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Abstract—In the received signal strength (RSS) based indoor wireless
localization system, RSS measurements are very susceptible to the
complex structures and dynamic nature of indoor environments,
which will result in the system failure to achieve a high location
accuracy. In this paper, we investigate the indoor positioning problem
in the existence of RSS variations without prior knowledge about
the localization area and without time-consuming off-line surveys.
An adaptive sparsity-based localization algorithm is proposed to
mitigate the effects of RSS variations. The novel feature of this
method is to adjust both the overcomplete basis (a.k.a. dictionary)
and the sparse solution using a dictionary learning (DL) technology
based on the quadratic programming approach so that the location
solution can better match the actual RSS scenario. Moreover, we
extend this algorithm to deal with the problem of positioning targets
from multiple categories, a novel problem that few works have ever
concerned before. Simulation results demonstrate the superiority of
the proposed algorithm over some state-of-art environmental-adaptive
indoor localization methods.

1. INTRODUCTION

Nowadays, with the rapid development of wireless local area network
(WLAN) technology, indoor positioning based on WLAN is especially
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favored because of no requirement for extra infrastructure investments.
Indoor localization systems based on angle of arrival (AOA) or time
of arrival (TOA) have been proposed and have reportedly achieved up
to 1 m localization granularity [1–3]. However, the measurements of
AOA or TOA necessitate special hardware at either the server side or
the client side. Since RSS can be easily obtained by a WiFi-integrated
mobile device without any additional hardware modification, many
WLAN-based positioning systems rely on the location dependency
of RSS. Generally, there are two kinds of mainstream methods for
the RSS-based indoor positioning, which are the propagation model
based method and the fingerprinting based method [4–6]. Existing
model-based positioning approaches mainly depend on the specific
path loss model that converts RSS measurements into corresponding
distances. The main difficulty of this method is to establish a reliable
signal propagation model and estimate its path loss parameters in
an indoor environment due to the unpredictable nature of indoor
radio channel. In order to obtain accurate localization results, the
fingerprinting method need record RSSs at every possible location
through off-line training process and compare the RSS of each target
to be localized with the recorded RSSs to find the best matching RSS
pattern. However, this method is also environment dependent and any
significant change on the topology implies a costly new recalibration.

In recent years, compressive sensing (CS) which receives a
great deal of attention, has been successfully applied for indoor
localization, which results in higher localization accuracy and reduces
the dimensions of measurement vectors [7–9]. Since targets generally
lie at a few points in the discrete spatial domain, we can exploit this
inherent sparsity to convert the localization problem into a sparse
recovery problem. In [7, 8], it has been realized that the localization
problem can be formulated as a distributed sparse approximation
problem, by which inter-sensor communication costs can be reduced
significantly. However, a localization dictionary has to be locally
estimated at each sensor node. Feng et al. proposed a server-
based sparse multiple target localization algorithm in [9], where the
localization dictionary is constructed at the location center (i.e., the
server) and each sensor only transmits a small number of compressive
measurements to the location center. However, the above methods
neglected a number of factors that affect the RF signal propagation
in an indoor environment including multi-path, channel fading,
temperature and humidity variations, opening and closing of doors,
and shadowing, etc., which will cause the system failure to achieve a
high location accuracy. An affinitybased CS localization scheme (ACS)
is proposed by exploiting affinity propagation and cluster matching to
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reduce the effects of RSS variations in [10]. But this method may
result in large positioning bias for the reason that the false cluster
matching can take place due to noisy measurements and environmental
variations. In addition, the neural network (NN) localization method
in [11] proposed a learning-based approach utilizing training samples
to calibrate RSS variations. However, the assumption that the indoor
space remains consistent from the training phase to the localization
phase thus does not hold true in practice.

In this paper, we continue to investigate the CS-based indoor
positioning problem in the existence of RSS variations and an adaptive
RSS-based sparse localization algorithm (ARSL) is proposed to adjust
both the overcomplete basis and the sparse solution so that the solution
can better adapt to dynamic nature of indoor environments. Different
from the previous work, we use DL techniques to combine the location
estimating and RSS modifying into a unified CS framework based on
current APs observations. Since DL techniques can learn dictionaries
to better fit the actual RSS model, the effects of RSS variations due to
channel impediments can be effectively mitigated. We also extend this
algorithm to tackle the problem of positioning targets from multiple
categories, which few works have ever concerned before. Furthermore,
we provide the comprehensive simulations to justify the validity of our
algorithm.

The notation used in this paper is according to the convention.
Symbols for matrices (upper case) and vectors (lower case) are in
boldface. (·)T , (·)H , ‖θ‖0, ‖θ‖1, ‖θ‖2, ‖θ‖F , IN , and ⊗ denote
transpose, conjugate transpose (Hermitian), 0-norm, 1-norm, 2-norm,
Frobenius norm, identity matrix with the dimension N , and the
Kronecker product, respectively. For any matrix Y, vec(Y) is denoted
as the vertical concatenation of the columns of Y, and tr(Y) is
the trace of Y. Finally, x̂ denotes the estimate of the parameter
of interest x. The remainder of the paper is organized as follows.
Section 2 describes the system model assumed throughout this paper
and formulates as a sparse recovery problem. In Section 3, we
introduce a scheme calibrating the overcomplete basis dynamically
and estimating the sparse solution adaptively. The extension of the
ARSL algorithm for positioning targets from multiple categories is
investigated in Section 4. Simulation results are given in Section 5.
Finally, Section 6 concludes the paper.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Consider K unknown-location targets are located in an area of interest
which is divided into N grids. Assume M access points (APs) in the
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targeted localization area which take RSS measurements from these
targets at the grid. In general, N À M > K, and the localization
problem can be modeled as a sparse problem since at each time instance
the user is located at a specific point in space. The goal is to determine
the locations of these targets simultaneously and accurately, using only
a small number of noisy RSS measurements.

Assume that the locations of the targets over the grid is denoted
by θ = [θ1, . . . ,θN ], which is a sparse vector that having in total K
nonzero entries, where the indices of nonzero entries in θ represent
the actual locations. When L (< M) available APs are selected to
locate the targets, we let y be a L × 1 column vector recording the
measurements of the L APs. Then, we formulate the location problem
as a following CS problem

y = ΦΨθ + V ∆= Hθ + V (1)

with Ψ being a M ×N energy decay matrix defined by

Ψ =




S1,1 S1,2 . . . S1,N

S2,1 S2,2 . . . S2,N
...

...
...

...
SM,1 SM,2 . . . SM,N


 (2)

where Si,j , 1 ≤ i ≤ M, 1 ≤ j ≤ N represents the RSS value
transmitted from the jth grid and received by the ith AP. The
L ×M matrix Φ is AP selection operator as defined in the following
section. The matrix V represents noise terms, which is assumed as
the independent and identically distributed (i.i.d.) Gaussian process,
uncorrelated with the signals.

CS provides a novel framework for recovering signals, which are
sparse or compressible under a certain basis, with far fewer noisy
measurements than the traditional methods. To make this possible,
the overcomplete basis Ψ must be obtained in advance. There are
generally two methods to construct the basis matrix Ψ for RSS-based
indoor localization problem, i.e., path loss model and fingerprinting.
Although the fingerprinting method can achieve higher accuracy, its
off-line stage is obviously time-consuming process especially inside
large buildings and dynamic environments. Additionally, due to
dynamic environments changes and the possibility of moving some APs
to new locations, the whole off-line site survey needs to be repeated
from time to time which is impractical and time-consuming as well. On
the contrary, although a simple parameterized path loss formula is only
approximate to model signal power changes indoors, it is commonly
used for target localization due to its simplicity. Therefore, we use the
path loss model method to construct the basis matrix Ψ in this paper.
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The traditional log-distance path loss model is as follows [12]:
PL = PL(d0) + 10α log10(d/d0) (3)

where PL(d0) is the path loss at a close-in reference distance d0 and
α is the path loss exponent. For simplicity, we assume there is 30 dB
attenuation at d0 = 1 m. The path-loss exponent is usually set between
2 and 5 according to reference [12], and α = 2.6 is suggested to be used
in an indoor environment with hard partitions in [12]. Then, we can
calculate Si,j using the Eq. (3) and the initial overcomplete dictionary
can be constructed according to (2). It should be noted that H can be
known using the above overcomplete dictionary, which means that we
can estimate the actual coordinates of targets as long as we find the
positions of nonzero values in θ. That is, the problem of localization
is converted into one of sparse signal recovery from (1). Moreover, the
number of these dominant nonzero values gives K.

However, the above path loss model is very coarse where a number
of factors that affect the signal propagation are neglected and the non-
ideal factors are inevitable in a practical localization system. When
these happen, the predefined dictionary can not effectively express
the actual signal, which will cause performance degradation in the
sparse recovery process. For avoiding the difficulty of estimating all
kinds of time-varying factors, we assume the error dictionary matrix Γ
which describes the difference between the predefined dictionary and
the practical received signals. Note that the error matrix Γ is time-
varying and can not be known in advance. In this scenario, the sparse
positioning model is correspondingly modified as:

y = (H + Γ)θ + V ∆= Dθ + V (4)
where D = (H + Γ) denotes the actual overcomplete basis with
time-varying interferences. To prevent D from having arbitrarily
large values (which would lead to arbitrarily small values of θ), it
is common to constrain its columns d1, . . . ,dN to have a 2-norm
less than or equal to one. Since the mismatch exists between the
columns of D and the corresponding columns of the ideal basis
H, the performance degradation is inevitable in the sparse recovery
process. In order to obtain accurate localization results, we will exploit
a DL technology to calibrate RSS variations according to current
measurements automatically.

3. ARSL ALGORITHM BASED ON DICTIONARY
LEARNING

Focused on the above problem, an adaptive sparse recovery algorithm
based on DL is proposed in this paper, which calibrates the
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overcomplete basis automatically so that the sparse solution can better
fit the actual scenario. Firstly we describe the ARSL algorithm for
targets from single category, and then extend this algorithm to locate
multiclass targets in the next section.

3.1. Access Point Selection

Due to the wide deployment of APs, the total number of detectable
APs is generally much greater than that required for positioning, which
will lead to redundant computations. Therefore, choosing only a subset
of detectable APs for positioning is an intuitive way to reduce the
computational burden on and storage requirement of the device [13].
This motivates the use of AP selection techniques to select a subset
of available APs used for positioning. According to (2), the set of
APs can be denoted as M, with the number of APs in M is M . At
the same time, the number of RSS measurements should be equal or
more than O(K log(N/K)) to make sparse recover successful according
to the CS theory [14]. Therefore, the objective of AP selection is to
determine a set L ⊆ M such that the number of APs in L should obey
O(K log(N/K)) ≤ L ≤ M . This process is carried out by using the
AP selection matrix Φ. Each row of Φ is a 1 × M vector with all
elements equal to zero except Φ(l) = 1, where l is the index of the AP
that is selected for positioning. Here we investigate the strongest AP
selection method [15] to select Φ. In this approach, the set of APs
with the highest RSS readings is selected, arguing that the strongest
APs provide the highest probability of coverage over time. Therefore,
we can sort the measurement vector into the decreasing order of RSS
readings, and the APs corresponding to the least indices are used.
Since Φ is created based on the current measurement vector y, this
criterion may create different Φ at different runs.

3.2. Dictionary Learning Method

The key feature of adaptive sparse recovery in this paper is to
adaptively adjust the overcomplete basis according to the current
RSS readings, and thus the positions of unknown targets can be
better recovered from measurements with the presence of environment
variations. This process generally learns the uncertainty of the
dictionary, which is not available from the prior knowledge, but rather
has to be estimated using a given set of samples. Several different DL
algorithms have been presented recently [16], however, these methods
generally can not effectively handle training data changing over time.
To overcome this shortcoming, we propose a simple DL approach by
using the quadratic programming approach. So far, most DL methods
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are generally based on alternating minimization. In one step, a sparse
recovery algorithm finds sparse representations of the training samples
with a fixed dictionary. In the other step, the dictionary is updated to
decrease the average approximation error while the sparse coefficients
remain fixed. The proposed method in this paper also uses this
formulation of alternating minimization.

3.2.1. Sparse Recovery Phase

According to the CS theory, the above problem of noisy sparse signal
recovery in (4) can then be converted into a following optimization
problem

min ‖y − Dθ‖2
F /2 + λ ‖θ‖0 (5)

where λ is the regularization parameter and typically λ = σ
√

2 log(N)
where σ is the noise level [17]. Note that (5) is NP-hard to solve.
An alternative is to use 1-norm instead of 0-norm to enforce sparsity,
which leads to

min ‖y −Dθ‖2
F /2 + λ ‖θ‖1 (6)

However, it should be emphasized that larger coefficients in θ are
penalized more heavily in the 1-norm than smaller coefficients, unlike
the more democratic penalization of the 0-norm [18]. In practice,
large coefficients are usually the entries corresponding to the actual
positions of targets, while small coefficients commonly represent the
noise entries. The imbalance of the 1-norm penalty will seriously
influence the recovery accuracy, which may result in many false targets.
Therefore, in this paper we choose the reweighted 1-norm minimization
algorithm in [18] as our sparse recovery method, which can overcome
the mismatch between 0-norm minimization and 1-norm minimization
while keeping the problem solvable with convex estimation tools.

3.2.2. Dictionary Learning Phase

In this phase, the dictionary is optimized to better represent the data
of the current samples. Since the sparse coefficients are fixed in the
DL stage, the resulting optimization problem becomes:

min ‖y −Dθ‖2
F /2, s.t. dH

i di ≤ 1, i = 1, . . . , N (7)

in which ‖y −Dθ‖2
F can be written as

‖y−Dθ‖2
F = tr

[
(y−Dθ)H (y−Dθ)

]

= tr
(
DθθHDH

)−2tr
(
yθHDH

)
+tr

(
yyH

)

= vec
(
DH

)H(
I⊗ θθH

)
vec

(
DH

)−2vec
(
θyH

)H
vec

(
DH

)
+tr

(
yyH

)
(8)
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Let’s introduce several new expressions for clarity of notation

α
∆= vec

(
DH

)

G ∆= I⊗ θθH

γ
∆= vec

(
θyH

)

Omitting the terms that do not depend on D, the objective function
in (7) can be equivalent to

min
1
2
αHGα− γHα, s.t. dH

i di ≤ 1, i = 1, . . . , N (9)

Note that (9) is a standard form of constrained quadratic programming
problem which can be solved by any standard optimization method,
such as the gradient projection algorithm in [19]. Moreover, the matrix
G is obviously a positively definite matrix, and thus (9) is convex
function and can be guaranteed to find a global optimum [20] in the
DL phase. This alternating minimization continues until the algorithm
attains a specified maximum number of iterations. For completeness,
a full description of the algorithm is given in Algorithm 1.

Algorithm 1:
1. Initialization: collect RSS readings at APs and send to the

location server; set the dictionary Ψ
according to (2) and (3);

2. AP Selection: obtain measurement matrix Φ according to
the strongest AP selection method;

3. DL Stage:
input D̂

(0)
= ΦΨ and set the number of iterations T ;

j = 1;
while j < T

1) use the reweighted 1-norm algorithm to compute

the sparse vector θ̂(j) with D̂
(j−1)

fixed for each
sample;

2) use the gradient projection algorithm to minimize

the objective function in (9) with respect to D̂
(j)

keeping θ̂(j) fixed;
j = j + 1;

end while
4. Output: θ̂ = θ̂(T ).
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4. POSITIONING ALGORITHM FOR MULTICLASS
TARGETS

Although the CS theory has been applied to the indoor positioning
systems [7–9], most of the existing work assumes that targets in the
location area belong to the same category. In fact, the category of
targets may be usually different due to the device heterogeneity. A
realistic wireless network consists of wireless devices of dramatically
different characteristics, e.g., laptops, PDAs, smart phones, and Wi-Fi
location tags, etc.. Thus, the different categories of targets could have
different path decay models, based on which different energy decay
matrix Ψ can be formulated. Even when the targets follow the same
path decay model as Eq. (3), the transmitted power and the path loss
exponent α could be different, producing different categories of targets.
Considering the dissimilarity in the training examples, in this paper
we divide a complete DL task into several different subtasks, and each
task is defined as learning a dictionary from a certain type of examples,
which is obtained by K-mean clustering algorithm [21].

Assume there are Q categories of targets, with each having its own
overcomplete matrix characterizing the category-specific target energy
decay features. Denote these matrices by Ψi for i = 1, 2, . . . , Q, which
can be obtained using the same method in Section 2. Then the matrix
Ψmulti for positioning targets from multiple categories can be defined
by

Ψmulti =




Ψ1 0 . . . 0
0 Ψ2 . . . 0
...

...
...

...
0 0 . . . ΨQ


 (10)

Similarly we can obtain AP selection operator Φmulti

Φmulti = [Φ1 Φ2 . . .ΦQ] (11)

where Φi for i = 1, 2, . . . , Q is the L×M measurement matrix defined
in Section 3.1, which contains exactly one 1 at each row, with all other
entries filled by 0’s. The unknown vector containing the positioning
information is denoted by θmulti and we have

θmulti =
[
θT

1 θT
2 . . . θT

Q

]T
(12)

where θi is a N × 1 vector that denotes the location of targets from
category i in N grids. Let Hmulti = ΦmultiΨmulti, we can obtain

ymulti = ΦmultiΨmultiθmulti + Vmulti = Hmultiθmulti + Vmulti (13)

where Vmulti still represents Gaussian noise terms. To reflect
dynamic RSS changes in indoor environments, we also define the
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error dictionary matrix Γmulti to describe the difference between the
predefined dictionary and the practical received signals. Then, the
sparse positioning model is correspondingly modified as:

ymulti = (Hmulti+Γmulti)θmulti+Vmulti
∆= Dmultiθmulti+Vmulti (14)

where Dmulti = [D1 D2 . . .DQ] denotes the actual basis with time-
varying interferences for multiclass targets. Similar to the single-
class target localization, here we do not estimate the changeable path
loss exponent dynamically to adapt to dynamic nature of indoor
environments, while we use DL techniques to learn dictionaries to
better fit the actual RSS model.

Once RSS samples from multiclass targets are categorized
by K-means clustering method all sub-dictionaries are learned
simultaneously by the server using the same method as Algorithm 1.
Thus, a big DL task is divided into several subtasks which can make
the individual sub-dictionary represent the model of samples more
accurately. At the same time, multiple DL also enhances the speed of
DL on each tasks and the final reconstruction accuracy. Once multiple
DL procedures are finished, the eventual results about the sparse vector
θmulti can be obtained simultaneously whose indices of nonzero entries
represent the estimated positions.

5. SIMULATION RESULTS

In order to evaluate the performance of the proposed ARSL method
and compare it with the ACS approach in [10] and the NN approach
in [11], we performed extensive simulations. The localization area of
the scene (which is the part of the third floor plane in the electrical
engineering department of Nanjing Normal University) is shown in
Fig. 1, which is divided into N = 30 × 23 grids in simulations. This
means yielding a 1 m resolution along both x and y axes. A total
of 17 APs are used to measure RSS values in the localization area.
The target locations are selected at random, uniformly, within the
measurement area. The experiments have been run on an Intel Core
i5 CPU at 3.1 GHz processor with 8 GB memory. In the following
sections, the performance of the localization system is evaluated by
the average localization error (ALE), which is calculated by averaging
the Euclidean distance between the estimated locations of the targets
and their actual locations over the testing points by 100 simulations.

5.1. Simulation Results for Targets from Single Category

In this section, we assume that the transmitted signal power from
each target is set the same value as 20mW (13 dBm), and the
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Figure 1. The configuration of
localization area. The black dots
show the locations of the APs.
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Figure 2. Effects of the number
of APs on the localization error.

path-loss exponent α is set 2.6 to construct the initial energy decay
overcomplete basis. To investigate the effects of RSS variations, a
random perturbation matrix Γ is added on the overcomplete basis
Ψ. Since the variation of RSS measurements is wide (from 5 dBm to
20 dBm) in typical 802.11 infrastructure according to the experimental
results in [22], each element in the matrix Γ is assumed to subject to
the uniform distribution with zero mean and its standard deviation is
b ∈ [5 dBm 20 dBm]. The measurement noise is assumed to be a white
Gaussian random variable with zero mean and standard deviation
1mW.

In the first test case, the localization errors versus the number
of APs used in three different algorithms are studied when b is set to
13 dBm and the number of targets is fixed at 2. As the simulation
results shown in Fig. 2, it is noticed that as an overall trend, the larger
number of APs, the smaller the error for all algorithms. However,
even though the number of APs is sufficient, the localization error of
the ACS and NN methods is still more than 2 m due to the effects
of RSS fluctuations. By comparison, the localization error of the
ARSL algorithm is small since the proposed method performs the DL
technique to mitigate the effects of RSS variations. When the number
of APs used for the ARSL algorithm comes to 6, which is just more than
O(K log(N/K)) ≈ 5.1, the localization error becomes below 1.5 m.
Moreover, with the number of APs increasing, the ALE of the ARSL
algorithm will not apparently decrease after convergence. This result
shows that the ARSL algorithm based on DL can obtain the location
estimates by using only a small number of noisy measurements, even
if the fluctuation of RSS variations is serious.
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The second simulation investigates the performance of three
different algorithms as a function of the number of targets when b
is also equal to 13 dBm. The number of targets changes from 1 to 7,
and the number of APs is fixed at 16. Fig. 3 illustrates the location
error with respect to the number of targets. With the increase in the
number of targets, the ALE of the NN algorithm increases quickly due
to the high sensitivity to the estimated number of targets. On the
contrary, the variations of ALE for two CS-based algorithms are very
small. Although the ACS method can achieve better accuracy than
the NN method, it is clearly outperformed by the proposed algorithm
under the same parameter settings. This is because the fluctuation
of RSSs may result in cluster mismatch in the ACS method while the
ARSL algorithm exploits the DL technique to correct the effects of RSS
variations. The importance of the low sensitivity of our algorithm to
the number of targets is twofold. First, the number of sources is usually
unknown, and low sensitivity provides robustness against mistakes in
estimating the number of targets.

In the third simulation, the localization errors with respect to
standard deviation b are studied. The number of targets is fixed at 3,
and the number of APs is set as 16. Here, b changes from 5 dBm to
20 dBm. From Fig. 4, both ACS and NN algorithms perform poorly as
b increases. The average error is increased approximately from 1.9 m
to 3.7 m and 2.0m to 4.0 m, respectively. By contrast, the ALE of
our algorithm remains almost constant with b changes from 5 dBm to
20 dBm. These results reveal that the ARSL method is very robust to
large fluctuation of RSS variations and can effectively enhance location
accuracy.
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Figure 3. The localization errors
with respect to the number of
targets.
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5.2. Simulation Results for Targets from Multiple Categories

We now report our simulation results when there are targets from
multiple categories. Here we assume that all targets follow the same
energy decay model defined by Eq. (3) but with different transmitted
power Pt and α value. Let Q be the total number of target categories.
In our simulation, Q varies from 1 to 3, and the corresponding number
of each category is the same value as two. The parameter settings for
the three categories of targets are specified as follows.

Category 1: Pt = 10dBm, α = 2.0; (15)
Category 2: Pt = 15dBm, α = 3.0; (16)
Category 3: Pt = 20 dBm, α = 2.6; (17)

The simulation setup is similar to that of single category target
localization except that RSS samples are firstly classed by the
K-mean clustering algorithm, and all sub-dictionaries are learned
simultaneously by the server using the same DL method in
Algorithm 1.

Figure 5 shows the implementation result about the localization
errors versus the number of APs, when b is also set to 13 dBm. As
noticed that once the number of measurements exceeds the minimum
bound as required by the CS theory, our proposed positioning system
achieves the best performance among the three approaches. As shown
in Fig. 5, the ARSL algorithm leads to the location estimate error
improvement of about 1 m and 1.5 m over that of the ACS and NN
methods, respectively, when 12 APs are used.

Accordingly, it can be seen from the localization errors in Fig. 6
that the proposed algorithm can provide much better performance
over the other two schemes, when the number of APs is set as 16.
The ALE of the proposed algorithm is still improved 2m to 3 m when
the b varies from 15 dBm to 20 dBm, compared with the ACS and
NN algorithms. However, it can be observed that the localization
performance of all of three algorithms for multiclass targets decline
obviously comparing with the case of single category targets under the
same standard deviation in Fig. 4. Besides the influence of clustering
matching, this is attributed to the fact that Q actually increases the
sparsity level. As indicated in Section 4, when the targets in a grid
belong to Q different categories, they actually occupy Q entries in the
vector θi and therefore markedly increases the sparsity level from k to
roughly Qk.
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Figure 5. Effects of the num-
ber of APs on the localization er-
ror for targets from multiple cat-
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fered by different fluctuation lev-
els for targets from multiple cate-
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6. CONCLUSION

RSS-based localizations have attracted considerable attention due to
their simplicity and low cost. However, one of the most important
issues is still the lack of the automated calibration mechanism that
captures the relationship between the RSS measurements and the
geographical positions. In this paper, we exploit the inherent spatial
sparsity to investigate the indoor positioning problem in the existence
of RSS variations without extra network hardware. To mitigate the
effects of RSS variations, we present a novel sparsity-based indoor
localization algorithm which makes use of the DL technology to
design dictionaries for fitting the actual RSS scenario, and thus the
proposed method has environmental-adaptation capabilities. At the
same time, this algorithm can perform well without prior knowledge
about the targeted environments and without time-consuming off-
line surveys. Therefore, the ARSL method can improve the location
accuracy compared with the ACS and NN algorithms. This study
also investigates the applicability of the ARSL algorithm for locating
targets from multiple categories. The effectiveness of the proposed
scheme has been demonstrated by simulation results where substantial
improvement for localization performance is achieved. Further research
will emphasize on the off-grid error analysis and the theoretic bound
on the location estimation precision.
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