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Abstract—Applications of permanent magnets bearings have gained
a new interest thanks to the development of rare earth materials,
characterised by residual magnetic induction greater than 1 T. The
present paper proposes a new geometry for permanent magnets
bearings with V-shaped elements, both for a plane slide and for
cylindrical bearings. The aim of this geometry is to give new
possibilities to the application of these bearing systems, by reducing
its inherent instability. A design method, involving Finite Elements
and Magnetic Field Integral Equations analyses, is also described for
defining the most suitable V-opening angle and the two magnetisation
directions. These parameters can be varied in order to reduce the
unstable force in the coupling, and to reach the desired force and
stiffness in the stable direction. The design is founded on the evaluation
of four “geometric” vectors, that depend on the geometry of the
elements. Some results are reported for a reference geometry for both
the slide and the cylindrical bearings.

1. INTRODUCTION

Permanent magnets are a fascinating solution in applications where
friction and wear are the main causes of damage and even of failure.
In fact, since magnetic levitation causes no contact, magnet bearings
are efficiently employed in high speed systems and in cases where
no contamination is required [1–3]. On the other side, the use
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of permanent magnets has been limited in the past because of
the low forces they generate and because of the instability of the
coupling. The limit on the low forces has been enhanced by rare
earths materials, which show residual magnetic induction BR greater
than 1T [4, 5]. The question of instability can be faced in different
ways, e.g., by introducing an active control or diamagnetic elements
or superconductors. In addition the element shapes and the field
directions can be conveniently modified in order to reduce the unstable
force [6]. In this way, although the question of instability is not
completely solved, the control system can be prompter and more
reliable. A new geometry with a V section, defined by an angle α
is proposed, with arbitrary generic magnetisation directions on the
inner and outer elements (Figure 1). Such a geometry may offer
advantageous configurations with respect to the most common passive
bearing solutions limited to rectangular/annular shapes with axial and
radial magnetisations [7–14].

2. THEORETICAL BACKGROUND

The investigation of the new V-shaped geometry requires some
preliminary considerations about the equilibrium and the methods
for evaluating forces. As shown in Figure 1, it is possible to define
MI and ME as the magnetisation vectors of the permanent magnets
that constitute the internal and external elements of the bearing,
respectively. θI and θE are their orientations with respect to the
vertical (z-axis) direction.

2.1. Equilibrium in Magnetostatics

In Magnetostatics the possibility of a stable equilibrium of a
configuration with permanent magnets is definitely excluded by

Figure 1. V-shaped magnetic bearings.
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Earnshaw’s theorem (1842) [15]. In fact, although it may be possible
to find a point where the total force and total torque are zero, such an
equilibrium is always unstable in one or more directions. As already
known, the condition of stability in the direction n is given by the
negativeness of the derivative of the force n-th component with respect
to the displacement in that direction, i.e., ∂Fn/∂xn < 0.

As a consequence of the Laplace equation governing steady
magnetic systems, it could be proved that when µR > 1 and µR = 1
the following relations respectively hold [16]:
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confirming Earnshaws theorem, since at least one term of the sum
has to be positive. On the other side, stable equilibrium configurations
exist for diamagnetic materials (µR < 1), and for superconductors
(µR = 0), for which
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Rare earth materials have a nearly unitary relative permeability
(slightly > 1), therefore their use requires a compensation for the
instability of the equilibrium of forces, e.g., by adding feedback control
loops.

2.2. Force Evaluation

The evaluation of the forces has been carried out in accordance with
the equivalent currents method [17, 18]. In the hypothesis of uniform
magnetisation, which can be conveniently assumed for rare earth
materials, only surface equivalent magnetization currents jS are non
zero:

jS = M× n (3)

In fact, as M is uniform, there is no volume current density:

jV = ∇×M = 0 (4)

According to Laplace’s law the force that acts between two coils
(Figure 2) is given by

F2 = −F1 = −µ0j1j2

4π

∫∫
r(ds1 · ds2)

r3
(5)
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Figure 2. Force between two coils: symbols in (5).

Figure 3. V-shaped magnets: equivalent surface current densities.

For the V-shaped elements, the resultant force F between the two
parts can thus be obtained as sum of the effects of the interactions of
each current of the inner part with the four currents of the outer one. In
Figure 3, only half section is shown, cause sections and magnetisations
are supposed to be symmetric.

By the application of (5) to the V-shape, a total of 16 integrals
come out, that can be gathered in four groups, each one depending
on the magnetisations MI and ME and on the geometry through four
geometric vectors Ai:

FE = −FI =
µ0MIME

4π

[
sin θI sin θEA1 + sin θI cos(α + θE)A2

+sin θE cos(α + θI)A3 + cos(α + θI) cos(α + θE)A4

]
(6)

As shown in (6) the influence of the magnetisation angles is defined
by trigonometric coefficients that multiply the geometric vectors [19].
Thus, once such vectors are known, the influence of the magnetisation
direction of MI and ME can be studied in detail. For instance the
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most suitable directions for achieving the desired force and stiffness
can be evaluated. Such design problem requires the knowledge of the
geometric vectors, whose expressions are of the kind reported for A1

in (7) (see Figure 3 for symbols).
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The expressions for A2, A3 and A4 have the same form; only the
integration domains change:
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It is worth noting that when one magnetisation is inverted in
direction, also the force results upturned. Consequently also the
stable/unstable directions are reversed.

3. GEOMETRIC VECTORS EVALUATION

Two different approaches have been followed for evaluating the
geometric vectors, one based on Magnetic Field Integral Equations
and the other on Finite Element calculations. Both these approaches
are based upon the following consideration: according to (6), when two
axial magnetisations are considered (θI = θE = 0◦) the force on each
element depends only on A4. Similarly when θI = θE = 90◦ − α only
A1 is involved, when θI = 90◦ − α, θE = 0 the force is proportional to
A2, and finally when to θI = 0, θE = 90◦ −α the force is proportional
to A3. Thus, when the force can be evaluated for the four reference
cases with particular magnetisation directions, it is rather simple to
determine the geometric vectors. The above mentioned approaches
differ in the method for evaluating the forces, as described below.

3.1. Magnetic Field Integral Equations Method

Magnetic Field Integral Equations (MFIE) are applied to a
discretized representation of the bodies under examination and solved
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numerically [20, 21]. The main unknown in this approach is the
magnetisation in each elemental volume, which is then used in the
force expression [22]. In this case the magnetisation is given, so
the method affords the numerical solution of expressions as (5) by
a purpose-developed software. A research computer code, developed
at the School of Engineering of the University of Pisa, has been used to
simulate the behavior of the proposed magnetic bearing configuration.
The code is based on an integral 3-D formulation that reduces the
field analysis to the analysis of an equivalent network. The active
regions only (magnetic materials and current carrying conductors, if
present) are discretized by using elementary volumes, and an equivalent
network is built. A detailed description of the formulation is reported
in [23], while in [24–26] application examples to the analysis of
electromechanical devices are described.

3.2. Finite Element Method

The evaluation of the forces for the reference cases has also been
obtained by Finite Element (FE) Analysis [22] by means of the Ansys
code, Emag package. Two models have been defined, distinguishing the
plane case by the 3D case in order to reduce time for calculations. Very
fine meshes are required around the magnets in order to define correctly
the magnetic induction vector B. Examples of the used models are
shown in Figure 4, for the conic bearing in axi-symmetric position and
in plane symmetry condition [27].

Considering that they follow completely different approaches,
results obtained by these two methods, and by the use of 6 have shown
a very good agreement, with differences lower than 6–7%.

4. PLANAR V-SHAPED SLIDES

The V-shaped geometry has been applied for defining the section of
a slide (Figure 1). Since an infinite length has been supposed, the
problem has been solved by a 2D analysis.

Figure 4. FE models: plane and 3D analyses for the conic bearing.
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Figure 5. Reference geometry for the V-shaped slide; half section;
dimensions are in millimeters.

Figure 6. Definition of forces and parameters for the analysis.

4.1. Geometry

The geometry described in Figure 5 has been introduced as reference
case for conducting the FE and MIE calculations. The opening angle
α is posed equal to 45◦ and the magnitude of the magnetisations are
fixed at 652530A/m.

The force acting between the elements of the slide has been
evaluated for different relative positions of the parts. Assuming as
fixed the outer elements, the location of the inner elements can be
identified by three degrees of freedom: the parameters e, z and ϕ in
Figure 6 have been adopted in the present study. A simplification can
be done when there are no eccentricity and rotation (e = ϕ = 0◦),
since a plane of symmetry is present and only half geometry can be
considered.
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Figure 7. Dimensionless geometric vectors for symmetric slide.

Figure 8. Dimensionless geometric vectors for symmetric slide.

4.2. Results

The first results, in dimensionless form (as defined in Figure 6 and
reported to the geometry of Figure 5), are the geometric vectors in the
symmetric location, where only their axial component is present. Since
they have the dimensions of [L]2, the geometric vectors are referred to
the mean area Am, described by a unitary length and a mean width,
wm. It is also worth noting that results are reported for the inner
elements (Figure 6), those relative to the outer ones being opposite.

As shown in Figure 7, in the symmetric position and for an



Progress In Electromagnetics Research M, Vol. 26, 2012 213

Figure 9. Dimensionless geometric vectors for symmetric slide.

opening angle of 45◦, the geometric vector A2 is equal to A3. Once
such geometric vectors are known, the influence of the magnetisation
directions can be easily evaluated. In Figure 8 some examples for
particular combinations of the magnetisation angles are reported. It
can be noted that for equal magnetisations, the maximum force is
obtained when θI = θE = 10◦ but varies markedly with θI . The force
remains almost constant when θI = −θE . These conditions are suitable
for axial bearing applications, while an horizontally loaded system is
supposed to have very low F ′

z, e.g., θI = θE ≈ 56◦. Moreover, for
θE = 180◦ + θI opposite values are obtained with respect to θE = θI .

The V-shape with axial magnetizations is then varied through the
angle α, as shown in Figure 9. It should be noted that all the curves
in the diagram consider the same volume of permanent magnets, since
the area of the section is maintained the same.

The highest force is obtained choosing the angle α = 0◦ and an
axial displacement g′ ' 0.6. As α grows, the maximum force is reduced
in magnitude and is also shifted towards lower values of g′. The
behaviour of the slide has also been investigated for different values
of the eccentricity in order to determine the ratio of stable-unstable
forces. Since the problem is not dependent on the length co-ordinate,
the stability condition for µR = 1 becomes:

∂Fe

∂e
+

∂Fz

∂z
= 0 (8)

Therefore the stable and the unstable directions have opposite
stiffness K, (Kn = −∂Fn/∂xn).

According to Figure 10 the slide is stable in the z direction and



214 Di Puccio et al.

Figure 10. Dimensionless axial and transverse forces (α = 45◦,
ϕ = 0).

unstable in the other one. It is important to underline that in the
practical range of variation of e′ (< 0.1) the ratio of stable/unstable
force is 10 ÷ 20. Another interesting effect is the presence of a tilting
torque, that grows as a little eccentricity appears, even if the rotation
remains equals to zero. A position of g′ = 0.5 appears advantageous,
giving M ′ = 0 for every e′.

The effect of this moment is to produce a rotation of the inner
tracks. The reactive forces and moment due to this rotation are
represented in Figure 12 for rather small angles. The z component of
the force does not change markedly for ϕ < 10◦ but a transverse force
soon arises, which is unstable. On the other side the reactive moment
has a stabilising effect. Even from these considerations a good working
point is g′ ≈ 0.5.
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Figure 11. Dimensionless moment about point Ω (α = 45◦, ϕ = 0).

5. AXISYMMETRIC V-SHAPED BEARINGS

The V-shaped section has also been investigated for conic bearings
applications (Figure 1), with the same geometric dimensions considered
for the slide (Figure 5).

5.1. Geometry

For the sake of conciseness, the study of conic bearing has been carried
out by considering only two degrees of freedom, e and z (Figure 13).
Even for this geometry, a plane analysis, with axial-symmetric option,
has been performed for all the cases with eccentricity e = 0. A 3D
model has been defined for e 6= 0; also in this case a simplification can
be done, since a plane of symmetry, the one containing the elements
axes, still exists (Figure 4).

5.2. Results

The analyses described for the slide geometry have been repeated for
the cylindrical bearing. Geometric vectors obtained for the axial-
symmetric case are represented in Figure 14, in dimensionless form
with respect to a mean tapered area Am (Figure 13). The trend of the
curves can be used for evaluating the behaviour of the force in the four
reference magnetization cases.

By comparing diagrams in Figures 7 and 14, that is the slide and
the conic bearing, a rather strong similarity can be observed especially
for the first two vectors. In Figure 15, a study of the variation of the
force with the internal and external magnetisation directions, is shown.
Again a similarity with the slide behaviour is evident.
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Figure 12. Dimensionless axial and radial forces and moment about
point Ω (α = 45◦, e = 0).
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Figure 13. Description of the geometry for a cylindrical bearing.

Figure 14. Dimensionless Ai axial components (α = 45◦, e = 0).

The influence of the angle α on the dimensionless force is shown
in Figure 16 as a function of z/h, still for the axial-symmetric problem.
The magnetisation is supposed to be parallel to the angle α but with
opposite direction in the inner and outer rings. It can be noted that
the condition with α = 0◦ corresponds to an annular bearing with axial
magnetization, characterised by zero force in z = 0. Conversely, as α
grows the conic bearing reaches lower maximum force but in the initial
position has a load carrying capacity.

Investigations about the effects of eccentricity have been carried
out for axial equiverse magnetisations, as for the slide. Results are
reported in Figure 17.
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Figure 15. Dimensionless axial force for different bearing angles.

Figure 16. Dimensionless axial force for different bearing angles.

It can be noted that the influence of the eccentricity on the axial
component is almost negligible for the range considered as working
point (0 < g′ < 0.6). Moreover, as for the slide, the axial direction is
the stable one, while the radial is unstable, in this case the stability
condition, because of the axial symmetry, is the following

1
2

∂Fe

∂e
+

∂Fz

∂z
= 0 (9)

Thus, by comparing (8) and (9), it is evident that the unstable
radial force in the cylindrical bearing is nearly a half of that one for
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Figure 17. Dimensionless axial and radial forces.

the slide. Due to the many similarities observed between the above
described geometries, it is supposed that also the reaction to a rotation
for the cylindrical bearing is near to the one described in Figure 12.

6. APPLICATION EXAMPLE

An example of the application of the conic bearing as axial bearings is
shown in Figure 18. A shaft carrying a micro-turbine is supported by
two bearings arranged in symmetric disposition.

The considered characteristic of the single bearing is the Fz curve
vs. g reported in Figure 19(a). In order to avoid any interference in
the working conditions, the inner rings of both elements are assembled
on the shaft with an initial gap of g = 0.3mm. Due to the symmetric
position of the bearings, the resultant force F on the shaft is given by
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Figure 18. Micro-turbine with conic magnetic bearings; dimensions
are expressed in millimeters.

(a) (b)

Figure 19. Micro-turbine with conic magnetic bearings. (a) Bearing
characteristic; (b) system characteristic: F resulting force, FA and FB

acting on the bearings BA and BB.

the difference of the actions in each bearing, FA and FB.
The thrust of the turbine is directed to the right, so the shaft

tends to move in that direction, reducing the gap in the BA bearing
and increasing it in the BB one (see Figure 18). Thus the resultant
magnetic reaction on the shaft can be obtained as in Figure 19(b). As
already observed for the single bearing, also the double system results
unstable in the radial direction. On the other side, the tilting torque
observed in Figure 11 for the slide and expected also for the cylindrical
bearing is here mainly self-balanced because of the disposition of the
elements.
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7. CONCLUSIONS

A V-shaped section has been proposed and described for plane slide
and conic bearing applications. A method has also been described for
designing these elements, considering as parameters the V-half angle
α and the directions of the magnetisation vectors. Some results are
reported for a reference geometry with α = 45◦. Investigations of the
axial and radial forces have been presented, with some considerations
about the stability of the bearing. The presented results can be
used for defining permanent magnet bearings with low instability in
order to improve the efficiency of the control system. Anyway, it is
also possible to study an advantageous combination of magnetic and
standard mechanical bearings, the last ones working in the unstable
direction and consequently under a rather low force.

As an example, the application of conic bearings to a micro-
turbine has been reported, since these devices represent a promising
context for future applications of magnetic bearings.
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