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Abstract—A bandstop filter with reconfigurable two-state center
frequency and bandwidth is presented. The prototype of the proposed
reconfigurable bandstop filter consists of one section of anti-coupled
line short-circuited by an open low-impedance line. By introducing
PIN diodes, this bandstop filter exhibits a lower stopband response
centered at a lower frequency in the ON state, and a wider stopband
response centered at a higher frequency in the OFF state. Filter using
the proposed structure is designed, simulated and measured. The
results confirm the designing method by showing a narrow stopband
with the center frequency of 1 GHz and a wide stopband of 2.9 GHz
bandwidth centered at 2.5 GHz respectively.

1. INTRODUCTION

Bandstop filter (BSF), as a crucial component of sending and receiving
signals in telecommunication, plays the role of suppressing interference
and inhibiting harmonics. The conventional method to design BSF
may be generalized by two categories. One is to use the shunt open-
circuited resonators that are quarter-wavelength long separated by
transmission lines with the same length [1, 2]. The other is to use the
capacitive gaps or a transmission line coupled to resonators. These
methods are suitable for narrow stopbands normally. In order to meet
the requirement of wide-band communication techniques, the photonic
band gap (PBG) periodic structures [3, 4], the defected ground plane
(DGS) structures [5–8] and signal interference technique [9, 10] are
presented. As one of the deficiencies, however, all these BSFs are
lack of the tunable central frequency and bandwidth and fail to meet
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the stringent requirement of modern multi-functional and cognitive
systems. Consequently, the concept of reconfigurable BSFs has been
attached greater significance. Some of these filters have reconfigurable
structures like combline structure and tapped stubs tuned by PIN
diodes or dumbbell-shaped coplanar waveguide [11, 12]. Previous
reconfigurable BSFs most focus on tunable center frequency or the
number of tuning statuses. However, BSFs with tunable stopband
bandwidth are less commonly discussed [13–20].

Considering the reconfigurable BSF which can be tuned
continuously, discretely or a combination of both [21], in order to avoid
the deviation of control and to combine the continuously and discretely
tuning states varactors and PIN diodes can be used. In this paper,
a novel reconfigurable BSF is put forward based on a symmetrical
coupled-line and PIN diodes which not only achieves tunable center
frequency but also the bandwidth of the stopband. Compared with the
existing reconfigurable BSFs [21–24], a wide and a narrow stopband are
realized simultaneously which largely increases the adjustable feature.
For example, in [22], though two stopband bandwidth are achieved, the
tunable range of bandwidth is too limited, 6.94% for the low frequency
state and 9.66% for the high frequency state. To this point, however,
the BSF in this paper shows the tunable range of 8.5% for the ON state
and 116% for the OFF state. Apart from this merit, DC low voltage
control circuit is well designed to avoid the interference between DC
and microwave signals and improve the stability and accuracy of the
control.

2. FILTER DESIGN

Figure 1 shows the prototype of the proposed structure connected by
a PIN diode below the coupled-line section. Based on the assumption
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Figure 1. Prototype of the proposed reconfigurable BSF.
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that the transmission lines are lossless, the on-resistance of PIN diode
is negligible and all the discontinuity effects can be neglected, the whole
structure can be separated into two serially connected sections: one is
the coupled-line and a PIN diode as the lower network, and the other is
an open transmission line stub equal to a short-circuited capacitance
Cs as the higher network. Accordingly, the whole Z-matrix of the
prototype is given by:

[ZW ] = [ZH ] + [ZL] (1)
where [ZW ], [ZH ], and [ZL] represent the impedance matrices of the
whole, higher and lower sections respectively.

Regarding the characteristic of the PIN diode, the lower network
consists of two states. For the first state, when the PIN diode is in the
OFF state, the coupled-line is short circuited for a single end; for the
second one, namely the ON state of the PIN diode the coupled-line is
short circuited for both ends.

In the first state, impedance matrix [ZL
state1] can be calculated by

using the even-odd mode analysis method as follows (assuming that
the coupled-line section has the same even-odd mode electrical lengths
θ):

ZL
11state1 = j tan θ(Zoe + Zoo)/2 (2)

ZL
21state1 = j tan θ(Zoe − Zoo)/2 (3)

where Zoe and Zoo are the even and odd mode characteristic
impedances of the coupledline separately. Similarly, the Z-matrix of
the whole structure for the second state is [ZL

state2]:

ZL
11state2 = j tan θZoe/2 (4)

ZL
21state2 = −j tan θZoe/2 (5)

As for the higher network in Figure 1, the elements in [ZH ] of the
capacitance Cs are all the same and can be derived as:

ZH
mn =

−j

ωCs
, m, n = 1, 2 (6)

From the relation between the S-matrices and impedance
matrices, the transmission parameter can be obtained by [25]:

S21 =
2ZW

12 Z0

(ZW
11 + Z0)(ZW

22 + Z0)− ZW
12 ZW

21

(7)

Obviously, transmission zeros occur at f where S21 = 0 or Z21 = 0.
Therefore, for the first state the frequencies of the transmission zeros
should satisfy the following equation derived from (3) and (6):

tan θ(Zoe − Zoo)/2 =
1

ωCs
(8)
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Since the center frequency of the BSF is decided by two cut-off
frequencies which are closely related to the positions of transmission
zeros and the attenuation values of them, Equation (8) not only gives
the positions of the transmission zeros but also a constant center
frequency in the first state.

Based on the same method, for state 2, the equation is:

tan θZoe/2 =
−1
ωCs

(9)

Similarly, another center frequency in the second state is given by
Equation (9). Comparing the two states, the center frequency of the
proposed reconfigurable BSF becomes adjustable due to the deference
of the number, the positions and the attenuation values of transmission
zeros for the two states.

Since the bandwidth of the stopband is largely depended the
number of the transmission zeros of which the positions are derived
from (8) and (9), the reconfigurable bandwidth feature can be proved
by simulating the same model with diverse parameters. Figure 2 and
Figure 3 show the relation between the transmission zeros and the
proposed structure with varying capacitances in state 1 and state 2
respectively. As illustrated in Figure 2(a), when the PIN diode is
OFF in state 1, the reactance curve of the lower part is XL and the
higher part is XH . There are three intersections between XL and XH

within the range of 0 to 5.0 GHz through the stopband which means
that three transmission zeros will be located through the stopband at

(a) (b) 

Figure 2. State 1, the proposed structure with different capacitive
loads. (a) Pictorial reactance descriptions. (b) Simulated S-parameter
with the following electrical parameters: L1 = 20.1mm, W1 = 0.2mm
and S1 = 0.2 mm.
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(a) (b) 

Figure 3. State 2, the proposed structure with different capacitive
loads. (a) Pictorial reactance descriptions. (b) Simulated S-parameter
with the following electrical parameters: L1 = 20.1mm, W1 = 0.2mm
and S1 = 0.2 mm.

the same frequencies of the intersections. The predicted results are
substantiated by the simulated responses in Figure 2(b). Neglecting
the simulation errors, the transmission zeros are almost at the same
frequencies of the proposed intersections. Moreover, the three zeros
shift to upper frequencies as the capacitance value decreases, an easy
method to modify the bandwidth of the wide stopband.

As the PIN diode is ON in state 2, the curves of the XL and XH

are displayed in Figure 3. Based on the same analysis above, there is
an intersection within the frequency of 0.5 GHz to 1.2 GHz for each pair
of curves of XL and XH , which means a transmission zero occurs in
the S-parameter of the proposed structure. Correspondingly, a narrow
stopband is achieved in state 2.

3. SIMULATED AND MEASURED RESULTS

To verify the above designing method, a reconfigurable BSF is
implemented on a 0.5mm substrate with a relative dielectric constant
of 2.65 for an experimental demonstration. The layout and photograph
of the fabricated filter are showed in Figure 4. In order to control
the signal flow a DC low voltage control circuit is represented. In
this circuit, two Skyworks SMP1345-079LF PIN diodes with a low
capacitance of 0.2 pF, a parasitic inductance of 0.7 nH, and a resistance
of 3.5 Ω are used as switches. Correspondingly, two DC blocking
capacitors are set in the coupled-line to avoid the interference between
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Figure 4. Fabricated reconfigurable BSF. (a) Layout. (b)
Photograph. L1 = 21.1 mm, L2 = 18 mm; W1 = 0.2mm, W2 =
2.5mm, S1 = 0.28mm.

DC and RF signal and another two capacitors near the ports are for
tighter DC-RF isolation. Furthermore, the bias network including two
36Ω protecting resistances is designed since the external DC voltage
is 1.1 V and the current is less than 1mA to turn on the PIN diode.

The simulated results performed by Ansoft HFSS and the
measured results are displayed in Figure 5. From the results, there
are the two different bandwidths of the stopband corresponding to
the two states. For the narrow stopband the center frequency in the
simulated curves is 1.0 GHz and the measured one nearly shows a
duplication with the discrepancy of only 0.05 GHz. In the comparison
of the wide stopbands the simulated result shows a 20 dB bandwidth
with three transmission zeros from 1.3 GHz to 3.9 GHz. Because of
the joint effect and the interference of DC unable to be blocked by the
capacitances completely, the measured results reflect some deficiencies
compared with the simulated results including the facts that the 20 dB
stopband for state 1 ranging from about 1.5GHz to 4.3 GHz is lack of
a conspicuous transmission zero as showed in the measured results and
also the attenuation of stopband is limited under 21 dB not as deep
as the attenuation of the simulated stopband. However, the measured
result is fully able to represent a wide stopband and such limitations
can be overcome in large part by more skilled welding techniques and
applying the capacitances of larger values. Summarily, the alteration
of the center frequency as well as the bandwidth in the narrow and
wide stopband is utterly in a position to demonstrate a novel feasible
method of the reconfigurable BSF design.
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Figure 5. Simulated and measured S-parameters of proposed
reconfigurable BSF.

4. CONCLUSION

A method of controlling the structure of the coupled transmission
line according to the OFF and ON states of PIN diode is presented
in this paper. The main feature of the proposed prototype is that
tunable center frequency and bandwidth are achieved simultaneously.
To apply this designing method, a reconfigurable BSF derived
from the prototype is designed, fabricated and measured. The
simulated results agree fairly well with the measured results. This
newly proposed reconfigurable BSF can be used in a wide range of
applications of microwave components especially with a rigid compact
and multifunctional requirement.
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