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Abstract—Asymptotic limits of Negative Group Delay (NGD)
in linear causal media satisfying Kramers-Kronig relations are
investigated. Even though there is no limit on the NGD-bandwidth
product of a linear medium, it is shown that the out-of-band to
center frequency amplitude ratio, or out-of-band gain, increases with
the NGD-bandwidth product, and is proportional to the amplitude
of undesired transients when waveforms with defined “turn on/off”
times propagate in the media. The optimal dispersion characteristic
exhibiting NGD, which maximizes the NGD-bandwidth product as
a function of the out-of-band gain, is obtained through Kramers-
Kronig relations. It is shown that the NGD-bandwidth product has
an upper asymptotic limit proportional to the square root of the
logarithm of the maximum out-of-band gain. The derived NGD-
bandwidth upper asymptotic limit of the optimally engineered causal
dispersion characteristic is validated with two examples of physical
media, a Lorentzian dielectric medium, and an artificially fabricated
loaded transmission line medium.

1. INTRODUCTION

Negative group velocity, and consequently NGD, is an example
of abnormal wave propagation phenomena, which also include
superluminal [1], backward wave propagation (negative refractive
index [2]), and simultaneous negative phase and group velocity [3].
Media exhibiting NGD behavior cause the output peak of a well-
behaved wave packet or a pulse, to precede the input peak. This
phenomenon is achieved through pulse reshaping and does not violate
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causality, since the initial transient of the pulse is still positively
delayed and propagates at a speed not exceeding the speed of light in
vacuum [4]. NGD phenomena occur within limited frequency bands of
media exhibiting anomalous dispersion, and are also accompanied with
absorption. Anomalous dispersion phenomena not only do not violate
the relativistic causality requirements, but they must exist within
some frequency bands for all dispersive media [5] as a consequence
of Kramers-Kronig relations, which are applicable to all physically
realizable, causal linear systems. Propagation of electromagnetic waves
through a medium with anomalous dispersion was initially studied
by Sommerfeld and Brillouin [6]. They considered a semi-infinite
sinusoid waveform, with a defined “turn on” point in time, propagating
through a medium with Lorentzian dispersion. Clear identification
and definition of phase, group, energy and “front” velocities were
made, showing that the “front” velocity is always positive and exactly
luminal under all circumstances, thus satisfying relativistic causality.
Therefore, the group velocity does not equate with the “front” velocity
in such media, but merely characterizes the propagation of distinct
features of a well-behaved wave packet, such as pulse maximum. The
difference between the “front” velocity and group velocity was recently
demonstrated in a medium with a slow group velocity [7].

In this paper, we extend a part of the work presented in Ref. [5].
The work there presents a proof showing that within a frequency band
of abnormal propagation (such as NGD propagation), the magnitude
of a causal medium response has a minimum. The work presented
here attempts to quantify the relationship between the achieved
NGD-bandwidth product and the maximum out-of-band gain. The
maximum out-of-band gain is a ratio between the amplitude response
maximum (which occurs at a frequency outside of the NGD bandwidth)
and the amplitude response minimum (which occurs at the center
frequency).

When a smooth temporal waveform is truncated (defined “turn
on/off” times are introduced), the waveform’s frequency-domain
spectrum widens, and a part of it extends into the out-of-band region.
This part of the waveform’s spectrum corresponds to the fastest
changing parts of the waveform (in the vicinity of “turn on/off”
times). When such waveforms with a finite temporal width are
propagated through a medium exhibiting an out-of-band gain, an
undesired distortion in the output response is observed in the vicinity of
“turn on/off” times [8]. Such a distorted transient response will follow
any points of discontinuity in the waveform or any of its derivatives,
not just the “turn on/off” times. The out-of-band gain is proportional
to the medium’s transient amplitude response, and therefore it is an
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undesired trade-off quantity accompanying any NGD phenomenon.
We investigate asymptotic NGD limits as a function of the

maximum out-of-band gain for gain-compensated causal linear media.
For passive causal linear media, the same asymptotic limits will apply,
however, as a function of the in-band attenuation in this case. The
asymptotic limits are derived via Kramers-Kronig relations, which
relate the real and imaginary parts of a linear causal system response,
or equivalently its phase and magnitude response. Since the NGD
phenomenon is a consequence of a system’s phase response, in this
paper we start with several assumed phase response characteristics
exhibiting NGD phenomenon. Then we apply Kramers-Kronig
relations to determine corresponding causal amplitude responses
for each phase characteristic. The optimally engineered causal
characteristic is identified, which exhibits the largest NGD to out-of-
band gain ratio.

2. NGD AND TRANSIENTS IN LORENTZIAN
DIELECTRIC MEDIUM

The refractive index of a single-resonance passive Lorentzian dielectric
medium is given by [6]

n (ω) =

√
1 +

ω2
p

ω2
0 + 2jδω − ω2

, (1)

where ω0 and ωp are the medium’s resonance and plasma frequencies,
respectively, and δ is the damping factor which is related to medium’s
absorption bandwidth around the resonance. Further, the form of
expression (1) is chosen such that it corresponds to an amplitude
response A(ω) = exp(Im{ω · n(ω) · l/c}), and a phase response given
by φ(ω) = Re{ − ω · n(ω) · l/c}, for a medium with a physical length
l. Group delay within a narrow-band region around a frequency ω
is given by the negative slope of the phase characteristic as τg(ω) =
−dφ(ω)/dω.

In order to demonstrate the relationship between NGD and the
accompanying absorption, amplitude and phase characteristics of two
Lorentzian media are shown in Fig. 1. The considered examples have
their parameters chosen such that they both exhibit a 360◦ phase shift
at the center frequency of 500MHz, and a 3-dB amplitude swing within
a bandwidth of 86 MHz. However, their absorptions at the center
frequency are different (71 dB and 89 dB respectively), which in turn
yields different phase characteristic slopes, and therefore group delays
(−4.8 ns and −5.87 ns, respectively). Due to the inverse relationship of
a time-domain pulse width and the frequency bandwidth within which
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Figure 1. (a) Phase and (b) amplitude response characteristics of two
Lorentzian media, both having a center frequency of 500 MHz, 3-dB
amplitude bandwidth of 86 MHz, physical lengths corresponding to a
360◦ phase at ω0, their respective center frequency loss of 71 dB and
89 dB, and the corresponding center frequency group delays of −4.8 ns
and −5.87 ns.

most of the pulse power is located, the NGD-bandwidth product is a
metric quantity which provides a measure of the NGD relative to the
width of a propagated pulse [9]. The examples shown in Fig. 1 exhibit
maximum NGD-bandwidth products of 2.59 and 3.17, respectively
(NGDMAX ∆ω = tg∆ω = −τg(ω0)∆ω). The out-of-band gain value,
∆A, also shown in Fig. 1(b) for the two cases, is the ratio between
the largest (occurs at extremes frequencies outside the bandwidth)
and smallest (occurs at the center frequency) amplitude characteristic
values.

A time-domain interpretation of the relationship between the
NGD-bandwidth product and the absorption (center frequency
amplitude response) for Lorentzian dielectric media is demonstrated
in Fig. 2. The waveform used in this example is a 500 MHz sinusoidal
carrier, amplitude modulated by a Gaussian pulse with a standard
deviation of 10 ns, which is turned-on/off at carrier zero-crossings
40 ns away from the pulse peak. Most of the waveform frequency
spectrum falls within the 86 MHz bandwidth of the two example media
from Fig. 1, ensuring a low distortion of the steady-state part of
the waveform. The delay due to physical lengths of the two media
is 2 ns, corresponding to a 360◦ phase shift at 500 MHz. In order
to make the output waveforms magnitudes comparable to the input
ones, the amplitude characteristics of the two media are scaled so
the input and output peak amplitudes are equal. Consequently, the
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amplitude characteristics in Fig. 1(b) are scaled by 70.5 dB and 88.5 dB
for the two cases, respectively. Note that the scaling factor required to
normalize the peak amplitude of the output pulse is slightly different
from the maximum out-of-band gain. Now amplitude response values
at extreme frequencies away from the resonance are increased by the
same amount. In the examples shown in Fig. 2, as the out-of-band
gain is increased from 71 dB to 89 dB (a factor of 7.94 in magnitude),
the transient amplitude past the turn-off point is increased by a
factor of 7.22. Therefore, an approximately proportional relationship
between the out-of-band gain, ∆A, and the transient amplitude is
demonstrated for this particular waveform. Different waveforms with
defined turn-on/off times will cause different transient amplitudes, but
an increase in the out-of-band gain will always result in an increase in
the transient amplitude. Even though the transient amplitude has
increased substantially, the NGD-bandwidth product has increased
only by a factor of 1.22, between the two examples in Fig. 2.

The examples shown in Figs. 1(a) and 1(b) demonstrate the
relationship between the NGD-bandwidth product and the out-of-
band gain in the frequency domain, which translates into a time-
domain relationship between the NGD-to-pulse-width ratio and the
transient amplitude depicted in Fig. 2, for waveforms with defined
turn-on/off times (or more broadly, for waveforms with discontinuities
in the waveform function and/or its derivatives).
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Figure 2. Time-domain re-
sponses of two gain-compensated
Lorentzian media (both outputs
scaled by 70.5 dB and 88.5 dB ac-
cordingly), to a Gaussian modu-
lated sinusoidal waveform.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

out of band gain:  A
MAX

 [dB]

N
G

D
 b

a
n
d
w

id
th

 p
ro

d
u
c
t:
 t

g

 

Lorentzian, 360° at  
0
 light line

0.3833 A
dB   MAX

ω

− 

∆
ω

.

-
-

Figure 3. Center frequency
NGD-bandwidth product as a
function of out-of-band gain
AMAX , for a Lorentzian medium
with δ = 0.05ω0, and medium
length corresponding to a 360◦
light-line phase at ω0.



232 Kandic and Bridges

By repeating the exercise captured in Figs. 1 and 2 for Lorentzian
media with different parameters, NGD-bandwidth product as a
function of the out-of-band gain (or equivalently, center frequency
absorption) can be obtained, as shown in Fig. 3. An asymptotic upper
limit for this functional relationship was numerically obtained, and
given by

NGDMAX ·∆ω = tg ·∆ω ≤ 0.3833
√

∆AdB, (2)

where ∆AdB is the maximum out-of-band gain (ratio of the maximum
and minimum values of the amplitude characteristic, given in decibels).
For the example shown in Fig. 2, the square root ratio of the respective
maximum out-of-band gains given in decibels is (89 dB/71 dB)1/2 ≈
1.12, which is close to the observed 1.22 factor of increase in NGD.

Now that the asymptotic limit for the NGD-bandwidth product
as a function of the out-of-band gain has been demonstrated for
a Lorentzian medium, the same functional relationship will be
explored for artificially fabricated media, in particular for filter-based
distributed circuits’ media, and then for a linear causal medium with
an optimally engineered dispersion characteristic.

3. NGD VS. OUT-OF-BAND GAIN RELATIONSHIP IN
DISTRIBUTED MEDIA

Artificial media fabricated using lumped and distributed circuit
elements can be used to produce the NGD effect. One of the earliest
circuits exhibiting NGD at microwave frequencies was a synthesizer
proposed by Lucyszyn et al. [10]. Since this initial work, several passive
NGD circuits, mostly based on series or parallel RLC resonators, have
been reported. As with any media exhibiting anomalous dispersion,
these circuits exhibit large attenuation for any reasonable negative
delay [11, 12]. The attenuation can be compensated by cascading active
elements with RLC resonators [9, 13–15]. At baseband frequencies
(zero center frequency), a gain-compensated NGD effect can be
achieved by cascading active elements with RC filters [16]. However,
gain-compensation at the NGD center frequency also amplifies the
out-of-band part of the amplitude response above the in-band level,
since the amplitude transfer function of a causal NGD medium has a
minimum at the center frequency [5].

An example of a one-dimensional medium exhibiting NGD
is a cascaded gain-compensated high-pass distributed filter, as
schematically shown in Fig. 4. The transfer function of an N -stage
circuit of Fig. 4, with gain factor chosen to yield an overall unity gain
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Figure 4. Schematic of a generic baseband NGD distributed media,
comprised of ideally matched cascaded gain-compensated high-pass
filters.

at ω = 0, and ignoring the physical length, can be derived as

HN (ω) = AMAX

[
ω − j∆ω′/2

ω − jA
1/N
MAX ∆ω′/2

]N

, (3a)

∆ω′ = ∆ω

√√√√1− 21/N
/

A
2/N
MAX

21/N − 1
, (3b)

where ∆ω is the 3 dB bandwidth and AMAX the maximum out-of-band
gain of the cascaded circuit. AMAX is an arbitrary parameter with a
finite value. As ω →∞ in (3a), the transfer function out-of-band gain
will approach this maximum but finite value, regardless of the number
of stages, N . The number of stages determines the distribution of the
finite AMAX among individual stages, such that their individual out-
of-band gain values are A

1/N
MAX . Individual stage bandwidth, ∆ω′, is

scaled according to (3b), so that the overall N -stage bandwidth, ∆ω,
remains constant [9], regardless of the number of stages, N .

The amplitude and phase response for a single-stage case is shown
in Fig. 5. As the number of stages tends to infinity (distributed
medium), while keeping the overall bandwidth, ∆ω, and the maximum
out-of-band gain, AMAX , constant, the overall transfer function can be
derived as

H∞(ω) = AMAX exp
[
ln (AMAX )

ja∆ω/2
ω − ja∆ω/2

]
, (4a)

a =

√
2 ln (AMAX )

ln 2
− 1. (4b)

The amplitude and phase responses for this distributed medium,
N →∞, are also shown in Figs. 5(a) and 5(b), respectively, and they
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Figure 5. Single-stage and distributed gain compensated high-pass
filter, (a) amplitude response and (b) phase response for AMAX -dB =
30dB (gain chosen so the amplitude is unity at ω = 0).

can be determined from (4a) as

A∞(ω) = AMAX exp

[
− ln (AMAX )

(a∆ω/2)2

ω2 + (a∆ω/2)2

]
, (5a)

φ∞(ω) = ln (AMAX )
ω (a∆ω/2)

ω2 + (a∆ω/2)2
. (5b)

The group delay of the medium transfer function is given by
τg = −dφ/dω. The largest NGD occurs at the center frequency, where
the phase response has the largest positive slope. For the distributed
case it is given by

tg = −τg (0) =
dφ

dω

∣∣∣∣
ω=0

=
2

∆ω

ln (AMAX )
a

. (6)

The NGD-bandwidth product is a measure of the NGD to applied pulse
temporal width ratio (i.e., how much pulse can be negatively delayed
with respect to its width). For the distributed case it is given by

tg ·∆ω =

√
2 ln (2) ln (AMAX )√

ln (AMAX )− ln
(√

2
) ≈

√
2 ln (2)

√
ln (AMAX ), (7)

tg ·∆ω ≈
√

ln (2) ln (10)
10

√
AMAX -dB ≈ 0.3995

√
AMAX -dB. (8)

Expression (8) shows that the asymptotic limit of the NGD-bandwidth
product is a square root function of the maximum out-of-band gain, for
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Figure 6. Center frequency NGD-bandwidth product as a function of
out-of-band gain AMAX , for different number of stages, N .

this particular medium. For a given out-of-band gain, the distributed
case of this medium (N → ∞) exhibits the largest NGD, as evident
from Fig. 6. Comparing expression (8) to the Lorentzian medium
asymptotic limit expression (2), the same functional relationship is
observed with a slightly larger proportionality factor in the filter-based
medium case.

The asymptotic limit given by (8) applies to the particular
distributed medium presented in this section. The same limit also
applies to resonator-based NGD circuits [9], which essentially exhibit
stopband filter behavior centered at a non-zero frequency. The
objective in this paper is to derive the asymptotic limit of the NGD-
bandwidth product as a function of the maximum out-of-band gain
for an optimally engineered linear causal medium. This is performed
by considering several examples of the medium’s phase response.
Asymptotic NGD limits for a piece-wise 1st order phase response of a
linear and causal medium will be derived in the following sections, and
compared to expressions (2) and (8).

4. AMPLITUDE AND PHASE RESPONSE
RELATIONSHIP IN CAUSAL MEDIA

Physically realizable, causal systems can have an output response to
an applied input signal only at times following the instance that input
signal is applied. The frequency-domain transfer function of a system,
and its output response to an impulse delta function located at t = 0,
can be respectively written as

H(ω) = P (ω) + jQ(ω) = A(ω) exp [jφ(ω)] , (9a)
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h(t) =
1
2π

∞∫

−∞
H(ω) exp(jωt)dω. (9b)

The causality condition and consequently the Kramers-Kronig
relations are given by [17]

h(t < 0) = 0, (10a)

P (ω) =
1
π

V.P.

∞∫

−∞

Q(ν)
ν − ω

dν, (10b)

Q(ω) = − 1
π

V.P.

∞∫

−∞

P (ν)
ν − ω

dν, (10c)

where V.P. denotes Cauchy principal value. The real and imaginary
parts of the transfer function are not independent, and one can
be determined from the other, using (10b), (10c). Kramers-Kronig
relations can be rearranged to express the dependency between the
transfer function amplitude and phase response, as [18]

AdB(ω) = 20 log |A (ω)| = − 20
π ln 10

V.P.

∞∫

−∞

φ(ν)
ν − ω

dν. (11)

For a given phase response of a causal system, and therefore a given
NGD characteristic, its amplitude response can be determined by (11),
up to a constant (an arbitrary frequency-invariant amplification or
attenuation can be added).

In order to simplify the analysis, a transfer function phase
characteristic exhibiting NGD within the signal baseband (around
ω = 0) is chosen for the cases explored in the following sections.
However, the obtained results and conclusions can be extended to
NGD phenomena occurring within an arbitrary frequency band. As an
example, the filter-based case presented in Section 3 (centered at zero
frequency) yields the same asymptotic limit as the one reported in [9],
which applies to filter-based cases centered at a non-zero frequency.
Furthermore, a zero-length medium is considered, in order to further
simplify the analysis. The finite medium length can easily be taken
into account by adding a constant positive delay at the end of the
analysis.
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5. OPTIMALLY ENGINEERED PHASE RESPONSE

5.1. Causal Medium with a Piece-wise Linear Phase
Response

As a first example, a piece-wise linear phase response of a medium is
chosen, and given by

φ(ω) =





tgω, 0 ≤ ω < ωM

(ω − ωE)
tgωM

ωM − ωE
, ωM ≤ ω ≤ ωE

0, ω ≥ ωE

, (12)

and φ(−ω) = −φ(ω). Here tg is the slope of the phase response (NGD)
at the center frequency, ωM is the frequency where the slope changes
sign, and ωE is where the phase characteristic reaches zero and stays
zero beyond this frequency. The phase response is an odd function
around ω = 0, and it is shown in Fig. 7 along with the corresponding
group delay plot.

The phase characteristic has a zero-value for high frequencies,
which is equivalent to a phase characteristic approaching a constant-
slope line (“light-line”) if a non-zero length medium was added to the
model, and is the case for all physical media. Therefore, the phase
function in Fig. 7 is a realistic piece-wise 1st order approximation for
a feasible system exhibiting NGD. A constant NGD is achieved over
the entire frequency band (−ωM , ωM ). For a more general discussion
we will let the NGD bandwidth be defined within a smaller band

(a) (b)

Figure 7. Piece-wise linear (a) phase response and corresponding
(b) group-delay-bandwidth product for ωM = 2, ωE = 2ωM and
ωC = 0.5ωM .
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∆ω = 2π∆f = (−ωC , ωC) and let the bandwidth be solely determined
by a 3 dB swing in the system amplitude response in this case.

The amplitude response obtained through integration using (11)
is shown in Fig. 8, and given by

AdB(ω) = (tg∆ω)
10

π ln 10
ωM

ωC
b (ω) , (13a)

where

b (ω) =
2ωE

ωE − ωM
ln

(
ωE

ωM

)
+

ωE + |ω|
ωE − ωM

ln
(

ωM + |ω|
ωE + |ω|

)

+
|ω|
ωM

ln
(

ωM + |ω|
|ωM − |ω||

)
+

ωE − |ω|
ωE − ωM

ln
(∣∣∣∣

ωM − |ω|
ωE − |ω|

∣∣∣∣
)

. (13b)

The integration constant is chosen so that AdB(0) = 0. By setting
the 3 dB bandwidth of the obtained amplitude characteristic to be
at ω = ±ωC , the negative group delay at the center frequency tg is
uniquely defined as

tg ·∆ω = −τg(0) ·∆ω =
ωC

ωM

π ln 2
b(ωC)

. (14)

The out-of-band gain as ω →∞ can be obtained from (13a) as

AdB(ω →∞) = (tg ·∆ω)
ωM

ωC

10
π ln 10

2ωE

ωE − ωM
ln

(
ωE

ωM

)
. (15)

Selecting smaller values for ωM in (14) yields higher values for the
NGD at the center frequency. However, this comes at the expense of
larger out-of-band gain AdB(∞). Large out-of-band gain is undesired,
since it amplifies transients when signals with defined turn-on and/or
turn-off times are applied [8].

A family of NGD-bandwidth product versus AdB(∞) functions can
be obtained from expressions (14) and (15), where discrete values of ωE

correspond to different functions. In this case, ωM is an independent
parameter which is continuously swept, and substituted into (14)
and (15). By plotting such obtained family of functions, it can be
shown that for any given out-of-band gain, the maximum NGD is
achieved when ωE → ωM . Moreover, we can then find the asymptotic
relationship between the maximum NGD and out-of-band gain, for
ωE → ωM and large values of ωM/ωC (large out-of-band gain). First,
expression (14) can be simplified in this case as

tg ·∆ω ≈ π (ln 2)
ωM

ωC

ωE

ωE + ωM
. (16)
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Substituting ωM/ωC from (16) into (15), and by letting ωE → ωM , we
obtain the asymptotic upper limit for NGD as a function of AdB(∞)
as

tg ·∆ω ≤ π

√
(ln 2)(ln 10)

40

√
AdB(∞) ≈ 0.6275

√
AdB(∞). (17)

However, for the piece-wise linear phase response, the maximum
value of the out-of-band gain, AMAX , is always higher than the AdB(∞)
value, as shown in Fig. 8. Finding the zeros of the first derivative
of (13a) involves solving a transcendental equation, which also depends
on the ωE/ωM ratio. By numerically solving this equation, and
manipulating (13a), it can be shown that the maximum NGD/AMAX

ratio is obtained when ωE ≈ 3.368ωM . Now we can combine (13a)
and (14) to produce NGD-bandwidth product versus AMAX curves,
which are shown in Fig. 9. The upper asymptotic limit in this case is
evaluated as

tg ·∆ω ≤ 0.5158
√

AMAX -dB. (18)

Comparing expression (18) to expression (8), we can see that the
derived upper asymptotic limit for this linear and causal medium, given
by its 1st order phase approximation, has the same square root form,
and its coefficient is larger (by 29%). The upper asymptotic limit given
by (18) does not contradict the limit (8), derived for the particular
medium in Section 3, nor the limit (2), which was numerically obtained
for a Lorentzian medium in Section 2.
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5.2. Causal Medium with a Reciprocal Decay of the Phase
Response

As evident from (5b), the phase response of the medium presented in
Section 3 has a reciprocal function decay, (1/ω), for high frequencies.
The 1st order approximation of a general linear causal medium phase
response from Section 5.1, however, has a linear decay past the phase
slope reversal point, ωM . In this section, we will examine media
with the same linear phase response around the center frequency,
but with different order reciprocal phase decays, (1/ωk), past the ωM

frequency. The decay functions parameters are chosen such that the
phase characteristics are continuous at the reversal point, ωM , and
the decay slopes at the same point, τg(ωM ), are related to the center
frequency slope, tg, such that the NGD/AMAX ratio is maximized
in each case. Fig. 10 shows phase and corresponding group delay
responses for the reciprocal phase decay cases of orders k = 1/2, k = 1,
k = 2 and k → ∞ (equivalent to a linear decay). For comparison
purposes, each case has the same NGD-bandwidth product value at
the center frequency, tg ·∆ω = 3.77.

The amplitude responses corresponding to Fig. 10 cases are
derived following a similar procedure as in Section 5.1, and they are
shown in Fig. 11. Since all cases have the same NGD-bandwidth
product, tg · ∆ω = 3.77, the case with the smallest AMAX value will
have the largest NGD/AMAX ratio (optimum case).
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Figure 10. Piece-wise linear and reciprocal (1/ωk) decay (a) phase
responses and corresponding (b) group-delay-bandwidth products for
k = 1/2, k = 1, k = 2, and k → ∞ (linear decay). Each case
shown corresponds to the maximized NGD/AMAX ratio, and it has
tg ·∆ω = 3.77.
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As evident from Fig. 11, the reciprocal decay case (1/ω) has the
smallest out-of-band gain, and it is therefore optimal. This is confirmed
in Fig. 12, where NGD-bandwidth versus out-of-band gain curves are
produced in a similar manner as in Section 5.1. The asymptotic limit
for the optimum case is determined as

tg ·∆ω ≤ 0.5592
√

AMAX -dB. (19)

The asymptotic limit given by (19) does not contradict limits given
by (18), (8) and (2). Changing the order of phase decay to a
higher (1/ω2), or a lower (1/ω1/2) value from the optimum case (1/ω)
produces asymptotic limits smaller than (19). All cases shown in
Fig. 11 have their maximum out-of-band values, AMAX , larger than
their corresponding out-of-band values at high frequencies, AdB(∞).
Therefore, amplitude characteristics are not monotonic functions of
frequency, unlike the medium presented in Section 3. Decay slopes at
the phase reversal points, τg(ω+

M ), can be adjusted for the k = 1 and
k = 1/2 cases, to make their AMAX coincide with AdB(∞). However,
this would result in lowering the NGD/AMAX ratio. For example, the
limit for the optimal case (k = 1) given by (19) would decrease by
2.25%. Since the primary objective of this paper is deriving the upper
asymptotic limit, we will retain the limit given by expression (19).

A similar derivation as the one presented in the last two sections
was performed for several other types of phase responses, such as a 2nd
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order approximation around the center frequency, with a continuous
phase derivative (group delay) over the entire frequency domain.
However, the upper limit given by expression (19) is still higher than
any of the ones obtained for these cases. The same is expected for any
higher order phase response around the center frequency.

The full amplitude characteristic expression corresponding to
the optimum linear and reciprocal (1/ω) phase response is obtained
from (11), and given by

AdB(ω) =
10(tg∆ω)
π ln 10

[2ωM

ωC
ln(2) +

|ω|
ωC

ln
(

ωM + |ω|
|ωM − |ω||

)

+
ω2

M

ωC

ln(2|ωM−|ω||/ωM )
2|ω|−ωM

−ω2
M

ωC

ln(2(ωM +|ω|)/ωM )
2|ω|+ωM

]
,(20)

where the values chosen for the maximum NGD-bandwidth product,
tg ·∆ω, and the linear to reciprocal phase transition frequency, ωM , are
related such that AdB(ωC) = 10 log(2) ≈ 3 dB condition is satisfied.
In the example depicted in Figs. 10(a) and 11, the chosen value of
tg · ∆ω = 3.77 requires a value of ωM ≈ 2.606ωC for the linear
and reciprocal phase response medium, to satisfy the 3 dB bandwidth
condition at ωC .

6. DISCUSSION

The asymptotic limit for the distributed high-pass filter based NGD
medium presented in Section 3 is compared with the optimally
engineered medium from Section 5.2 corresponding to the asymptotic
limit given by expression (19). The comparison is carried out for both
amplitude and phase frequency responses, for a selected case. In this
comparison, an infinitely distributed high-pass filter-based medium
exhibiting a NGD-bandwidth product of tg · ∆ω = 3.77 is chosen,
corresponding to a maximum out-of-band gain AMAX = 86 dB. This
is compared with a piece-wise linear and reciprocal (1/ω) decay phase
response, which is chosen to have the same NGD-bandwidth product
and with τg(ω+

M ) = 2tg, yielding a maximum NGD/AMAX ratio as
before. The amplitude characteristic for this case was obtained by
Kramers-Kronig relations as before.

The phase and amplitude response plots are shown in Figs. 13(a)
and 13(b), respectively. We can see that for the same NGD-bandwidth
product chosen for these cases, the piece-wise linear and reciprocal
decay phase response medium has a much smaller maximum out-
of-band gain of AMAX = 47 dB. If the parameters of this medium
type from Section 5.2 are slightly adjusted to yield a monotonic
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amplitude characteristic, a slightly larger out-of-band gain value of
AMAX = 49 dB results. This case is also shown in Figs. 13(a) and 13(b).

The optimum frequency domain NGD/AMAX ratio of the piece-
wise linear and reciprocal decay phase response medium translates into
the optimum NGD to transient amplitude ratio in the time domain,
as shown in Figs. 14(a) and 14(b). For the same Gaussian pulse
chosen, an optimally engineered medium exhibits a smaller transient
amplitude for a given NGD (Fig. 14(a)), or for a given transient
amplitude it exhibits a larger NGD (Fig. 14(b)), compared to an
infinitely distributed high-pass filter-based medium.

A large NGD-bandwidth product requires a large out-of-band
gain. In practice, for gain-compensated active media, achieving very
large gain with realistic amplifiers while maintaining stability is an
issue. If the individual-stage amplifiers have non-ideal directivity
and non-ideal matching, a cascaded circuit can become unstable.
Further, active device non-linear effects in the out-of-band high-gain
region could cause distortion. This part of the signal spectrum also
corresponds to the transients. Signals with their spectral energy
limited to a very narrow-band region around the center frequency
would not be affected by issues related to large out-of-band gain.
However, as shown in Fig. 2, any practical signal with a defined turn-
on/off time has some of its spectral energy in the out-of band region
and therefore would result in large transients due to a large out-of-band
gain of the circuit. In fact, if the out-of-band gain is large enough, the
output noise floor can increase to a point where it is on the order of
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Figure 14. Gaussian waveform (σt = 10 ns, turn-on/off times at 45 ns
away from the peak) time-domain responses of a distributed high-pass
filter-based medium, and a piece-wise linear and reciprocal decay phase
response medium with (a) parameters from Fig. 13 yielding different
transient amplitudes but the same NGD = 6 ns for both media, and
(b) parameters yielding different NGD values but the same transient
amplitude vTR = 0.0075V for both media.

magnitude, or larger, than the signal.
Note that the limits derived in this paper apply to both active

and passive media, where for the passive media the out-of-band gain
corresponds to center frequency attenuation [19]. The difficulties
encountered with active devices do not apply for passive media, even
though transients and noise issues still do.

7. CONCLUSION

In this paper, an asymptotic NGD-bandwidth limit as a function of
maximum out-of-band gain was derived for an optimally engineered
linear causal medium. Several examples of phase response
characteristics of linear causal media were examined and their
corresponding amplitude responses were derived using Kramers-Kronig
relations. The optimal phase response function was identified,
comprised of a linear part around the center frequency and reciprocal
decay at high frequencies. The corresponding causal amplitude
response was analytically obtained in each case.

It was shown that there is a trade-off between the maximum NGD
value within a specified bandwidth on one hand, and the undesired
maximum out-of-band gain in the amplitude response on the other.
Moreover, an upper limit for NGD-bandwidth-product was shown to



Progress In Electromagnetics Research, Vol. 134, 2013 245

be an asymptotic square root function of a logarithm of the maximum
out-of-band gain. Alternatively, we can say that the out-of-band
gain, and therefore the transient response amplitude of finite-duration
signals as well, increase exponentially with the square of the achieved
NGD. The obtained asymptotic NGD limit was shown to apply to
a Lorentzian dielectric model medium, as well as to a distributed
gain-compensated NGD medium comprised of ideally matched high-
pass filters. A practical distributed NGD filter-based medium may
exhibit non-ideal matching between stages which would reduce its
NGD-bandwidth product further, however, the derived limit would
still apply.

For the wide range of classes of linear causal media examined
in this paper, it was shown that the NGD-bandwidth product as a
function of the maximum out-of-band gain has an upper limit given by
expression (19).
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