formed by combining ‘Q’
number of ME groups of pixels selected from U = [u1,u2, . . . ,uP ]. The
value of Q is selected based on tradeoff between number of multiple
images and edge quality of reconstructed images. Lower value of Q
means fewer pixels for reconstruction of image, hence results in poor
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image quality of reconstructed images, but we can get higher number
of reconstructed images. On the contrary, higher value of Q will
produce sharp high quality reconstructed images, but the number of
reconstructed images will be fewer. Experimental results show that
50% pixels would be able to produce sufficiently high quality sharp
image, hence empirical value of Q = P/2. If Q number of ME groups
of pixels are selected from P number of ME groups, total number of
all possible subsets can be found by following expression

T =
(

P

Q

)
=

P !
Q!(P −Q)!

(9)

where symbol ‘!’ represents factorial. From (9), T distinct
combinations of Q groups out P groups will be obtained. Let Ct =
{c1

t , c
2
t , . . . , c

Q
t } be the t-th combination, where {c1

t , c
2
t , . . . , c

Q
t } are non-

repeating integers between 1 and T . For t-th distinct combination of
Q groups of pixels out of P groups, subset yt can be given as

yt =
⋃

(uc|c ∈ Ct) (10)

where Ct is a vector comprising of non-repeating integers between
1 and P . Similarly, vector comprising of indices of selected pixels
corresponding to yt is written as

Λt =
⋃

(λc|c ∈ Ct) (11)

3.2. Multiple Compressive Image Reconstruction

Once multiple subsets of pixels have been selected from original SAR
image, the next step is to reconstruct SAR image for each subset of
pixels. The yt is M × 1 vector where M = QS. The SAR image
can be reconstructed from each subset yt, t ∈ {1, T} using CS theory
described in Section 2 by considering yt as compressive samples. The
compressive sampling Equation (1) becomes

yt = Stxt = StΨ−1x̂w
t = Θtx̂w

t (12)

where Θt = StΨ−1 is measurement matrix and x̂w
t a vector containing

coefficients of x̂t in wavelet domain. In (12), Ψ−1 represent inverse
wavelet transform. St is t-th sampling matrix corresponding to yt. It
is M ×N matrix produced by taking exactly one ‘1’ in each of M rows
corresponding to the location of pixel of yt within SAR image. The
sampling matrix for t-th subset is determined by using (11)

St(τ, ξ) =
{

1 if Λ(τ) = ξ,

0 otherwise.
(13)
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The point sampling matrix is not sufficiently incoherent with
sparse basis [29], so a blurring filter is incorporated into measurement
matrix as proposed by [29] and measurement matrix becomes

Θt = StΓ−1Ψ−1 (14)

The blur introduced by blurring filter is removed by introducing a
Weiner sharpening filter [30] in inverse measurement matrix [29]. The
inverse measurement matrix is Θ∗

t = ΨΓS−1
t . A SAR image, xt is

reconstructed for each sampled vectors, yt by solving following convex
optimization problem

min
x̂w

t ∈RN
‖x̂w

t ‖1 subject to yt = Θtx̂w
t (15)

(15) is solved for each yt using gradient projection for sparse
reconstruction (GPRS) [26] followed by inverse wavelet transform to
obtain t-th image x̂t.

T number of SAR images are reconstructed corresponding to
T subsets by using (15). The speckle noise is located in high
frequency component of image so sparse reconstruction of image
would help eliminate noise in the reconstructed image. Therefore,
all reconstructed images obtained by solving (15) have lower speckle
noise compared to source image. In the final step, these multiple
reconstructed images are statistically combined by employing selective
3D filtering as discussed in Section 3.3.

3.3. Selective 3-D Filtering

Multiple reconstructed images obtained using (15) are similar in global
perspective but statistically different in local perspective as all these
images are reconstructed by using different sets of pixels. It is well
known that statistical processing of multiple observations of same
scene help reduce additive and multiplicative noise. Moreover, spatial
filtering such as low-pass filtering or median filtering also reduces noise.
In order to exploit the availability of multiple images from single image,
we propose a selective 3D filtering in this paper. In order to better
preserve the edges in final despeckled image, the kernel for 3D filtering
is selected as a function of image gradient.

To identify the presence of edges in an image, the image gradient
is an important tool. The gradient of source SAR image x in horizontal
and vertical directions can be given as

Gh = ∂x
∂h ≈ fh ∗ x Gv = ∂x

∂v ≈ fv ∗ x (16)

where ‘∗’ denotes 2 dimensional convolution; Gh and Gv are gradient
approximations in horizontal and vertical directions respectively.
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In (16), fh and fv are filter kernels in horizontal and vertical directions
respectively given as follows

fh =

( −1 0 +1
−2 0 +2
−1 0 +1

)
, fv =

( −1 −2 −1
0 0 0

+1 +2 +1

)
(17)

The gradient approximations in horizontal and vertical directions
can be combined to give the gradient magnitude, using

G =
√

G2
h + G2

v (18)

G will have higher values at locations where edges are present and
lower values in smoother areas. In the proposed technique, 3D filter is
selected based on the value of gradient approximation at the central
pixel location as shown in Fig. 3. If value of gradient approximation at
any pixel x(i, j) is less than TH = % ·Gmax (where Gmax is maximum
value at any pixel in G and % is a positive constant), R × R window
centered at subject pixel is selected for all T images, and median value
of all selected pixels is returned as pixel at (i, j) location of despeckled
SAR image. If gradient approximation is greater than the TH, the
pixels at (i, j) location of all reconstructed images are averaged. In
mathematical form, despeckled image, x̂ can be written as

x̂(i, j)=





MEDIAN

(
{xt(k1, k2)};

t ∈ {1, T}
k1∈{i−R, i+R}
k2∈{j−R, j+R}

)
if G(i, j)<TH,

1
T

∑T
t=1 xt(i, j) otherwise.

(19)
where MEDIAN represents the median operation, T is the number
of reconstructed images, and 2R + 1 is the size of selected window
for each image. The image obtained by employing (19) is despeckled
image. In the proposed framework speckle is reduced by imposing
dual mechanisms; through inherent noise reduction via compressive
reconstruction (15) and selective 3D filtering (19). Therefore, the
proposed framework leads to better speckle reduction compared to
benchmark despeckling algorithms.

4. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

4.1. Despeckled Image Quality Metrics

In order to measure the performance of despeckling techniques,
following metrics are used.
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4.1.1. ENL

Equivalent number of looks (ENL) [31] is one of the commonly used
metric used to quantify the quality of despeckled SAR images. ENL is
calculated by using following expression

ENL =
(

µx̂H

σx̂H

)2

(20)

where µx̂H
and σx̂H

are mean and standard deviation of homogeneous
area, (x̂H) in despeckled image. The higher the value of ENL, better
the performance of despeckling technique.

4.1.2. Speckle Suppression Index

The ratio of standard deviation to mean (also called coefficient of
variance) is used to measure the speckle strength in an image. Let
x and x̂ be original and speckle reduced SAR images respectively. The
speckle suppression index (SSI) is defined as the ratio of coefficient
of variance of speckle resorter image to the coefficient of variance of
original image as given below [32]

SSI =

√
V AR(x̂)

Mean(x̂)
Mean(x)√

V AR(x)
(21)

SSI is less than 1. The smaller values of SSI means higher
suppression of speckle noise [32].

4.1.3. Speckle Suppression and Mean Preservation Index

ENL and SSI are not considered as reliable measures when the
despeckling algorithm overestimates the mean value. Therefore,
speckle suppression and mean preservation index (SMPI) is used for
simultaneous estimation of speckle suppression and mean preservation
capabilities of despeckling technique. SMPI is given as [33]

SMPI = Q×
√

V AR(x̂)√
V AR(x)

(22)

where
Q = K + |Mean(x̂)−Mean(x)|

and
K =

max(Mean(x̂))−min(Mean(x̂))
Mean(x)
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4.1.4. Correlation Coefficient

The correlation coefficient (CC) for original image, x, and despeckled
image x̂ is calculated as follows

ρx,x̂ =
E[(x− µx)(x̂− µx̂)]

σxσx̂
(23)

where µx and µx̂ are mean values of original and despeckled SAR
images respectively and σx and σx̂ are standard deviations of original
and despeckled images respectively.

4.1.5. Edge Save Index

Edge save index (ESI) reflects the edge preservation capability of
despeckling technique. ESI is measured in both horizontal and vertical
directions. ESI in horizontal direction for m × n SAR image is
computed as [34]

ESIh =

∑m
i=1

∑n−1
j=1 |x̂(i, j + 1)− x̂(i, j)|

∑m
i=1

∑n−1
j=1 |x(i, j + 1)− x(i, j)| (24)

where x̂ is despeckled SAR image; x is original SAR image; m is the
number of rows in SAR image; n is the number of columnsin SAR
image. Similarly, ESI in vertical direction is given as

ESIv =

∑n
j=1

∑m−1
i=1 |x̂(i + 1, j)− x̂(i, j)|

∑n
j=1

∑m−1
i=1 |x(i + 1, j)− x(i, j)| (25)

4.2. Experimental Results

The proposed despeckling technique was implemented in MATLAB
and tested on TerraSAR-X [35] data set. In our implementation, we
consider 8 non-overlapping subsets of pixels as shown in Fig. 2. For
better preservation of edges, 50% pixels are used for reconstruction of
image using GPSR algorithm [26]. In order to select 50% pixels, 4
subsets of pixels are selected out of 8 subsets leading to 70 sampling
matrices. The obtained 70 images are combined by employing selective
3D filtering discussed in Section 3.3. The value of ρ to determine for
threshold for (19) is taken as 0.01 to determine the value of TH in (19).
Haar wavelets with decomposition level of 3 are used as sparse basis
for solving (15).

The proposed despeckling technique is compared with benchmark
and recent despeckling techniques such as Lee [11], Frost [36],
Gamma-MAP [13], wavelets shrinkage [14], probabilistic patch based



220 Iqbal et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. TerraSAR-X dataset: ship in sea. (a) Original (single
look), (b) Lee, (c) Frost, (d) Gamma-MAP, (e) wavelet shrinkage [14],
(f) BM3D [18], (g) PPB [19], (h) proposed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. TerraSAR-X dataset: urban area of Tianjin, China.
(a) Original (single look), (b) Lee, (c) Frost, (d) Gamma-MAP,
(e) wavelet shrinkage [14], (f) BM3D [18], (g) PPB [19], (h) proposed.
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technique [19] and block matching 3D (BM3D) [18]. Three patches are
selected from single look complex (SLC) data of TerraSAR-X. The test
TerraSAR-x images includes; ship in sea near Dubai coastal area, and
urban/rural areas of Tianjin province, China. The despeckling results
of the proposed technique and comparison methods for these three real
SAR images are given in Fig. 4 to Fig. 6.

The experimental results shown in Fig. 4 to Fig. 6 exhibit
that proposed despeckling technique performs better than classical
despeckling filters and recent techniques in terms of visual quality. The
proposed technique not only produces smoother images in homogenous
areas but also preserve edges. The Gamma-MAP and wavelet
shrinkage Techniques tend to blur edges while removing the speckle
noise. On the other hand, BM3D [18] and PPB [19] preserve edges
better compared to conventional despeckling techniques, but artifacts
can be seen in the despeckled real SAR images as shown in Fig. 4 and
Fig. 6. The proposed technique outperformed conventional despeckling
techniques as well as BM3D and PPB in terms of edge preservation as
well as undesired artifacts.

In order to quantify the performance of despeckling techniques,
despeckling performance measuring metrics discussed in Section 4.1
are used. The quantitative results for Fig. 4 to Fig. 6 are given in

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. TerraSAR-X dataset: rural area of Tianjin, China.
(a) Original (single look), (b) Lee, (c) Frost, (d) Gamma-MAP,
(e) wavelet shrinkage [14], (f) BM3D [18], (g) PPB [19], (h) proposed.
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Table 1. Quantitative comparison of despeckling techniques.

Metric Best Lee Frost
Gamma

-MAP
Wavelet

BM3D

[18]

PPB

[19]
Proposed

Fig. 4

ENL ↑ 12.05 8.94 28.33 14.38 25.49 21.25 35.13

SSI ↓ 0.1529 0.1773 0.0997 0.1399 0.1051 0.1164 0.0783

SMPI ↓ 2.6120 2.7755 1.8968 2.124 1.9801 2.0141 1.3789

CC ↑ 0.9019 0.9145 0.7245 0.9337 0.95087 0.9278 0.9638

ESIh ↑ 0.3183 0.4251 0.4345 0.4201 0.6008 0.6321 0.6774

ESIv ↑ 0.3095 0.4031 0.4708 0.4142 0.6059 0.6086 0.6583

Fig. 5

ENL ↑ 11.29 8.58 27.19 15.75 26.22 26.24 44.96

SSI ↓ 0.1505 0.1791 0.1006 0.1445 0.1028 0.1037 0.0731

SMPI ↓ 3.6565 3.8133 2.6795 3.4075 2.8015 1.217 0.9639

CC ↑ 0.9434 0.8969 0.7345 0.8941 0.9245 0.9296 0.9450

ESIh ↑ 0.3345 0.4284 0.3856 0.4627 0.4981 0.6714 0.7183

ESIv ↑ 0.3856 0.4517 0.3945 0.4624 0.4768 0.6287 0.6714

Fig. 6

ENL ↑ 10.98 8.33 25.94 17.29 25.31 24.44 41.71

SSI ↓ 0.1607 0.1839 0.1046 0.1484 0.1094 0.1064 0.0874

SMPI ↓ 2.4832 2.608 1.8168 1.829 1.1986 1.5202 1.1077

CC ↑ 0.9038 0.9239 0.7187 0.9184 0.9091 0.9367 0.9387

ESIh ↑ 0.3545 0.4514 0.3541 0.4571 0.4911 0.7014 0.6974

ESIv ↑ 0.3821 0.4718 0.3745 0.4401 0.4475 0.6314 0.6438

Table 1. It can be observed that the proposed despeckling technique
performs better than other methods in terms of ENL, SSI, SMPI, CC
and ESIv. PPB [19] performed better than the proposed technique
only in terms of ESIh for Fig. 6, but the its performance is worse than
the proposed method in terms of all other metrics for all three test
images. Moreover, it can be seen that speckle suppression capability
of PPB [18] is poor compared to the proposed methods as given in
Table 1. Overall, the proposed despeckling techniques outperformed
benchmark and recent despeckling techniques.
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5. CONCLUSION

A SAR despeckling technique has been proposed using multiple
compressive reconstructed images and selective 3D filtering. Multiple
SAR images are obtained from single SAR image by using compressive
sensing framework. The multiple SAR images are reconstructed in
sparse domain by considering partially overlapped subsets of pixels as
compressive samples, and employing convex optimization algorithm.
The proposed scheme enforces two-fold noise-removal mechanism;
noise elimination while reconstruction of image in sparse domain
and statistical combining of multiple reconstructed images through
3D filtering. The experimental results on single look TerraSAR-x
data set demonstrated the superiority of the proposed technique over
benchmark despeckling techniques in terms of visual quality as well as
despeckling image quality metrics.
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