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Abstract—The Remote Field Eddy Current (RFEC) method is
widely used to inspect both ferrous and nonferrous metal tubes when
internal access is the only possible way of inspection. An axisymmetric
quasi-analytical model is presented in this paper in order to simulate
the behavior of a RFEC system during its operation. The proposed
model, based on the application of the Fourier Transform in space,
is able to take into account the finite length of the excitation coil,
fed by an AC current, and the relative movement between the RFEC
system and the wall tube. Numerical simulations based on integral
formulations and experimental measurements were used to validate
the proposed quasi-analytical model.

1. INTRODUCTION

Non Destructive Testing (NDT) is a continuously growing subject.
Today available NDT technologies exploit several physical principles:
ultrasound [1], eddy current [2], thermal analysis [3] etc. The Remote
Field Eddy Current (RFEC) technique is widely used since it is
able to detect both internal and external defects in pipes, with low
frequency excitation, when internal access is the only possible method
of inspection. The excitation and the detection coils are placed inside
the tube at a distance of two or three tube diameter from each
other (Remote-Field Zone). The field produced by the excitation
coil traverses the tube wall twice before it reaches the detection coil.
In order to allow this process, the penetration depth related to the
frequency of the current on the excitation coil must be of the same
order as the tube wall thickness. The adopted frequency usually ranges
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from a few Hz to a few hundreds of Hz. It is then possible to extract
information about wall thickness, presence of defects and metal loss
due to corrosion [4–9].

The analysis and design of RFEC systems are usually carried
out by using numerical tools. Although they are able to produce
accurate results, numerical models often require long computations.
In particular, in the optimization process, when a great number of
evaluations of the objective function is required, the use of numerical
tools may results in unviable times. The availability of analytical or
quasi-analytical models, as the one proposed in this paper, reduces
the computation time and provides an useful tool for the validation
of numerical methods. Obtaining a full analytical model is prevented
in the present case by the necessity of performing a numerical inverse
Fourier transform. As far as the numerical tools, let us observe that the
distance between the excitation coil and the remote field detection coil
makes the use of Finite Elements Method (FEM) difficult due to the
need to mesh the external tube region and extend it to “infinity” [9–
16]. Furthermore, the relative speed between the coils and the tube is
not easy to manage by FEM due to the presence of sliding meshes and
as a consequence this method may result in long computation time.

Alternative approaches, mostly based on integral formula-
tions [17–24], have a number of characteristics that make them well
suited for the analysis of these geometries. In particular, integral for-
mulations require the discretization of the active regions only and the
problem of coupling meshes with different speed is absent. The Method
of Moments (MoM) is one of the most used integral formulation. The
numerical results reported in this paper have been obtained by a MoM
approach where the governing equations are reformulated in terms of
an equivalent network. Such an approach allows the use of robust and
efficient algorithms for the sensitivity analysis with respect to the de-
sign parameters of the device. This greatly helps in the development
of the system [25, 26] especially when optimization by gradient based
methods is adopted.

In this paper, we use a quasi-analytical method to model the
electromagnetic phenomena that occur in RFEC operation involving
axisymmetric defects. By using the Fourier Transform, the solution
of the governing equations in terms of the magnetic vector potential
can be expressed by means of Bessel functions. After a numerical
inverse Fourier transform the distribution of the magnetic flux density
and of the current density distributions in the regions of interest is
obtained. The model also takes into account the presence of uniform,
symmetrical defects by considering an auxiliary problem and applying
the superposition procedure.
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2. MODELING THE RFEC TECHNIQUE

An RFEC system, shown schematically in Figure 1(a), is composed of
an excitation coil and a detection coil, both inside the tube and at a
distance of about two or three tube diameters far away each other [4–6].
The excitation coil is energized with low frequency AC.

Two distinct coupling paths exist between the excitation and the
detection coils. The direct path, inside the tube, is rapidly attenuated
by the circumferential eddy currents induced in the tubes wall. It can
be assimilated to an evanescent mode in waveguides. If the detection
coil is far enough from the excitation coil the coupling through the
direct path is negligible and the detected signal is due to an indirect
coupling path. Near the excitation coil the field diffuses radially
outward through the wall; it is attenuated and its phase is shifted.
Once outside this energy is guided axially along the outer wall with
reduced attenuation. In the remote field zone (2–3 tube diameters),
the field outside the tube is greater than the field inside, that is almost
entirely due to the field diffusing back (inside the tube) from the
outside. If we consider that the indirect path is characterized by a
double through-wall transit, we can easily recognize how anomalies
anywhere in the indirect path cause changes in the magnitude and
phase of the detected signal. This qualitative picture of the RFEC
effect can be formalized as in [27], where the mutual impedance of
two coils, both inside a conductive tube is examined in details. By
using the Fourier transform this impedance can be decomposed into
two kind of terms: some representing the waveguide modes (associated
with the poles of the Fourier transform of the impedance) and others
representing the outgoing flux density (associated with the branch
point singularities of the Fourier transform). In the remote field zone
the terms that dominate the mutual impedance expression are the
second ones.

2.1. The Superposition Procedure

In order to find an analytical expression of the electromagnetic field
distributions in the described RFEC system, a procedure based on the
superposition of different solutions was developed.

Let us consider Figure 1 which shows an example of the geometry
and excitation encountered in the RFEC technique applications. The
regular domain Ω is the cylindrical tube, while Γ represents the
defect. We assume that both Ω and Γ have cylindrical symmetry.
For the considered configuration, we suppose that two analytical
solutions referred to the same regular domain Ω exist. The first is
the solution of problem a) (Figure 1(b)) expressing the fields and
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(a)

(b)

(c)

Figure 1. Schematic representation of an RFEC system and problem
decomposition.

currents everywhere as a function of the sinusoidal current source in the
moving coil. Problem b) (Figure 1(c)) is an auxiliary problem obtained
by setting the current source to zero and considering as excitation
terms the induced and the magnetization currents (with the opposite
sign) obtained from the solution of problem a) in the subregion Γ (the
defect).

The auxiliary problem is solved in the original regular domain Ω,
i.e., the tube without the defect. The superposition of the two solutions
of problems a) and b), while forcing the resulting currents in the sub-
region Γ to zero, provides the solution of the problem in the original
domain.

In case of presence of multiple defects, an auxiliary problem
is defined for each defect (considering it as the only one), and the
superposition procedure is applied by summing the solution related to
the no-defect geometry with the solutions of the auxiliary problems.

2.2. The Quasi-analytical Model

Figure 2 reports a schematic radial representation of the RFEC system,
used for the deduction of the quasi-analytical model [28–31].

Problem a): in order to solve this problem, we can substitute the
excitation coil with an equivalent current sheet properly positioned and
characterized by the same amperturns.

After introducing the vector potential Ā with the Coulomb gauge
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Figure 2. Schematic radial representation of the RFEC system.

∇ · Ā in the Maxwell equations, the field equation of an isotropic
medium moving with velocity v is the following:

∇2Ā = µσ

(
∂

∂t
Ā− v × (∇× Ā

))
(1)

where µ and σ respectively indicate the permeability and conductivity
of the medium. The current density J̄1 (in A/m2) of the excitation
current sheet can be written as:

J̄1(r, ϕ, z, t)=J1 sin(ωt)[u(z−vzt)−u((z+∆z)−vzt)] δ(r−r1) · āϕ (2)
where āϕ indicates the azimuth direction. u(z) is the unit step
function, δ(r − r1) the Dirac function located at the middle point of
the radial dimension of the excitation coil, ∆z the axial dimension of
the excitation coil, t the time, and vz the velocity of the test tool.
Furthermore, ω represents the angular frequency of the excitation
current, and J1 (in A/m) is the amplitude of equivalent current sheet
obtained as total current in the excitation coil divided by its axial
dimension ∆z.

In the present problem, the vector potential has only azimuth
components in cylindrical coordinates and is a function of r, z and t:
Ā = Aϕ(r, z, t) · āϕ.

By substituting in (1), after some manipulations we obtain:

∂2Aϕ

∂r2
+

1
r

∂Aϕ

∂r
+

∂2Aϕ

∂z2
− Aϕ

r2
= µσ

(
∂Aϕ

∂t
+ vz

∂Aϕ

∂z

)
(3)

Under sinusoidal steady state condition, the vector potential is
expressed as: Aϕ(r, z, t) = Aϕ(r, z) · ejωt, where j =

√−1. By
substituting in (3) we obtain:

∂2Aϕ

∂r2
+

1
r

∂Aϕ

∂r
+

∂2Aϕ

∂z2
− Aϕ

r2
= µσ

(
jωAϕ + vz

∂Aϕ

∂z

)
(4)
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Let the Fourier transform of Aϕ(r, z) with respect to z be denoted
by Ãϕ(r, ζ):

Aϕ(r, z) =
1
2π

∫ +∞

−∞
Ãϕ(r, ζ)ejζzdζ (5)

By substituting (5) in (4), and introducing the subscript i to
indicate the regions in which (4) is written (see Figure 2), we obtain:

∂2Ãi,ϕ

∂r2
+

1
r

∂Ãi,ϕ

∂r
−

(
ζ2 +

1
r2

)
Ãi,ϕ = jµσ (ω + ζvz) Ãi,ϕ (6)

Equation (6) can be written in the general form:

∂2Ãi,ϕ

∂r2
+

1
r

∂Ãi,ϕ

∂r
−

(
h2

i +
1
r2

)
Ãi,ϕ = 0 (7)

where: h2
i = ζ2 for i = 1, 2, 4, and h2

i = ζ2 + jµσ(ω + ζvz) = jα2 for
i = 3.

The solutions of Equation (7) are expressed in terms of modified
Bessel functions of the first and second kind:

Ãi,ϕ = ciI1(ζr) + c′iK1(ζr); for i 6= 3 (8)

Ã3,ϕ = c3I1(
√

jαr) + c′3K1(
√

jαr); for i = 3 (9)

The determination of the unknown coefficients in the previous
relations is performed by imposing the normal conditions and the
boundary conditions on the interfaces 1–2, 2–3, and 3–4 (Figure 2).
The normal component B̃⊥ of the magnetic flux density B̃ must be
continuous across the interfaces 1–2, 2–3 and and 3–4; the tangential
component H̃‖ of the magnetic field H̃ must be continuous across the
interfaces 2–3, and 3–4. Because of the presence of the excitation
current sheet, H̃‖ is discontinuous across the interface 1–2. Due to
the axialsymmetry of the problem, the normal component is the radial
one, and the tangential component is the axial one.

B̃⊥i
(ri) = B̃⊥i+1

(ri) ; for i = 1, 2, 3;

H̃‖i
(ri) = H̃‖i+1

(ri) ; for i = 2, 3;

H̃‖i
(r1) = H̃‖i+1

(r1) + J̃ (r1) ; for i = 1;

(10)

where J̃1(ζ) = j J̃1
ζ (jejζ∆z−1) is the Fourier transform of the excitation

current.
In order to obtain the integration coefficients ci and c′i, the fields

B̃ and H̃ are expressed in terms of the Fourier transformed vector
potential Ã.
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Due to the asymptotic behavior of the modified Bessel function
we have: c′1 = c4 = 0. The other coefficients are obtained by solving
a set of six linear algebraic equations obtained by (10). The following
expressions can be written:

ci = J̃1(ζ)
Ni(ζ)
Di(ζ)

; c′i = J̃1(ζ)
N ′

i(ζ)
D′

i(ζ)
; (11)

where Ni(ζ), Di(ζ), N ′
i(ζ) and D′

i(ζ) are involved expressions
containing Bessel functions. They can be obtained by using a symbolic
solver for the linear system (10).

Finally, a numerical Fourier inverse transform allows the vector
potential to be obtained as well as all the other electromagnetic
quantities in the whole space.

Problem b): once the magnetic vector potential and the magnetic
flux density are known everywhere in the configuration without the
defect, the induced currents (J̄i(r, z) = −jσ(ω−βnvz)Ā) and equivalent
magnetizing currents (J̄m(r, z), as defined below) may be found in the
region occupied by the defect. Problem b) is set up by placing these
currents in the region occupied by the defect. If the defect has small
axial and radial dimensions, a uniform value for the induced currents
in this region can be assumed; otherwise, if the defect is not small
enough, a piecewise-constant function for the source of the auxiliary
problem can be considered and the solution can be found by summing
the contributions of these constant terms.

As well known, the magnetizing equivalent currents are composed
by two terms: the volume and the surface current densities.

The first one is evaluated by taking the curl of the magnetizing
vector M̄ found through the following equations:

M̄ =
µr − 1
µ0µr

B̄; J̄vol,m = ∇̄ × M̄ ; (12)

where µr is the material relative magnetic permeability, and the
subscript vol refers to the “volume” equivalent magnetizing currents.

Since the J̄vol,m is homogeneous with J̄i and both are defined in
the same region, they can be superimposed. In the hypothesis of small
defect we consider a uniform current density distribution J̄vol(r0, z0)
at the domain center (r0, z0) as shown in Figure 3(a). This current is
obtained as J̄vol(r0, z0) = −J̄vol,m(r0, z0)− J̄i(r0, z0).

As the final step of the procedure, the surface equivalent
magnetization currents (J̄surf,m) need to be taken into account due
to the magnetization discontinuity on the defect boundary. These
currents are obtained as:

J̄surf,m = M̄ × ān; (13)
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(a) (b)

Figure 3. Equivalent magnetization currents: (a) volume and
(b) surface.

where ān is a unit vector pointing out of the closed surface representing
the boundary of the defect region Γ.

Under the assumption of cylindrical symmetry, the surface
magnetization currents have azimuth components only.

As shown in Figure 3(b), we assume a constant surface current
for small defects. By applying the same method adopted for the other
current terms, we find the last term of solution b).

3. RESULTS

The described model was applied to a ferromagnetic tube having
an internal diameter of 60 mm, a wall thickness of 7 mm, a relative
permeability of 190 and a conductivity of 10.5×106 S/m. The analysis
of the problem was performed by simulating a circumferential defect
of 5 mm in axial dimension and 2mm in radial dimension on both
the inner and outer walls of the pipe. Calculations were made for an
excitation coil of about 2000 AmperTurns (]18 AWG − φ ' 1 mm)
at a frequency of 20 Hz and moving at a speed vz = 2m/s. The
results obtained by the quasi-analytical procedure described above
were compared with those obtained from the integral formulation
and with measured data. A research computer code, developed at
the Department of Energy and System Engineering, University of
Pisa, Italy, has been used to simulate the behavior of the proposed
configuration. The code is based on an integral 3-D formulation that
reduces the field analysis to an equivalent network analysis. The
active regions only (conductors and magnetic materials, if present) are
discretized by using elementary volumes, and an equivalent network
is built. The currents in the branches of the network are mapped
into the currents flowing in the elementary volumes. This allows a
straightforward analysis of massive 3-D devices coupled with lumped
circuits. The details of the general formulation are reported in [32–35].
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Figure 4(a) refers to the case of an internal defect and reports the
values of the current distribution along the axial direction of the pipe
at 1 mm inside the inner wall of the pipe.

Figure 4(b) refers to the case of an internal defect and shows
the profile of the axial component of magnetic flux density B just
inside the tube, as a function of the distance from the excitation coil,
normalized with respect to the internal diameter ID. The agreement
between the values obtained from the proposed method and from

(a) (b)

Figure 4. Computed results for an internal defect as a function of
distance from the excitation coil, inside the pipe at 1 mm from the inner
surface. (a) Induced current density distribution. (b) Axial component
of the magnetic flux density distribution.

(a) (b)

Figure 5. Comparison of numerical and experimental results for the
axial component of B around defects positioned at about Z/ID = 2.3.
(a) Inner defect. (b) Outer Defect.
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integral formulation is highly satisfactory.
Figures 5(a) and 5(b) refer to the case of an inner and outer defect,

respectively, and both show an enlarged portion of the profile of the
axial component of flux density at a distance of about 2.3 · ID from
the excitation coil. Figure 5(a) is obtained from Figure 4(b) as they
refer to the same configuration.

In both Figures 5(a) and and 5(b), the axial component profiles of
B obtained from the quasi-analytical model are compared with those
obtained from the numerical model and with experimental data taken
on a pipe sample with an artificial defect. The differences between
simulated results are within 10% and both are in good agreement with
the measured data.

4. CONCLUSIONS

A quasi-analytical model for Remote Field Eddy Current inspection
in linear materials has been described. The simulations carried out
showed that the model is able to analyze a class of RFEC problems
involving axisymmetric defects, allowing the determination of all the
electromagnetic quantities. The results obtained by the proposed
quasi-analytical method were compared with those obtained by a
numerical formulation and with experimental data taken on a pipe
sample. The comparison was highly satisfactory and revealed that
the described model represents a useful tool in the Non Destructive
Testing context and it can be advantageously used in the validation of
numerical codes.
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