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Abstract—Traditionally, the transmitter (TX) IQ imbalances
distortion and power amplifier (PA) distortion are separately modeled.
In this paper, the behavior of the two distortions are unified, and
characterized by a single model. Rectangular structured Focused
Time-Delay Neural Network (RSFTDNN) is proposed to uniformly
model IQ imbalances and PA distortions. As a result, the physical
distortions in the analog circuits are further abstracted. It also saves
computation resources in simulation. Unlike the polynomial based
model, which suffers from condition number effects and inaccuracy
for deeply nonlinear system, the proposed RSFTDNN shows high
accuracy. Two cases of real experiments are carried out, where
RSFTDNN model shows much better performance than the polynomial
based model in the sense of model accuracy.

1. INTRODUCTION

Modern wireless communication systems suffer from severe signal
distortion at the power amplifier and IQ imbalance distortion in
the modulator/up converter. The Power amplifier (PA) [1] shows
nonlinear [2] and memory distortion [3, 4]. And the memory
or frequency-dependent effects become much more significant and
influential [5] when the transmitted signal is a wideband signal,
e.g., Orthogonal Frequency Division Multiplexing (OFDM) based
signals [4]. Due to its peculiarity of a high Peak-to-Average Power
Ratio (PAPR) [6], OFDM-based signals (WLAN and LTE signals) are
very sensitive to the PA nonlinear distortions. Another important
distortion is TX IQ imbalances [7, 8], represented by the gain imbalance
between I and Q paths, and the shift from the ideal phase difference
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between the two local oscillators (LOs). TX IQ imbalances are also
frequency-dependent with wideband [7] signals. The TX IQ imbalances
distortion may introduce Mirror Frequency Interference (MFI) [8].

Behavioral models of these physical distortions are usually used
in simulation — a critical step to analyze the influence and find
a way to compensate it. Traditionally, power amplifier and TX
IQ imbalances are simulated separately by two totally independent
behavioral models. This approach increases the cost of resources.
Moreover, it is very difficult to design and setup the experiment to
separately identify both models — the power amplifier and other RF
devices are often implemented in a circuit board, or even in a chip,
rendering it very difficult to totally separate one from the other and
identify the corresponding models independently.

Recently, some polynomial based models [9] have been proposed
to treat PA distortion and TX IQ imbalances in a single unified
model. However, polynomial based models can only model mild
nonlinear system [10], because it is difficult to accurately identify the
coefficients with very high nonlinear order, owing to the condition
number problem [11]. In [12], real-valued focused time-delay neural
network (RVFTDNN) is used to predistort PA nonlinear impairments.
However, it does not discuss the influence of IQ imbalances, nor does
it discuss the issue of condition number problem. In this paper, the
power amplifier and TX IQ Imbalances distortions are treated as a
single black box, and modeled in one behavioral model — Rectangular
structured Focused Time-Delay Neural Network (RSFTDNN). Here
the advantages of RSFTDNN are: (1) It provides a unified view of the
impairments of the transmitter. (2) It can avoid the condition number
problem of the polynomial based models, and accurately characterize
a deeply nonlinear communication system. (3) The network structure
is simple, and easy to be implemented, and it can save computation
resources in the simulation.

The proposed model is designed and specified according to
the characteristics of power amplifier and TX architecture. The
proposed neural network is double input (real part and imaginary part
separately) and single output (complex-valued). In order to model
the “bend-down” AM/AM characteristics of a power amplifier, the
activation function should be saturated for large input. And to model
the memory effects, the proposed neural network uses both the current
and the past inputs. Furthermore, condition number problem on
polynomial based model is also discussed and analyzed. An experiment
setup is specifically designed to avoid additional RX IQ imbalances
interference, and a processing method is used to achieve accurate time-
alignment of the input and output signals.
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The structure of the paper is arranged as follows: Section 2 firstly
illustrates the scheme of uniformly modeling the PA distortion and
IQ imbalances, and then analyzes the limitation of condition number
problem on polynomial based models. Section 3 proposes and analyzes
the RSFTDNN model. Section 4 shows the experiment results. Finally,
Section 5 gives the conclusion.

2. UNIFIED MODEL ON PA AND IQ IMBALANCES

2.1. Unified Model

The overall diagram of a typical wireless transmitter is shown in
Figure 1. The distortion of TX IQ imbalances models the impairments
or difference between s(n) and xl(n) (digitized version of xl(t)); and the
distortion of the power amplifier models the impairments or difference
between xl(n) and yl(n) (digitized version of yl(t)). Traditionally,
these two distortions are modeled and simulated separately by two
independent models. One possible reason for treating these two
distortions separately may be that they are caused by two different
physical mechanisms. However, from the viewpoint of system-level
simulation, all the underneath physical characteristics are ignored,
while only the output signals of concern. Hence it is natural and
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Figure 1. Overall diagram of a wireless transmitter: The signal with
the subscript p is the RF pass-band signal with carrier frequency, while
the signal with the subscript l is the corresponding low-pass equivalent
signal. The index n means the digitized signal, while index t means
the continuous analog signal after DAC.
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sensible to merge these two distortions into one unified black box,
using one mathematical equation to model the relationship between
its input s(n) and output yl(n). This saves the computation resources,
and represents a unified view of the transmitter impairments.

2.2. Model Choice and Limitation on Polynomial Based
Models

Polynomial based models and neural network models are two general
classes of models, which can be used to characterize the behavior of a
system. The class of polynomial based models can only model mildly
nonlinear system [10], because it is difficult to accurately identify the
coefficients with very high nonlinear order. This is due to the fact that
the condition number increases very quickly with increasing nonlinear
order. A large condition number means inaccurate identification results
as demonstrated in the derivation below.

One important character of polynomial based model is that the
output of the model is in linear relationship with the coefficients.
Hence usually the way to identify the coefficients is to solve the linear
equation:

Ax ' b (1)
where the matrix A contains all the linear and nonlinear orders of the
input samples, vector b is the output samples, and the vector variable
x is the coefficients to be identified. Usually, the number of samples is
much larger than the number of coefficients, resulting in a least squares
(LS) problem.

For rectangular matrix AN×L, where N > L, the condition
number is defined

χ(A) = ‖A‖2 ·
∥∥∥A†

∥∥∥
2

=
σmax

σmin
(2)

where {σi}L is the singular values of AN×L and ‖A‖2 the 2-norm of
matrix A.

The angle between the m-dimensional vector b and the space
span(A) is defined

cos θ =
‖Ax‖2

‖b‖2

(3)

where x is the least squares solution.
Theorem 1. For full column rank N × L matrix A, and if the noise
is only present in vector b, the upper boundary of the sensitivity of the
LS solution is calculated [13] as:

‖∆x‖2
‖x‖2

≤ χ(A)
cos θ

‖∆b‖2
‖b‖2

(4)
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Proof. The proof is also given in [13].
Equation (4) prevails in all the polynomial models that have linear

relationship between their outputs and their coefficients. It shows that
the error in the coefficients x is highly correlated to the condition
number χ(A), with its upper boundary being linearly proportional to
the condition number.

On the contrary, neural network is good at modeling even a highly
nonlinear system. With a proper number of layers and neurons, the
neural network can characterize a system with arbitrary accuracy [14].
Neural network has no such limitation as condition number in
polynomial based models that may set an upper boundary for the
performance and accuracy. Furthermore, from Figure 1, it is clear
that to characterize TX IQ imbalances and PA distortions together,
the model should have double inputs (real sI(n) and imaginary sQ(n),
respectively). However, the classical polynomial model is accustomed
to model single input single output (SISO) system, and hence some
modification or extension are necessary to model such double input
system, which may very well increase the complexity and computation
cost. On the contrary, neural network has natural flexibility in the
number of inputs and outputs, and can model such double input system
quite straightforwardly. Last but not least, neural network enjoys more
freedom: i.e., it can accommodate varying number of layers or neurons
in each layer, changes in the type of activation function, or even changes
in the connections or structure. Hence, neural network may be a better
choice to model the unified system consisting of TX IQ imbalances and
highly nonlinear PA.

3. PROPOSED NEURAL NETWORK MODEL

The relationship between the transmitted baseband signal s(n) and
the lowpass equivalent front end signal yl(n) shown in Figure 1 models
the IQ imbalances and PA distortions. The model should be a double-
input model because TX IQ imbalances distortion results in different
impairments to the real and imaginary parts of s(n). Taking memory
effects into consideration, the model can be generalized as:

yl(n) = f (sI(n), sQ(n))
= f (sI(n), . . . , sI(n−M), sQ(n), . . . , sQ(n−M)) (5)

Focused Time-Delay Neural Network (FTDNN) [15] is one of
the simplest neural networks that incorporates memory effects. The
memory effects are modeled by using delayed input samples, where
means one sample delay. Here real-valued version of FTDNN is
employed, i.e., weights, biases, activation functions, and outputs are
all real-valued.
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Figure 2. RSFTDNN model.

Since the final output is complex, the model should also have
double-output — one for real part, the other for imaginary. This
turns out to be a double-vector-input double-output (DVIDO) neural
network, or in scalar form 2 (M + 1)-input-double-output neural
network.

Figure 2 shows the structure, which has 2 layers. The complex
signal is in the form:

s(n) = sI(n) + jsQ(n) (6)

where the I path signal sI(n) represents the real part, while the Q path
signal sQ(n) represents the imaginary part. Hence the proposed neural
network is named rectangular structured Focused Time-Delay Neural
Network model.

Let xi,(l+1)(n) denote the output of the ith neuron in the l + 1th
layer. To simplify the representation, the time sample index n is
ignored. The number of neurons in the lth layer is denoted as N(l).
Then the outputs of l + 1th layer are generated from the outputs of
the lth layer by the following mathematical relation:

xi,(l+1)(n) = Φi,(l+1),PA




N(l)∑

j=1

αij,(l+1)xj,(l)(n) + βi,(l+1)


 (7)

where Φi,(l+1),PA(·) is called the activation function for the ith neuron
in the l + 1th layer. αij,(l+1) is the weights from the jth neuron in the
lth layer to the ith neuron in the l + 1th layer, and βi,(l+1) is the bias
for the ith neuron in the l + 1th layer.
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To further simplify the network, all the inner activation functions
and the output layer activation function are the same, denoted as f(·).
Note that the AM/AM relationship is a “bend-down” curve, i.e., the
slope of the curve is decreasing with increasing input amplitude. To
reflect this inherent “bend-down” nature of power amplifier distortion,
the activation function is chosen to be a sigmoid function, which also
bends down for large input. The Sigmoid function is given by:

fsgm(x) =
2c1

1 + e−c2·x − c1 (8)

And its 1st-order derivative function is

f ′sgm(x) =
c2

2c1

(
c2
1 − f2

sgm(x)
)

(9)

where parameter c2 is the slope parameter, and c1 defines the range
of sigmoid function as (0, c1]. The identification method used is the
well-known back-propagation (BP) method [14].

4. EXPERIMENT RESULTS

4.1. Experiment Setup

Figure 3 shows the overall experimental setup. The device-under-
model (DUM) consists of the vector signal generator and the power
amplifier (PA). Specifically, the signal generator contains TX IQ
imbalances distortion, while power amplifier contains the nonlinear
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and memory PA distortion. Here the signal generator is Agilent ESG
E4438C vector signal generator, which consists of the I-Path/Q-Path
DACs, the reconstruction filters and the up-converters, as well as other
analog devices. And the power amplifier is Mini-Circuits ZVE-8G
Amplifier.

The training signal is complex white uniform distributed random
signal. It is to uniformly sample and explore the meaningful range of
the mathematical model of the DUM, and give equal weight to different
amplitude. The digital baseband training signal is passed to the signal
generator (ESG E4438C). Then the signal generator (ESG E4438C)
converts the digital baseband signal to its corresponding RF signal
by passing it through the I-Path/Q-Path DACs, the reconstruction
filters and the up-converters, where the generated RF signal has carrier
frequency of 2.4 GHz and bandwidth of 16.6MHz. After that, the
signal passes through the power amplifier (PA), with the average
output power of around 31 dBm that is also the 1 dB gain compression
point. In the receiver, the RF signal is first down-converted to an
intermediate frequency (IF) signal of 100MHz by the down converter,
and then received and digitized by the oscilloscope (Infiniium 54832D
DSO) with sampling rate of 2 Gsps. The digital signal is then passed
to the personal computer (PC). The digital IF signal is further down-
converted to baseband by the digital demodulator, which prevents
the signal from additional RX IQ imbalances distortion. After time
alignment, the received baseband signal and the transmitted signal are
used to identify the RSFTDNN model.

Totally 42,818 pairs of input-output data samples are used.
Following the work of Doyle et al. [16] of using 50% of samples for
model identification and 50% for model verification, the first 50% of
the dataset (21,409 pairs) is used to train the RSFTDNN model, while
the remaining 50% of the dataset (21,409 pairs) is used for testing. As
a criterion, the normalized root mean square error (NRMSE) is used
to evaluate the performance and accuracy of the model:

NRMSE =

√√√√√√√√

N∑
n=1

|s(n)− z(n)|2

N∑
n=1

|s(n)|2
(10)

where N is the number of testing samples.
For comparison, the performance of the memory polynomial model

(MPM) based dual input model [17] is also evaluated. Note that
memory polynomial model [18] is a typical polynomial based model
and one of the simplest versions of the Volterra based model. Hence it
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is supposed to have the least condition number problem and consume
the least computation resources among polynomial based models. Its
nonlinear order is set to be 5, the same as in [17].

4.2. RSFTDNN Model of TX IQ Imbalances and PA
Distortions

The TX IQ imbalances distortion caused by the circuits inside the
signal generator and power amplifier are modeled by the RSFTDNN
model. The memory depth is 20, i.e., there are 20 delay taps at the
input. And there are 2 inner layers, and 1 output layer. Each inner
layer has 10 neurons, with Sigmoid activation function. There are 2
neurons in the output layer, and hence two outputs of the RSFTDNN
model — one for I component, the other for Q component. After
complex-addition as shown in Figure 2, the final output is obtained.

The learning curve of the RSFTDNN model converges after
around 5,000 iterations by setting the update step-size u as 0.01.
Important physical parameters of the RF system are given in Table 1.
The time domain waveform comparison is shown in Figure 4(a).
Here the RSFTDNN model output waveform is compared with the
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Figure 4. Time domain and spectrum comparison. (a) Time domain
waveform comparison. (b) Spectrum comparison.

Table 1. Physical parameters comparison between real device and
RSFTDNN model (RM), where “o-pwr” stands for “output power”.

device o-pwr 31.37 dBm device PAE 12.7% device gain 31.36 dB

RM o-pwr 31.42 dBm RM PAE 12.8% RM gain 31.41 dB
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Figure 5. Accuracy comparison between RSFTDNN model and
MPM-Dual-Input model, and the condition number of MPM-Dual-
Input model.

measured waveform in the real experiment. I component waveform
and Q component waveform are compared separately. The spectrum
comparison is also shown in Figure 4(b), where the spectrum of the
RSFTDNN model output is compared with the real signal in the
measurement. Both figures demonstrate a good agreement between
measured signal and the simulated signal by the RSFTDNN model,
and justify the high accuracy of RSFTDNN model.

The accuracy of the RSFTDNN model is further compared with
that of the MPM-Dual-Input model. Here the memory depths of both
models are swept from 1 to 20 taps, and the accuracies of both models
are compared using the NRMSE defined in Equation (10). As shown in
Figure 5, the accuracy of the RSFTDNN model does not change much
when the memory depth is changed, but the accuracy of MPM-Dual-
Input model drops dramatically with increased memory depth. The
reason for the accuracy degradation of MPM-Dual-Input model is due
to the condition number problem — the condition number is increasing
very fast with memory depth, which is also illustrated in Figure 5.
Note that the maximum number of parameters of MPM-Dual-Input
model is 252 for the case of 20 memory-tap depth. Comparing with
the number of training samples (21,409 samples), the possibility of
severe over-fitting problem [19] can be dismissed.

The resources required for the simulator between RSFTDNN
model and MPM-Dual-Input model are compared in Figure 6. 21,409
input samples are injected into the model, and the output is calculated
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and generated accordingly. The results show that RSFTDNN consume
less memory space than MPM-Dual-Input and the gap increases with
the model memory depth. For the case of 20 taps, RSFTDNN
consumes less than 1/5 of the memory space that MPM-Dual-Input
consumes. The simulation time for RSFTDNN remains relatively
constant with increase in memory depth, whereas it increases 650%
for the MPM-Dual-input when the memory depth increases from 1-
tap to 20-taps. In absolute simulation time, the RSFTDNN has an
advantage over MPM-Dual-Input for memory depth beyond 11 taps.
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4.3. Effect of Increased IQ Imbalances

To simulate a low cost vector modulator that has poor IQ imbalances,
additional IQ imbalances are added onto the inherent IQ imbalances in
the signal generator. It is added onto the transmitted signal s(n). In
order to enhance the memory effects of the distortion, the additional IQ
imbalances are implemented by four linear filters, as shown in Figure 7.
The four low pass filters hII , hIQ, hQI , hQQ are used to model the
TX IQ imbalances distortion, with memory effects and cross-talking
between I and Q paths. Their coefficients are given in Table 2. The
original transmit signal s(n) is firstly distorted by the IQ imbalances
model. After that, the newly distorted signal s′(n) is passed to the
signal generator and the whole transmission channel, where it further
suffers from TX IQ imbalances and PA distortions in the physical
device.

The RSFTDNN model has the same structure as in the previous
case. With the update step-size u being set 0.01, the learning curve
converges after 5,000 iterations. Important physical parameters of

Table 2. Coefficients of the four low pass filters hII , hIQ, hQI , hQQ.

hII 0.0021, 0.0734, 0.1546, 0.219, 0.2435, 0.219, 0.1546, 0.0734, 0.0021

hIQ 0.0006, 0.0026, 0.005, 0.0072, 0.0085, 0.0085, 0.0072, 0.005, 0.0026

hQI 0.0008, 0.0028, 0.0051, 0.0068, 0.0074, 0.0068, 0.0051, 0.0028, 0.0008

hQQ 0.0024, 0.0737, 0.155, 0.2195, 0.2441, 0.2195, 0.155, 0.0737, 0.0024
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the RF system are given in Table 3. Time domain waveform of
the RSFTDNN model is compared with the measured signals in
Figure 8(a), where each I and Q components are compared separately.
The spectrum comparison is shown in Figure 8(b). Both these
comparisons show that the RSFTDNN model is very accurate, and the
simulated output of the model is in good agreement with the measured
signal.

The accuracy of the RSFTDNN model is also compared with
that of the MPM-Dual-Input model, with the memory depths of both
models being swept from 1 to 20 taps, as illustrated in Figure 9. As in
the previous case, the accuracy of RSFTDNN model does not change
much when the memory depth is changed. On the contrary, owing
to the fast-growing condition number, also illustrated in Figure 9, the
accuracy of the MPM-Dual-Input model is deteriorating very fast with
increased memory depth. The resources required for the simulator of
21,409 input samples between RSFTDNN model and MPM-Dual-Input
model are compared in Figure 10.

Table 3. Physical parameters comparison between real device and
RSFTDNN model (RM), where “o-pwr” stands for “output power”.

device o-pwr 31.36 dBm device PAE 12.7% device gain 31.35 dB

RM o-pwr 31.50 dBm RM PAE 13.1% RM gain 31.49 dB
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Figure 10. Resources consumption comparison between RSFTDNN
model and MPM-Dual-Input model: memory space consumption and
simulation time consumption. The comparison is done based on the
same computer as the previous experiment.

5. CONCLUSION

RSFTDNN model is proposed to unify and model the behavior of the
TX IQ imbalances and power amplifier. It saves computation resources
in system-level simulation, provides unified view of the transmitter
system, and can be conveniently implemented in experiment. The
RSFTDNN model successfully overcome the condition number problem
in polynomial based models, and can accurately characterize both mild
and deep nonlinear system. Its structure is simple to implement, and
is stable because there is no feedback loop. The model is tested on a
transmitter with IQ imbalance and the power amplifier operated into
gain compression mode.

Results show very good agreement between measured and modeled
in time domain waveform and the transmitted spectrum. Compared
with the dual input memory polynomial model, the RSFTDNN model
uses less resources and is more accurate.
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