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Abstract—We discuss the electromagnetic interaction between a
traveling charge particle and a perfectly conducting strip of a negligible
thickness. The particle travels at a constant velocity along a straight
line parallel to the axis of symmetry of the strip. The efficiency of the
proposed solution is proved by evaluating the longitudinal coupling
impedance in a wide range of parameters.

1. INTRODUCTION

The current stored in an high-energy accelerator is limited by the
particle instabilities, arising from the interaction of the particles
among them in the same bunch or with the accelerator structures [1].
The main parameter to discuss the electromagnetic coupling between
the particle and surrounding structure is the longitudinal coupling
impedance [2, 3], widely studied in literature for different kinds of
structures [4]. This important design parameter is directly related
to the energy that the charge loses during his motion due to the
interaction with the scattered fields produced by the surrounding
structures. Equivalently, it is proportional to the energy that has to
be fed to the traveling charge in order to keep its speed constant and
contrast the slowing effect of the surrounding structures.

Modal analysis has been mostly adopted, and diffraction models
have been used for high-frequency calculations [5, 6]. Integral
formulations are not so common for this problem, although they can
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be really efficient for the analysis of some classes of structures, for
instance in presence of edges [7, 8].

Aim of this paper is to evaluate the electromagnetic coupling
between a traveling charge q and an infinite strip, as shown in Fig. 1.
The proposed method is quite general and can be adopted for a wide
class of scattering and diffraction problems [9–12]. It is shown how to
efficiently represent and compute the induced density current on the
strip, as well as the longitudinal coupling impedance.

The classical definition of longitudinal coupling impedance is
usually adopted to take into account the effect of transversal
discontinuities of the structure. In problems like the present one, where
the structure is invariant along the traveling direction, it is well known
that the classical definition leads to an infinite value. In order to deal
with a finite quantity, it is usual in literature to introduce a longitudinal
coupling impedance per unit length [3, 13], defined as

Ẑ|| (k, β) = −1
q

1
L

L/2∫

−L/2

Ex (x, y = 0, z = h, k) ejkx/βdx , (1)

where Ex (x, y, z, k) is the x-component of the electric field in the
frequency domain, k is the wavenumber, L an unit length, and the
charge is moving at constant velocity v = βc.

The problem is formulated in the particle frame at first, where
an electrostatic model can be adopted. The formulation leads to an
integral equation that is efficiently solved by means of an expansion
in terms of Neumann series. Then, the Lorentz transformations allow
to obtain the fields in the strip frame and to evaluate the longitudinal
coupling impedance.

A large amount of computations will be performed in the strip
and/or in the charge reference frames. The unprimed notation is used

Figure 1. Geometry of the problem.
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to express quantities in the strip reference frame, whereas the primed
notation is used in the charge reference.

The proposed method of solution is efficient and accurate, since
the longitudinal coupling impedance is reconstructed by means of
few expansion terms. In addition, the proposed approach allows
to automatically obtain an analytical low-frequency solution of the
problem, that correctly fits the exact solution for a certain range of
parameters.

2. FORMULATION OF THE PROBLEM

Let us consider a charge particle q traveling at constant velocity v = βc
along a straight line, parallel to the axis of symmetry of a strip, as
shown in Fig. 1. The strip S = {x, |y| ≤ a, z = 0} is wide 2a and is
infinite along the x axis: its thickness is negligible. The induced current
density has to be evaluated to solve the electromagnetic problem.

The simplest way to face the problem is to formulate and solve
it in the particle reference frame, as already done in [14]. Due to
the constant velocity of the motion and to the symmetry along the
x axis, a steady state problem has to be considered in the particle
frame, where the induced charge density has to be found. The Lorentz
transformations will give the electromagnetic field in the strip frame.

In the particle frame, the electrostatic potential due to the fixed
charge is:

V ′
q =

q

4πε0

√
x′2 + y′2 + (z′ − h)2

, (2)

whereas the electrostatic potential sustained by the induced charge
density σ′(x′, y′) on the strip can be written as

V ′ =
1

4πε0

∫

S

σ′(x0, y0) dx0dy0√
(x′ − x0)

2 + (y′ − y0)
2 + z′2

. (3)

The boundary condition to be imposed on the strip is the vanishing
of the tangential components E′

x and E′
y on the strip. This is equivalent

to impose that the total electrostatic potential is constant on the strip.
Since the constant can be arbitrary chosen, it is posed as zero, so the
boundary condition is definitely

V ′ (x′, y′, z′ = 0
)

+ V ′
q

(
x′, y′, z′ = 0

)
= 0, (4)

for every {x′, y′} ∈ S. Considering (2) and (3), this means that∫

S

σ′(x0, y0) dx0dy0√
(x′ − x0)

2 + (y′ − y0)
2

= − q√
x′2 + y′2 + h2

. (5)
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It is worth noting to observe that there is complete induction on
the strip: the previous (5) can be rewritten as

∫

S

σ′(x0, y0)
√

x′2 + y′2 + h2

√
(x′ − x0)

2 + (y′ − y0)
2

dx0dy0 = −q, (6)

and evaluating the limit of (6) for x′ going to +∞, it is found that∫

S

σ′(x0, y0)dx0dy0 = −q, (7)

namely the total induced charge on the strip is equal to the charge q.
In order to solve the integral Equation (5), it can be useful to

introduce a spatial Fourier transform of the charge density along the
symmetry axis, defined as

σ̃′(u, y) =
1
2π

+∞∫

−∞
σ′(x, y)ejuxdx. (8)

By using the relevant integral [15]

π√
D2 + Z2

=

+∞∫

−∞
K0 (Du) e−juZdu , (9)

and applying the inverse Fourier transform to both members, it is
possible to rewrite (5) as

a∫

−a

σ̃′(u, y0)K0

(
u|y′ − y0|

)
dy0 = − q

2π
K0

(
u
√

y′2 + h2
)

. (10)

Equation (10) has to be verified for |y′| ≤ a, whereas the induced
charge density has to vanishes outside the strip.

A representation in terms of Neumann series in the transformed
domain can be used to efficiently solve such a kind of problem [7, 16]:

σ̃′(u, y′) = − q

2πa

∞∑

n=0

σ̃n(u)
T2n (y′/a)√
1− (y′/a)2

. (11)

where T2n(·) is the Chebyshev polynomial of order 2n [17]. Note that
coefficients σ̃n(u) are dimensionless with the considered normalisation.

Even order polynomials are considered only, since the charge is
centered with respect to the strip in the y′ direction, so the charge
density has an even behaviour with respect to y′. A more general
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representation could be adopted [18], including odd polynomials too,
but it could be easily proven that the odd expansion coefficients would
be zero in this problem.

This kind of representation satisfies the right behaviour at the
edges of the strip [19]. In addition, as relevant advantage, this
representation automatically vanishes outside the strip [20].

Then, substituting (11) in (10), it is possible to obtain

+∞∑

n=0

σ̃n(u)

a∫

−a

T2n (y0/a)√
1− (y0/a)2

K0

(
u|y′ − y0|

)
dy0 = aK0

(
u
√

y′2 + h2
)

.

(12)
This equation is verified for every |y′| ≤ a. In order to impose this

condition, (12) can be projected on the same basis functions adopted
to represent the unknown (Galerkin scheme). In this way, (12) turns
in the linear system

A σ̃ = b, (13)

where σ̃ is the vector of unknowns σ̃n, A is a matrix whose coefficients
are defined as

Anm =

π∫

0

π∫

0

K0 (au |cosϕ− cosϕ0|) cos (2nϕ0) cos (2mϕ) dϕ0dϕ (14)

and b is the vector of know term whose coefficients are

bm =

π∫

0

K0

[
au

√
cos2 ϕ + (h/a)2

]
cos (2mϕ) dϕ, (15)

with the positions y′ = a cosϕ and y0 = a cosϕ0.
For every u, the solution of this linear system allows to compute

the coefficients σ̃n(u) and so the representation of the induced charge
density in the transformed domain.

3. LONGITUDINAL COUPLING IMPEDANCE

Once the coefficient σ̃n(u) are computed, the induced density
charge (11) is known in the transformed domain and in the charge
reference frame. In this section the expression of the longitudinal
coupling impedance is shown as function of this quantity.

The per unit length longitudinal coupling impedance is defined
as (1), being function of the x-component of the electric field. This
quantity is the sum of the electric field produced by the traveling
charge and by the one produced by the induced current density on
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the strip. Anyway, since it is well known that the traveling charge
electric field doesn’t produce any contribution to the longitudinal
coupling impedance, only the electric field produced by the induced
density current is considered hereafter. In the charge reference frame,
according to (3) its expression is

e′x(x′, y′, z′)=
1

4πε0

∫

S

σ′(x0, y0) (x′ − x0) dx0dy0[
(x′ − x0)

2 + (y′ − y0)
2 + z′2

]3/2
. (16)

Since the electric field is required in the strip frame in order to
evaluate the coupling impedance, the Lorentz transformations have to
be applied [21]. In this case they appear as

e′x = ex,

σ′ = σγ,

x′ = γ (x− vt) , y = y′, z = z′,
(17)

where γ = 1/
√

1− β2 is the Lorentz factor.
So, after applying the Lorentz transformations, (16) becomes

ex(x, y, z, t) =
γ

4πε0

∫

S

σ(x0, y0) [γ (x− vt)− x0]{
[γ (x−vt)−x0]

2+(y − y0)
2+z2

}3/2
dx0dy0.

(18)
By taking a derivative of (9), it is found that

π Z

(D2 + Z2)3/2
= j

+∞∫

−∞
uK0 (Du) e−juZdu. (19)

Using this integral in (18) and then applying a spatial Fourier
transform according to (8), it is found that

ex(x, y, z, t) =
jγ

2πε0

+a∫

−a

+∞∫

−∞
σ̃(u, y0)uejuγvt

K0

[
u

√
(y − y0)

2 + z2

]
e−juγxdy0du. (20)

Since the electric field in the frequency domain is required for the
evaluation of the longitudinal coupling impedance, by performing the
time Fourier transform of (20), then it is easy to perform the integral
with respect to u, obtaining with some manipulations

Ex(x, y, z, k)=
jkζ0

β2

+a∫

−a

σ̃ (κ, y0)K0

[
κ

√
(y−y0)

2+z2

]
e−jxk/βdy0, (21)
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being κ = k/βγ and ζ0 =
√

µ0/ε0 the characteristic impedance of free
space.

By substituting (21) into (1), it is finally found that the per unit
length longitudinal coupling impedance has the expression Ẑ|| (k, β) =
jX̂|| (k, β), where

X̂|| (k, β) = − kζ0

qβ2

+a∫

−a

σ̃ (κ, y0) K0

(
κ
√

y2
0 + h2

)
dy0. (22)

This expression comes from the consideration that, since the
coefficients σ̃n are purely real (all terms in (13) are real), the
longitudinal coupling impedance is purely imaginary. This result is
expected since there are not diffraction losses.

Substituting the representation of the charge density (11) into
(22), the explicit expression of the per unit length coupling reactance
is found

X̂||(k, β)=− kζ0

2πaβ2

+∞∑

n=0

σ̃n(κ)

+a∫

−a

T2n (y0/a)√
1−(y0/a)2

K0

(
κ
√

y2
0+h2

)
dy0.(23)

According to (15), the per unit length longitudinal coupling
impedance can be finally expressed in the very compact form

X̂|| (k, β) =
kζ0

2πβ2

+∞∑

n=0

σ̃n (κ) bn (κ). (24)

This expression evidences that, thanks to the adopted method
for the solution of the problem, once the coefficients bn and σ̃n are
evaluated for a given u = κ, the per unit length longitudinal coupling
impedance is practically computed.

4. NUMERICAL TREATMENT

In order to calculate the longitudinal coupling impedance, an accurate
and easy to compute evaluation of integrals (14) and (15) is required:
the integrands exhibit some singularities that create numerical
implementation problems. This means that a specific treatment is
required.

Both integrals Anm and bm behave a logarithmic singularity when
the argument of the modified Bessel function K0(·) vanishes.

Since for low values of the argument

K0(z) ∼= − log
z

2
− γ0, (25)
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where γ0 ≈ 0.57721 is the Eulero-Mascheroni constant, it is not difficult
to put (14) and (15) in the variational form

Anm = Aacc
nm + A0

nm, (26)
bm = bacc

m + b0
m, (27)

where

Aacc
nm =

π∫

0

π∫

0

[
K0 (au |cosϕ−cosϕ0|)+log

(
au |cosϕ−cosϕ0|

2

)
+γ0

]

cos (2nϕ0) cos (2mϕ) dϕ0dϕ, (28)

A0
nm = −

π∫

0

π∫

0

[
log

(
au |cosϕ− cosϕ0|

2

)
+ γ0

]

· cos (2nϕ0) cos (2mϕ) dϕ0dϕ, (29)

bacc
m =

π∫

0

[
K0

(
au

√
cos2 ϕ + (h/a)2

)

+ log


au

√
cos2 ϕ + (h/a)2

2


 + γ0

]
cos (2mϕ) dϕ, (30)

b0
m = −

π∫

0


log


au

√
cos2 ϕ + (h/a)2

2


 + γ0


 cos (2mϕ) dϕ. (31)

In such a way, the accelerated coefficients don’t exhibit any more
the logarithmic singularities and they can be quickly evaluated, while
the remaining parts A0

nm and b0
m have to be analytically computed. It

is worth noting that the accelerated coefficients approach to zero when
u vanishes. This means that A0

nm and bm
0 represent the approximations

of (14) and (15) for small values of u.
By means of the relevant expansions (see Appendix)

log |sin(x/2)| = −
∞∑

n=1

cosnx

n
− log 2 (32)

and

log [2 (cosh t + cos x)] = t− 2
∞∑

n=1

(−1)n e−nt

n
cosnx (33)
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it is possible to conclude that

A0
nm =




−π2

[
log

(au

4

)
+ γ0

]
, n = m = 0,

π2/4n, n = m 6= 0 ,
0, n 6= m ,

(34)

and similarly

b0
m =

{ −πγ0 − π log (aus/4) , m = 0 ,
π

2m
(−1)ms−2m , m 6= 0 ,

(35)

being s = h/a +
√

1 + (h/a)2.
Note that the acceleration (30)–(31) is efficient for small values

of au < 1 (i.e., at low frequencies), otherwise the logarithmic term
becomes much greater than the modified Bessel function, (15) is more
accurate instead.

A similar consideration can be done for the acceleration (28)
supplying to the singularities for cosϕ = cosϕ0 and for au going
towards zero. Only the first one occurs for higher values of au, in
this case the acceleration (28) has to be partially modified.

5. NUMERICAL RESULTS

In the previous sections, the advantages of the proposed method in the
analytical formulation and formal solution of the problem have been
discussed.

In this section, its efficiency is also shown by the numerical point
of view, this is particularly connected to the fast convergence of the
series of coefficients σ̃n.

A Simpson rule with an adaptive spacing is adopted to compute
the coefficients (28) and (30). The ratio h/a and the parameter βγ
have been considered in the range 0.1− 10. Expansion coefficients σ̃n

and the normalised per unit length reactance X̂||/ζ0 are computed.
In Fig. 2(a), the absolute values of expansion coefficients are shown

for different frequencies, in semilogarithmic scale. Even coefficients
are positive, odd ones are negative. They quickly drops at higher
frequencies too, a small number of expansion coefficients is then needed
to achieve convergency. This confirms the efficiency of the method.

In Fig. 2(b), the expansion coefficients are represented for different
distances of the charge from the particle. Of course as far the particle,
as lower the interaction between the particle and the strip, as lower
the number of coefficients required to achieve the convergence.
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Figure 2. Absolute values of the expansion coefficients: (a) for
different frequencies (h/a = 1, βγ = 1), (b) for different heights of
the charge (aκ = 1, βγ = 1).

In the two following figures, the normalised per unit length
coupling reactance is computed. A frequency sweep is performed for
aκ from 0.01 to 10 with 301 logarithmically spaced samples. The
calculation has been performed on a IntelR© Pentium R©-4 CPU at
3.20GHz clock speed and with 2 GB RAM. The computational time
for a frequency sweep, depending on the values of h and βγ, vary from
16 to 18 minutes.

In Fig. 3(a), the reactance is shown as function of the frequency,
for different values of βγ. The reactance magnitude decreases with the
particle speed, being anyway the shape slightly influenced.

In Fig. 3(b), the reactance is shown as function of the frequency,
for different values of h instead. Increasing the distance, the reactance
drop is observed at smaller frequencies.

The results obtained with the proposes semi-analytical method
have been compared with the ones obtained with a FEM solver, by
means of the MATLAB PDE Toolbox. The comparison is shown in
the Figures and a good agreement is found for the considered ranges
of parameters.

6. SPECIAL CASES

In this section, some relevant cases are discussed, where approximate
analytical results can be obtained. They can be used to quickly
computed the parameters of interest in some conditions, as well as
to improve the numerical convergence in the general case.
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Figure 3. Normalised per unit length longitudinal coupling reactance:
(a) for different frequencies and speeds (h/a = 1), (b) for different
frequencies and heights (βγ = 1).

6.1. Particle Far from the Strip

When the particle is far from the strip, although there is complete
induction on the strip, the induced current density has a smoother
behaviour, due to the smaller interaction between the particle and the
strip. A smaller number of expansion coefficients is required to achieve
a good convergence of the method.

Anyway a simple analytical approximation can be found for
coefficients bm, in order to make some considerations on the solution.

It is trivial to observe that for h/a À 1, (15) can be well
approximated as

bm =
{

πK0 (hu) , m = 0 ,
0 , m 6= 0 ,

(36)

This means that for high values of h, the magnitude of the
coefficients reduces exponentially. This result is confirmed by Fig. 2(b),
where the absolute value of the coefficients quickly drops for h/a > 1.

6.2. Particle Close to the Strip

As shown in Fig. 2(b), the number of coefficients required to achieve the
convergence increases when the particle is closer to the strip. Studying
the case h/a → 0 can be useful to obtain a solution enhancing the
convergence of the numerical method.
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In this condition, coefficients (15) can be rewritten by means of
the integral representation of K0(·) as

bm = 2

+∞∫

−∞

π/2∫

0

cos (au sinh t cosϕ) cos (2mϕ) dϕdt (37)

.
By using the integral representation of Jm(·) and performing the

outer integral [15], it is finally obtained

bm = (−1)m πKm (au/2) Im (au/2) . (38)

When the particle get closer to the strip and a more accurate
evaluation of the coefficients bm is required also for higher values of
m, this result can be used to accelerate and improve their numerical
evaluation.

6.3. Low Frequency Solution

As previously discussed, when k approaches to zero, the relevant part
of (14) and (15) are (29) and (31) respectively. The matrix of the
relevant system (13) becomes diagonal and therefore the expansion
coefficients can be analytically evaluated:

σ̃n =
1
π





1 +
log s

γ0 + log (aκ/4)
, n = 0 ,

2(−1)ns−2n , n 6= 0.

(39)

An easy limit is required to compute σ̃0. Its expression can also be
verified by substituting (11) into (7), after some manipulations. Note
that this coefficient is much more sensitive to the frequency than the
other ones.

Substituting this result in (24), then a low frequency expression
of the longitudinal coupling reactance can be found

X̂|| (k, β)=− kζ0

2πβ2

[
γ0+log

(
aκ

4
s4−1

s2

)
+

log2 s

γ0+log (aκ/4)

]
, (40)

It is trivial that the longitudinal coupling impedance goes to zero
when k goes to zero too.

In order to show the efficiency of this solution, the approximated
expansion coefficients are computed and compared with respect to the
exact ones, as shown in Fig. 4(a). At the considered frequency the
coefficients are well approximated for small values of the ratio h/a.
Increasing the distance, although the number of required coefficients is
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Figure 4. Comparison between exact and approximated solution:
(a) Expansion coefficients (aκ = 1, βγ = 1). (b) Percentage error of
the approximated p.u.l. coupling reactance with respect to the exact
one (βγ = 1).

smaller, the error increases, especially for the first coefficient. This is
expected, since the coefficients vanish for high values of h/a, as shown
in (36), the solution (39) converges to a constant value instead.

The coefficient σ̃0 is more sensitive than the other ones to the
frequency an to the ratio h/a.

This result is confirmed in Fig. 4(b), where the absolute percentage
error of the approximation (39) with respect to the exact solution is
shown. Also in this case it is clear that, for similar frequencies, the
error considerably increases with the particle distance.

7. CONCLUSIONS

A method for the evaluation of the longitudinal coupling impedance of
a particle travelling parallel to a perfectly conducting strip has been
presented. The method is accurate and effective, and easily can be
generalised to the analysis of more complex structures.

APPENDIX A.

In this Appendix, the relationship (33) is proved.
For a generic complex number z, let us consider the geometrical

series
1

1− z
=

∞∑

n=0

zn. (A1)
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By integrating this expansion, it is found that

log (1− z) = −
∞∑

n=1

zn

n
. (A2)

If z = e−t+jx, it is trivial to observe that

|1− z|2 = 2 e−t (cosh t− cosx) . (A3)
Therefore the real part of (A2) gives

log [2 (cosh t + cosx)] = t− 2
∞∑

n=1

(−1)n e−nt

n
cosnx , (A4)

namely Equation (33). It is worth noting that the special case t = 0

log [2 (1 + cosx)] = −2
∞∑

n=1

(−1)n

n
cosnx , (A5)

after some trigonometric manipulations, gives the formula (32).
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