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Abstract—Feature aided maneuver detector is popular for its low
detection delay and high detection probability in decision-based single-
model maneuvering target tracking (MTT) algorithms. We propose a
switching model-set approach based on the feature aided maneuver
detector for MTT. The filtering error dynamics in terms of detection
delay are presented and a upper bound for detection delay with
given standard Kalman filtering errors is accessed. Subsequently, a
feature aided maneuver detector is introduced to enhance detection
performance, and the filtering algorithm is proposed, including detailed
filtering steps and computational formulae. Simulation results show
that the proposed algorithm outperforms the popular autonomous
multiple model (AMM) and interacting MM (IMM) algorithms.

1. INTRODUCTION

The maneuvering target tracking (MTT) problem has been a hot
topic for many years in the field of state estimation [1, 2]. Since
target acceleration cannot be measured directly by existing sensors,
maneuvering target tracking turns out to be a hybrid estimation
problem [3, 4]. Current MTT algorithms mostly deal with the target
motion uncertainty, including decision-based single-model method and
multiple-model method [3, 5]. The multiple-model method, although
excellent in quality and reliability, is computationally inefficient. In
fact, in applications like guidance and navigation, the other method,
the decision-based single-model one is much more appealing due to
its low computational complexity. Given a timely maneuver detector,
the decision-based single-model method has been shown to achieve
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a tracking accuracy similar to that of multiple-model method [6],
therefore is very favorable in resource-limited scenarios. The key
component lies in the correct and timely maneuver detection.

At present, most maneuver detection algorithms are developed
based on the innovation information, but provide large detection delay
and low detection probability [4]. Optical image-based detection
algorithms reduce detection delay, but increase system complexity.
In addition, optical sensors are susceptible to weather conditions,
therefore is only suitable for short or medium range scenarios [7].
Recently, a novel group of algorithms called feature aided target
maneuver detection are proposed, and they are dependent on radar
signatures. For instance, boresight error signal, echo amplitude
fluctuations, and even two-dimensional range-Doppler images are
utilized for maneuver detection [8–10]. The authors have proposed
an effective algorithm based on the differences in high resolution
Doppler profile (HRDP) [11]. These feature aided algorithms reduce
detection delay, increase detection probability, and improve detection
performance significantly. However, how to integrate the feature aided
detector into tracking filter and evaluate its performance remains
unaddressed.

As we know, the target non-maneuver behavior can be accurately
portrayed with a single mode, while multi-models are needed to
accurately demonstrate the large maneuver behavior (The direction
and intensity are not known a prior). We propose a novel feature
aided switching model set approach for MTT in this paper. Firstly,
based on the feature aided maneuver detector, the target motion can be
divided into two types: non-maneuver and maneuver. When the target
maneuvered, the multi-model identification techniques can be used
to distinguish between multiple maneuver models. It is a multi-level
classification method and the state filter is a variable structure multiple
mode (FA-VSMM) filter. The FA-VSMM method not only improves
the accuracy of motion pattern recognition of decision-based single-
model method, but also reduces the computational load of multiple-
model method.

The remainder of the paper is organized as follows. Section 2
presents error dynamics in terms of detection delay, and accesses an
allowed detection delay upper bound for given filtering errors. A
brief introduction of our feature aided maneuver detector is given in
Section 3. Section 4 presents the filtering algorithm, including state
space model and detailed filtering steps. Simulation experiments are
performed in Section 5. Finally, the conclusions are drawn in Section 6.
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2. DETECTION DELAY AND ERROR DYNAMICS

Due to the existence of maneuver detection delay, target motion mode
and the filtering model are mismatching. This will lead to greater
filtering errors, even divergence. It is thus important to quantify error
dynamics in terms of detection delay, and access an upper bound for
detection delay with given filtering errors.

Assumed that nonmaneuvering and maneuvering motion modes
can be described by two generic types of models: the constant velocity
(CV) model and constant turn (CT) model with a known turn rate.
The state equation is

xk+1 = Φixk + wk (i = CV, CT) (1)
where,

x =




x
ẋ
y
ẏ


 ; ΦCV =


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1 T 0 0
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
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ω
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The state vector x contains the coordinate (x, y) and velocity (ẋ, ẏ)
of the target. The ΦCV and ΦCT are respective transpose metrics of
CV and CA model. The process noise w is zero-mean Gaussian white
noise, and its covariance matrix is omitted here which can be found
in [12]. It is noted that ΦCV = ΦCT (ω = 0).

Assumed that target position is measurable, and the measurement
equation is

zk =
[

xm
k

ym
k

]
=

[
1 0 0 0
0 0 1 0

]
xk +

[
vx
k

vy
k

]
= Hxk + vk (2)

where, z is the measurement vector, v the measurement noise with
zero-mean Gaussian distribution, and H the measurement matrix.

(1) and (2) constitute a linear Gaussian hybrid system. Kalman
filter is an approximately optimal estimator for the base-state.
Although the filtering models are different, Kalman gains and
estimation error covariance matrices have the same iteration forms.

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We omit the superscript i, and the denotations Ki
k and Pi

k|k are
simplified as Kk and Pk|k. The following two conditions are assumed
to be true for motion mode switching and maneuver detection.

(1) Target maneuvering motion mode started at the time ko can
be correctly detected at the time k′o as shown in Fig. 1;

(2) The maneuvering motion mode sojourn time kt− ko is greater
than detection delay.

In Fig. 1, ko and kt are the maneuver onset and termination times
respectively. ks is the time when the tracking filter is convergent and
stable. Under the above two conditions, the mode transition of the
hybrid system is observable [13]. As target maneuver onset detection
is more important [1], we only consider the time interval ks ≤ k < k′o,
CV model is utilized for filtering, and the state estimate is

x̂k+1|k+1 = (I−Kk+1H)ΦCVx̂k|k + Kk+1zk+1 (4)

The estimation error mean is denoted by ζk = E
[
x̂k|k − xk

]
. The

filtering error dynamics in the interval ks ≤ k < k′o is then obtained.

ζk+1 = (I−Kk+1H)ΦCVζk + uk (5)

where,

uk =
{

0, ks ≤ k < ko

(I−Kk+1H)
(
ΦCV −ΦCT

)
x̄k, ko ≤ k < k′o

(6)

x̄k = E [xk] in (6).
To guarantee the convergence of filtering, all eigenvalues λi, i =

1, 2, . . . , n of the matrix (I−Kk+1H)ΦCV must be within the unit
circle, i.e., the spectral radius is less than 1.

ρ = max {|λ1| , |λ2| , . . . , |λn|} < 1 (7)

Figure 1. Motion mode switch and maneuver detection.
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Since the filter is convergent and stable at the time ks, it is
reasonable to use steady-state gain KCV to approximate time-variant
Kk. The estimation error mean ζk+1 can be expressed in terms of ζks .

ζk+1 =
[(
I−KCVH

)
ΦCV

]k+1−ks ζks +
k∑

l=ko

[(
I−KCVH

)
ΦCV

]k−l ul

(ko ≤ k < k′o)
(8)

The error dynamics with respect to detection delay is obtained
in (8). To derive an upper bound for detection delay with certain
filtering errors, we first introduce two lemmas. All norms are 2-norms
unless specified otherwise in the sequel.

Lemma 1 Given an nth-order square matrix A with all distinct
eigenvalues, ∥∥∥Al

∥∥∥ ≤ κ (A) ρl (A) (9)

where, ρ (A) is the spectral radius of the matrix A, and κ (A) =
‖P‖ · ∥∥P−1

∥∥, the condition number of A under the inverse, where
P−1AP = JA, the Jordan canonical form.

Lemma 2 If the functions f1(k) = c1a
k+1+s and f2(k) = c2

k∑
i=0

ai

satisfy c1a
s < lim

k→∞
f2(k) = c2

1−a , where 0 ≤ a < 1, s ≥ 1, c1 > 0,

and c2 > 0, the maximum of the function f(k) = f1(k) + f2(k) is
max

k={1,2,...,j}
f(k) = f(j).

The proof of lemmas 1 and 2 are omitted here, and the readers
are referred to [13, 14].

For simplicity, let κ = κ
[(

I−KCVH
)
ΦCV

]
and ρ =

ρ
[(

I−KCVH
)
ΦCV

]
. According to Lemma 1, the following inequality

is derived from (8).

‖ζk+1‖≤κρk+1−ks ‖ζks‖+κU
1− ρk−ko+1

1− ρ

∆= g (k)
(
ko ≤ k < k′o

)
(10)

where, U = max ‖uk‖, (ko ≤ k < k′o).
Since ρ < 1, g (k) and filtering errors are monotonically decreasing

for k < ko. For the time interval ko ≤ k < k′o. It is assumed that ‖ζks‖
satisfies the following inequality after ko − ks iteration steps.

‖ζks‖ ρko−ks <
U

1− ρ
(11)

Let c1 = ‖ζks‖; c2 = U ; s = ko−ks. From Lemma 2, we know that
g (k) is monotonically increasing for ko ≤ k < k′o, that is, the filtering
is divergent.



256 Fan et al.

In order to perform tracking continuously and not to miss the
target, it is necessary to restrict the filtering errors less than the
maximum allowed one E0.

g
(
k′o

)
= κρk′o+1−ks ‖ζks‖+ κU

1− ρk′o−ko+1

1− ρ
≤ E0 (12)

From (12), we get the upper bound for maneuver detection delay
∆ = k′o − ko.

∆ = k′o − ko ≤ 1
ln ρ

ln
∣∣∣∣1−

E0 (1− ρ)
κU

∣∣∣∣− 1 (13)

We actually obtain the upper bound for maneuver onset detection
delay. Similar analysis can be performed on the time interval k′o ≤
k < k′t for maneuver termination detection. The results are important
for maneuver detector design. In many applications, e.g., aerial
defense, homing guidance, where targets maintain high speed and
maneuverability, it is thus fairly demanding for maneuver detector.
However, traditional detectors are incapable of low detection delay.
We next introduce a feature aided one. It is noted that Kalman filter
is an approximately optimal estimator for the base-state in a linear
Gaussian hybrid system. So the deduction of the upper bound for the
detection delay is using the standard Kalman filter.

3. FEATURE AIDED MANEUVER DETECTOR

A brief introduction of feature aided maneuver detector is given in
this section. Nonmaneuvering and maneuvering motion modes are
identified using the differences in the resolution of HRDP. The readers
are referred to [11] for more details.

3.1. Detection Principle

Since aerial targets must obey aerodynamics, the motion mode switch
will lead to the changes of pose angle. We next derive the pose angular
rates under different motion modes. For simplicity, we consider two-
dimensional planar encounter geometry as shown in Fig. 2.

The polar coordinates of target position in the inertial frame are
(r, ϕ), and the coordinates of radar position in the structural frame
are (r, φ). The rotational angle of the structural frame with respect
to the inertial frame is ψ, which is known as Euler angle. Since radar
signatures are concerned, we turn our attention to target pose angle φ.
It varies with target motion. However, the angular rates are distinct
under different motion modes. In Fig. 2, the pose angle is

φ = π + ϕ− ψ (14)
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Figure 2. Two-dimensional planar encounter geometry.

Assumed that target speed is v, and the tangential and normal
accelerations are at and an, respectively. By taking derivative of (14)
and applying the rigid body kinematical equations, we obtained

φ̇ =
v sinφ + att sinφ + ant cos (ϕ + ψ)

r0 − 2vt cosφ− att2 cosφ + ant2 sin (ϕ + ψ)
− an

v
(15)

where, r0 is the target initial range.
We next discuss the pose angular rates under different motion

modes.

3.1.1. Nonmaneuvering Motion Mode

If target is nonmaneuvering, its velocity is constant and accelerations
are zero, i.e., at = an = 0. It is known as CV motion mode [12]. The
pose angular rate is obtained from (15)

φ̇CV =
v sinφ

r0 − 2vt cosφ
(16)

Target range is usually far, and the pose angular rate is a very
small value.

3.1.2. Maneuvering Motion Mode

Since (15) is a little complicated, we consider the following two special
cases.

(a) If at = 0 and an = constant, target has a constant speed and a
constant turn rate, which is referred to as CT motion mode [12]. (15)
is then simplified as

φ̇CT =
v sinφ + ant cos (ϕ + ψ)

r0 − 2vt cosφ + ant2 sin (ϕ + ψ)
− an

v
(17)

Comparing with φ̇CV, we find an additional item an/v in φ̇CT. It
is the item that

∣∣∣φ̇CT

∣∣∣ À
∣∣∣φ̇CV

∣∣∣ holds. The pose angular rate under
CT motion mode is much greater than that under CV motion mode.
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(b) If an = 0 and at = constant, target is under constant
acceleration (CA) motion mode [12]. Then we have

φ̇CA =
v sinφ + att sinφ

r0 − 2vt cosφ− att2 cosφ
(18)

The pose angular rate φ̇CA is approximately equal to φ̇CV, as
tangential acceleration is generally small in magnitude and of short
duration. Therefore, the pose angular rate φ̇CA is also a small value.

From above analysis, target pose angular rates are distinct under
different motion modes. Specifically, it is much greater under normal
accelerated motion mode (e.g., CT motion mode) than that under
nonmaneuvering and tangential accelerated motion modes (e.g., CV
and CA motion modes). Fortunately, normal accelerated motion
mode, especially CT motion mode, is frequently discussed by tracking
community not only because it is the motion mode that targets,
especially military targets, prefer to performing during a combat but
also because it has a significant impact on target tracking performance.
It is pointed out in [15] that accelerations in the velocity direction (drag
and thrust) are generally smaller in magnitude and of shorter duration
than the lift (normal) accelerations over most realistic flight regimes.

3.2. Maneuver Detector

As shown in Fig. 2, if radar transmits high pulse repetition frequency
(HPRF) waveform, the baseband signal after motion compensation
is [16]

G (n) =
∫

σ (x) exp
(
−j

4πf0

c
rn · x

)
dx (19)

where σ(x) is the target reflectivity distribution and rn the unit vector
parallel to oios at the time when the nth pulse is transmitted. The
integration is carried out over the volume of target. (19) represents
the samples of the Fourier transform of the reflectivity collected along
an arc of the circumference [16].

By taking inverse discrete Fourier transform (IDFT) of the
sequence G(n), a discrete one-dimensional profile of the target
reflectivity along the cross-range, i.e., HRDP, is obtained. The
resolution of HRDP ∆l turns out to be inversely proportional to the
variation of the pose angle ∆φ, i.e.,

∆l =
λ

2 sin∆φ
(20)

where λ is the wavelength.
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From the resolution formula (20), a minimum variation of pose
angle is required to obtain target HRDP. Consequently, the coherent
processing interval (CPI) can be appropriately determined, so that
the variation of pose angle is less than what is the required when
the target performs nonmaneuvering motion and that the variation of
pose angle meets the profiling requirements when the target performs
maneuvering motion. Therefore, it is unable to distinguish scatterers
from target HRDP, and the target behaves as a point target under
nonmaneuvering situation. On the other hand, under maneuvering
situation it is able to distinguish multiple scatterers from target HRDP,
and the target behaves as an extended target. This is the principle of
the maneuver detection using HRDP.

From (19), target HRDP is sensitive to pose angle, and is
nonstationary during target motion. Using the classical approach to
design a detector is too difficult. The maneuver detection problem
is reformulated as an adaptive pattern classification problem in this
paper [17]. Different classes such as maneuvering and nonmaneuvering
motion mode are distinguished. A classifier based on back propagation
(BP) neural network (NN) is developed. The developed NN is made up
of three layers. The outputs are linearly combined to produce the final
output, where the final decision is made. The block diagram of the
detector and the detailed architecture of the NN are shown in Fig. 3.
A comprehensive performance evaluation is presented in [11], and low
detection delay and high detection probability are gained.

4. SWITCHING MODEL-SET FILTERING ALGORITHM

4.1. State Space Model

The motion model is given by (1). However, the magnitude and
direction of target turn rate is hardly to know in practice. We use a
model set containing multiple models to describe target maneuvering

Feature
Extraction

BP NN
Classifier

Output
Combiner

Figure 3. Block diagram of detector and detailed architecture of NN.
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motion mode. For model-set design, it is still a challenging topic. At
present, only Li et al. [18] have discussed it and proposed three classes
of methods. For brevity, we choose two models, i.e., left turn and right
turn models. The model set is M1 = {+ω,−ω} under maneuvering
motion mode. The turn rate magnitude ω has to be determined
according to the specific application [18]. Obviously, the model-set
for nonmaneuvering motion mode is M0 = {0}.

(2) is the measurement model. Actually, target positions are
obtained in sensor coordinates, and it is spherical in three-dimensional
space with range, azimuth (or bearing), and elevation. For simplicity,
we describe measurement equation in Cartesian coordinates, and
assume that target positions are measurable. Fortunately, many
approaches have proposed to resolve the nonlinearity, for instance,
converted measurements method is a commonly used one [19].

4.2. Filtering Algorithm

4.2.1. Principle

The diagram of feature aided switch model set filtering algorithm
is shown in Fig. 4. Once echo signals are received, HRDPs and
measurements of the target are extracted and sent to the detector and
filter, respectively. The unique model-set for filtering is switched from
M0 to M1 and vice versa according to the feature aided maneuver
detection results, hence the name feature aided switching model-set

Figure 4. Diagram of filtering algorithm.
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filtering. Since a time-varying model-set is used for filtering, the
proposed algorithm can be regarded as a variable-structure multiple
model (VSMM) method. Thus, the VSMM algorithm in the sequel
represents our proposed switching model-set filtering algorithm.

4.2.2. Model-set Conditioned Filtering

Since the model set M0 contains only CV model. It is optimal to
use standard Kalman filter. It is omitted here. We present model set
M1 conditioned filtering algorithm. As stated that M1 = {+ω,−ω},
containing left and right turn models. Therefore, MM method will
be employed under maneuvering motion mode. It is optimal to use
autonomous MM (AMM) algorithm [5].

Step 1. Model-conditioned filtering (for i = 1, 2):
Predicted state: x̂(i)

k+1|k = Φ(i)
CTx̂(i)

k|k

Predicted covariance: P(i)
k+1|k = Φ(i)

CTP(i)
k|k

[
Φ(i)

CT

]T
+ Q(i)

CT

Measurement residual: z̃(i)
k+1 = z(i)

k+1 −Hx̂(i)
k+1|k

Residual covariance: S(i)
k+1 = HP(i)

k+1|kH
T + R

Filter gain: K(i)
k+1 = P(i)

k+1|kH
T

[
S(i)

k+1

]−1

Update state: x̂(i)
k+1|k+1 = x̂(i)

k+1|k + K(i)
k+1z̃

(i)
k+1

Update covariance: P(i)
k+1|k+1 = P(i)

k+1|k −K(i)
k+1S

(i)
k+1

[
K(i)

k+1

]T

Step 2. Model probability update (for i = 1, 2):
Model likelihood:

L
(i)
k =N

(
z̃(i)

k+1;0,S(i)
k+1

)
=

1∣∣∣2πS(i)
k+1

∣∣∣
1/2

exp


−

[
z̃(i)

k+1

]T [
S(i)

k+1

]−1
z̃(i)

k+1

2




Mode probability: µ
(i)
k+1 =

µ
(i)
k L

(i)
k+1∑

j µ
(j)
k L

(j)
k+1

Step 3. Estimate fusion:
Overall estimate: x̂k+1|k+1 =

∑
i x̂

(i)
k+1|k+1µ

(i)
k+1

Overall covariance:

Pk+1|k+1 =
∑

i

[
P(i)

k+1|k+1 +
(
x̂k+1|k+1 − x̂(i)

k+1|k+1

)

(
x̂k+1|k+1 − x̂(i)

k+1|k+1

)T
]

µ
(i)
k+1
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4.2.3. Filter Initialization

The tracking filter can be initialized using two-point method. Once
target maneuver is detected, the filters can be initialized as follows.

x̂(i)
k+1|k+1 = x̂k+1|k+1,P

(i)
k+1|k+1 =Pk+1|k+1, µ

(i)
k+1 = 1/|M1|

(i=CV, CT) (21)

where, |·| denotes the cardinality of a set.

5. SIMULATION EXPERIMENTS

5.1. Simulation Scenario

The target fighter F18 initially locates at the height of 6000 feet. It
performs straight and level motion with a nearly constant velocity 0.8
mach in the first second, and then performs a 6 g (g is the gravitational
acceleration) constant turn maneuver for another 3 seconds. The
effects of different distances and attitudes between radar and target
have to be minimized in the experiment. Therefore, the radar positions
are chosen at random in the horizontal plane. The horizontal distances
uniformly distribute between 20 km and 50 km, while the azimuths
uniformly distribute between 0◦ and 360◦. One thousand Monte Carlo
experiments are run. In addition, a simulation platform is developed

Figure 5. Simulated target trajectory.
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for echo signal generation [11]. Fig. 5 shows the simulated target
trajectory in the experiment.

5.2. Simulation Results

5.2.1. Detection Delay and Error Dynamics

In the above scenario, we perform a numerical simulation on detection
delay and error dynamics. Fig. 6 shows the results of error
dynamics with different detection delays. The filtering errors decrease
continuously before target maneuvers. However, once it begins to
maneuver, the position and velocity errors increase due to mode-model
mismatch. The greater the detection delay, the larger the filtering
errors. When maneuver is correctly detected, the filtering errors are
convergent again.

Figure 7 shows detection delay bounds with respect to different
normal accelerations and maximum allowed errors. Given a normal
acceleration and turn rate, detection delay upper bounds turn out
to be greater with larger error bounds, that is, it allows a longer
time mode-model mismatch. On the other hand, given the maximum
allowed error, detection delay upper bounds turn out to be smaller with
larger normal accelerations and turn rates, that is, the higher the target
maneuverability, the smaller upper bound for the detection delay. For
instance, if the maximum allowed error E0 = 100 and target normal
acceleration is 6 g in our experiment, the upper bound for detection
delay is about 0.5 s. In fact, this is fairly demanding for maneuver
detector. From [11], we find out that the detection probability of the
feature aided maneuver detector becomes about 90% at the time of

(a) Position Error (b) Velocity Error

Figure 6. Error dynamics with different detection delays.
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Figure 7. Detection delay bounds with respect to different normal
accelerations and maximum allowed errors.

Table 1. Parameters of filtering algorithms.

Parameters Value

Power spectral density
of process noise

CV model m0 1
CT model m1 1
CT model m2 1

Standard deviation of
measurement noise

x 50 m
y 50 m

Model transition probability matrix




0.950 0.025 0.025
0.025 0.950 0.025
0.025 0.025 0.950




0.5 s delay, while that of the detector using range rate measurements
remains at a considerably low level [20].

5.2.2. Filtering Results

Since the proposed switching model-set filtering algorithm can be
regarded as a VSMM method, we also do tracking using the first two
generation MM methods, i.e., AMM and cooperating MM (CMM), for
performance evaluation. We choose the most popular interacting MM
(IMM) algorithm from a lot of CMM algorithms. Table 1 lists the
parameters of the tracking filters.
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(a) AMM (b) IMM 

(c) FA-VSMM 

Figure 8. Model probability histories.

(a) Position error (b) Velocity error 

Figure 9. Filtering errors of the three algorithms.
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Figure 8 shows the model probability histories of the three MM
algorithms. For 0 ≤ t < 1 s, target is nonmaneuvering, and CV model
matching with target motion mode is employed in VSMM algorithm.
The designed model-set constituted of three models is employed in
AMM and IMM algorithms. Their probabilities keep nearly the same,
that is, the correct model is not identified. This may be due to the two
CT models with the same turn rate and opposite turn directions, and
the filtering performance is close to that of CV model. We also see that
the filtering errors of the three MM methods show slight differences
in Fig. 9. For t > 1 s, target is maneuvering, the probability of the
true model reaches the greatest after a certain delay time, that is, the
motion mode can be correctly identified by all three MM algorithms.
VSMM algorithm achieves that earliest, and the probability of model
m1 reaches the greatest at t = 1.61 s. AMM algorithm gets that latest,
and at t = 3.66 s the correct model is identified.

Comparing with Figs. 8(a) and 8(c), the probability histories of
the three models in Fig. 8(b) change with time very slowly as IMM
algorithm performs interacting step [5].

Figure 9 shows the filtering errors of the three MM algorithms.
Overall VSMM algorithm performs best out of the three, the filtering
errors remain small. They increase slightly as the probability is
converging, and decrease to a considerably low level subsequently. The
filtering errors of AMM and IMM algorithms accumulate and increase
with time. For AMM algorithm, once the correct model is identified,
the filtering errors decrease significantly. However, the filtering errors
of IMM algorithm remain increasing, since the probability of the
correct model converge too slowly.

6. CONCLUSIONS

A feature aided switching model-set approach for MTT is proposed in
this paper. We first present error dynamics with respect to detection
delay, and access the upper bound for detection delay with given
maximum allowed errors. The results are useful for maneuver detector
design, and also show that low detection delay is necessary for small
filtering errors in many applications. Therefore, a feature aided
maneuver detector is introduced to enhance the detection performance.
The filtering model-set is chosen according to the detection results.
The detailed filtering steps of switching model-set approach are
presented, including computation formulae. Simulation results show
that the proposed algorithm outperforms the other two generation MM
algorithms, i.e., AMM and IMM.
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